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Abstract: Burst error modeling has seen extensive research anadrrectly

progress over several decades evolving into evere momplex
modeling techniques used today. This paper analygetliness of
some prominent generative and descriptive (analyjtimethods.
Data containing error bits and packets from realrelsss
transmission was captured on a physical interfacg ased to
obtain statistical information about error burstlayap behavior in
the channel. Generative and descriptive modeliocgrigues were
then applied to model the error process with the gbestablishing
advantages and disadvantages of each techniqueerdiign
methods were represented by the commonly implerdeBligot’s

model with parameters calculated using a genedhlagebraic
form. Descriptive methods were represented by 2etsodne of
the most flexible exponentially shaped distribusiomith regard to
parameterization and heavy-tailed function modelinggamma
distribution model, and a model utilizing a novelrgmeterization
approach for the Markov modulated Poisson prockBdRP-2),

producing second-order hyper-exponentially distelu
characteristics. Results of the experiments werélim favor of

MMPP-2 model using a novel
demonstrating capability of MMPP-2 to model heavityerfered
wireless channels exhibiting exponentially-shapedre

parameterization appgrpac

received bits and error bits respectively
Consecutive error bits are referred to as errostbuvhilst
consecutive correctly received bits are referredagoerror
gaps or gaps.

2. Related work

The first widely accepted error model survey wablighed
by Kanal and Sastry [3] in 1978 and it classifis®emodels
as either generative or descriptive. Generativiriigcies are
those that use underlying mechanism to describehbhanel
(e.g. Markov chains) and descriptive techniques tmnfit
specific stochastic properties of the observed etragth
stochastic distributions (e.g. Pareto and Gammiaitalision
model).

Because of their wide-scale application and easljization
generative models based on Markov chains are emtyem
popular in error modeling even nowadays. The madely
applied generative models are Gilbert’s [4], Elfidi5] and
Fritchmann’s along with their many modifications.

Keywords: generator, Elliots model, MMPP-2, gammaDescriptive models typically use stochastic disttitns and

distribution, bit error, wireless channel

1.

The popularity and availability of wireless techogy
inspired extensive research in areas associatédwiitless
systems. Especially in its initial stages of reskaand
development it is preferable to test the concepts their
realizations in a controlled and simulated envirentrusing
mathematical models, rather than build an entireclegs

Introduction

system itself. Mathematical models have to be peeci

enough to disqualify inefficient or unrealizablencepts, but
mathematically tractable over a reasonable sinuratime
period.

model several moments of the communication linkorerr
process. Estimation of distribution parameters ¢ues
modeling and the most commonly used probabilitysitgn
functions can be moved, stretched, shaped, altenedny
combination of these features, using up to 3 patense
Phase-type distributions hold special position reéiga the
total number of parameters; they are defined by a
multiplication of mixture’s base stochastic disttiion’s
number of parameters and the total number mixture
_.components. Both generative and descriptive moglelin
approaches offer different advantages and disadgestand
are with varying success used for different purpose

Later progress in error modeling introduced new
mathematical concepts and model classes, oftenredfto as

There are 2 conceptual approaches to wireless ehanBure models: semi-Markov models, Hidden Markov Msde

modeling: modeling of the propagation channel’s sitgl
characteristics and modeling of statistical chanéstics of
the underlying channel error process. An examplethef
physical propagation channel model application

(HMMs), empirical approaches including algorithmic
models, chaos models, Deterministic Process Based
.Generative Models (DPBGM) and Stochastic ContereFr
'&rammar models (SCFG).

demonstrated on a mix shadowed Rician and NakagaMBre recent trend is to combine individual pure esdnto

channels in [1]. Knowledge of error process andtidistical
characteristics is beneficial for optimization ofireless
transmission systems on protocol and error coténadl, as
demonstrated e.g. in [2]. In order to observe thtune of
errors in the channel, a trace must be capturet by
mathematically relating the output data sequencehat
transmitter with the data sequence received byéhbeiver.
The resulting trace consists of zeros and onesesepting

new configurations known as extended models, whigiloit
advantages of component pure models to create r@m er
model with either fewer issues or more beneficiaperties
(e.g. [6] and [7]).

The most current approaches aim to design modaistiuld
be parameterized adaptively in a bit-by-bit fashamd be
able to capture faster rate of change [8].
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Error process observations of real data confirmt tha
independent channel is not a feasible solution rfamy
applications [3]. A generalized Markov model coustion
for partially dependent events in a form of casc&ibeert
model is presented in [6] and later extended tascaded
combination of Gilbert and Elliot models in [7].

Based on the real data, the goal of this studytedmiild on
results and knowledge obtained from [6] and [7] &madise
the Elliot's model as a reference to compare witipigical
(descriptive) models, one of which is parameteriasihg a
novel adaptive parameterization method. In casedadfrtee
proposed descriptive models wes sufficiently pescig
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previous packet and the first “1” in the followiegror packet
are not part of the same burst error and contaittiegerror
burst within the packet limits in [7] were appliad well.

C_; ( n) = i( J + 1) gapsin(j + 9 long n-bit packet

all gaps in n-bit packet

(2)

j=0

The trace used in this study is identical with ttata
collected and used in [7] where a thorough degoripof
data set capturing procedure is documented. Follpwi
statistics about the channel behavior were extiadiging

would be possible to modify one stage of cascadeeino the analysis phase:

from [7] and improve the model's overall efficiency ®

Wireless transmission is most sensitive to smalles@rror

process typically in a bit scale, therefore th@esequences *

and error gap process was modeled in this workitimgithe
packet model presented in both [6] and [7]. Thea# of
large bursts causing packet damage and subseqosst
usually dissipate much faster and subsequent rieulpiacket
loss caused by a single burst is comparatively tawen in
case of short bursts occurring on the bit levelao$ingle
packet. Moreover the observations of processesahdata

Small-scale (intra-packet) error burst length disition
= Small-scale (intra-packet) error gap length disitiim
Total bit error probability of clusters with defishsize

3.1 Applied models

II\/Iodels proposed for analysis are further describkuhg
with the methods for obtaining the parameters afs¢h
models. The following section then contains estadat
parameters used in simulations to obtain the ®sult

3.1.1 Generalized Elliot's model

confirm that large-scale and small-scale bursts uoccGeneralized Elliot's model [9] is based on Elliodsiginal

relatively independently and therefore it is potesio model
them separately. The channel is assumed to bersayi
over the observed period.

3. Theoretical basis and model

Simulation of wireless networks requires a stataly or

deterministically precise channel model describitige

wireless link characteristics. Knowledge of parécu
channel’'s error process is imperative for adjustimg error
control schemes to a particular network or a spesifuation

within the network. Stochastic error process desiom

requires ex ante knowledge of the channel's sizdist
properties, especially the statistical properties esror

sequences and error gaps produced by the procesg dn

error burst.

An error process on a digital communication linkn dae

considered a binary discrete-time stochastic psodésg is a

countable set of integerd |, @& the digital input

sequenceh the corresponding output sequence #@mdhe

noise sequence representing the effect of the ethamthe
data, also referred to &sce, then:

bh=g+n (1)
A correctly received bit is represented by “0”, anectly
received bit is represented by “1’. Extraction afoe source
features can be performed bitwise and error mogetfien
becomes equivalent to statistically correct modglii the
trace. Consecutive sequence of “1” is called aordyurst. A
gap may be defined as a sequence of consecutive
between two “1” and represents the distance in difittvo
neighboring bursts. Empirically the shortest errgap
(expressed by (2) taken from [7]) or error burst length 1
[3]. The error overflow assumption that the last 4f the

uou

work [5] on Markov chain bit error generator (fiyy.and
extends it by using an algebraic form with traosiél and
generating matrix to an arbitrary number of statestrary to
Elliot's original model proposal of 2 states.

P12

P[l/El] =1-h P[l/Ez] =1-h;
Figure 1. (Generalized) Elliot’s bit error model

1-pr 1-pa

P21

Common notation with the work of Siran and Maly [9]
used throughout this article to define key variab&é the
Elliot's model.
Final probability state vector of the model is:

n =(rm,m,) (3)
Generator matrix for the process modeled by Efliatodel:

3N
0 h,

Transition probability matrix with transitional gvability in

fig. 1:
P = (1_ Pr2 Py, j
P 1-py

Then according to [3] the final probability statctor can be
rewritten as:
Po1 P12

= )

(p12+ p21 p12+ p21j
Central to generalized model's parameter calculaiiothe
nonlinear equation (7): probability th&t units long cluster
of correctly received bits is generated from theegelized

(4)

®)

(6)
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Elliot's model is: The process of parameter estimation for hyper-esaptial
a1 distributions however is quite complex. Thereforany

p(n) =7T(PH) 1 (7) approaches to parameter calculation have been edkevis
Hyper-exponential parameter estimation [10] impleted in

Parameters necessary for proper modeling of a esel the initial stages of experimenting with this disition

channel are for a 2 state Elliot's model limitecktowledge produced an excellent cumulative density function Hoth

of pi2, P21, My @ndh; that can be established by solving &rror and gap processes, but the found parameters w

series of nonlinear equations (7). unsuitable for a generating process, which failadl t
3.1.2 Gamma distribution model approximate moments of the stochastic processes.

An approach using Markov modulated Poisson process

(MMPP-2) was therefore chosen instead. It also pced a

ﬂ;{per—exponentially distributed variable, howevehe t

Generalized Gamma distribution is typically usedi¢scribe
variables bound on one side. A stochastic procefis av

mean and a variance can be approximated by the gam S . .
bp y 9 parameter estimation process is different from tre

distribution function using it's 3 parameters —dtion (a), applied in [10] and allows moment fitting of the ed
scale () and shape(). random variable.
Gamma distribution can be favorably used to model

stochastic processes with precision up to and diatuthe

second moment.

Its probability density function is: A .
_x-a

b ° (x— a)C_l e P x> a r2

t()=4r c) (8) Figure 2. MMPP-2 model with parameters

0 otherwise The simplest form of a MMPP is the MMPP-2 modej (&),
where two independent Poisson processes with differ

Where: arrival rate parameters, and A, transition from one to the

I

1

00

F(Z) = Itz‘le“ dt (9) other at ratef;, and,. The results of MMPP-2 traffic model

0 versatility analysis for applications in ATM celbds rate
The generalized gamma distribution’s moments arglyea modeling [11] demonstrate the feasibility of MMPRrddel
expressed using its parameters by linedl ribment) and for burst process modeling.
quadratic (2 moment) function, which is not the case withAssuming interval-stationary MMPP-2 processes, ittier-

other distributions that can be derived from gammg | fime X, between consecutive occurrences is a second
distribution — e.g. Weibull, Rayleigh and other. atleand

variance of the gamma distribution: order hyper-exponential distribution (H2) defineg the
probability density function (13):
HU=a+hbc (10)
— 42 =2 _ -
var=o° =b‘c (11) f(x):qq“lx+(1—q) Th (13)

Having observed the mean and variance from the titais
easy to express (11) using (10) by omittirly as an As demonstrated and derived in [12], the parameiétbe
unnecessary parameter for our purposes (sincenitbea hyper-exponential distribution function can be ated from
included as shifting the entire generated set lyingdthe the MMPP-2 (fig. 2) using following substitutions:
value a) to find parameterb and then go back to (10) to
calculate the paramete® using an already known value of _ /11 +/]2 +rtr, - o
b. Modeling the error burst and error gap process th U = 2
becomes a matter of observing the first and secaomients
of both processes in the trace and applying theuatéans
(10) and (11).

3.1.3 Hyper-exponential distribution model
Hyper-exponential distribution describes a stodbgsbcess 2 2
that can be decomposed to a finite sum of expaalenti = /12r1 +/11I’2—5 __ U (16)
processes and used to emulate atypical expongreiadiped (/]2r1 +/11r2) (u —u 2) u,-u,

heavy-tailed distributions.
Probability density function of a hyper-exponential \ynhere:

distribution for K components is: >
5:\/()|1—/12+r1—r2) +4ry, (17)

(14)

y _AtAtrntr,+90

7 5 (15)

k

- TAX
f (X) B ;p)li € (12) Many approaches to estimating MMPP parametrs A, ,
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I, and r, have been proposed, but cell counting algorithm e
and moment fitting coupled with fitting of the auto

covariance algorithm presented in [13] belong te thost
commonly referenced. Other algorithms for
extraction include nonlinear optimization [11] oistogram
method [12]. Generally, all methods can be dividetb

either cell counting statistical methods or methbdsed on
inter-arrival statistics.

Because the trace was available for statisticalysisa a
novel approach eliminating posterior calculatiomsassary
for parameter extraction was proposed for purpadethis

research; all 4 MMPP-2 parameters were obtaineeictiyr
from the trace using an adaptive approach.

Novel Parameterization algorithm

4
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r,=1/(@/1*(23))= 1/ 2% - shorter gaps
- 1,=1/(1/1*(4))=1/4 longer gaps

parametet. Results

Packets have been generated using all 3 modelsilukbdn
the previous section using Matlab (based on theceyuts
presented in section 3). PRNG is used to geneeafgesices
of pseudorandom values from interval 0,1> that are
further transformed into the desired output values.

The first model is a pure generative Elliot's modéiose
output is a unique observable channel error proaessits
algorithmic representation is a simple if-else Bl@acheme
with parameters as threshold values; the first geed
random value is used for state selection, the sktomoised
for bit generation.

Consider a trace (fig. 3) that can be decomposéd inThe second model is a combination of 2 descripgamma
consecutive error bursts and error gaps in theraadethey distributions modeling the small-scale channel reprocess,
appear in the trace. Because the gaps and burstes hane the error bursts and the other error gaps,gusie
different stochastic distributions, they are alsadeded using inverse transformation method.

2 separate MMPP-2 submodels. The third constructed model descriptively models small-
scale intra-packet error burst and gaps, using pefy
exponential distribution for each, utilizing a MM2Pmodel

to estimate the parameters of thel2 distribution.
Composite generation principle is used to obtaie th
burst/gap lengths using the obtained parameters.

There are several approaches to comparing thesedglsn
The first step of the proposed algorithm is to d®a@ One approach is to compare the models by bit error
threshold value. Each MMPP-2 transitions betwee twprobability at different cluster lengths. Anotheppaoach
Poisson processes generating either shorter oretongvould compare the generators from the histogram

010000011110000000001111000011111
e e B T o B o
gap burst gap burst gap

Figure 3. Example sequence extracted from the trace

sequence and the threshold determines which onddsbhe
assigned generation of the currently processed lourgap
length. For typical applications the mean valué siiffice as
a viable threshold, for specialized applications threshold
can be estimated as a mode of the observed seteor bz
arbitrarily chosen. For the example trace the tiwks for
both gaps and bursts was set to 4 dividing thettaurd gap
lengths into 2 groups: smaller than or equal tali¢} and

longer (bold) than the threshold. Parameteéls and A,

representing the exponential distribution paramegan be
obtained as an inverse value of the mean of alstlgap
lengths smaller than or equal to the thresholdhénfirst case
and longer than the threshold in the second caseirfrerse
value is in fact the effect of exponential disttibn
contribution to the Poisson process, the mean vafuan
exponential distribution is inverse to its only aaeter, so

perspective of the method’s ability to describe #reor
bursts and error gaps most realistically. Both sypé bit
error analysis of intra-packet small-scale errarcpsses are
necessary for establishing the quality of wirelebannel
error and gap process models for purposes of FEQmle
Following analysis of the results will be as thagbuas it is
necessary to qualitatively evaluate the models #mohd
parameters will be presented to enable resultivatibn.

4.1 Model parameters

Parameter expression methods for each techniqukiniseis
study were presented in section 3. Based on thétsesnd
conclusion located in [6] and [7], Elliot's modeiowed to be
sufficiently precise in modeling the absolute asthtive bit
error probability, but could be improved in modgligap and
burst process. Descriptive approach was analyzedhsaver
the question whether error burst and gap processdwtot

must be the mean calculated from the example sePe more efficiently modeled using empirical modglin

Transitions between these Poisson processes aregiven

techniques.

by cumulative lengthsT;, where T, represents the averageParameters for Elliot's model (tab. 1) are obtaibgdolving

distance (in bits) of 2 neighboring elements geteerdy the
i -th Poisson process for the burst/gap above ombéhe

the system of nonlinear equations (7). The probglof at
least one error bit in a sequence of lengthis found by
analyzing the trace for different values df. Then

threshold. Transition rateg and I, can be obtained as an,, ..~ equation solver is used to find the solutiof

inverse value of the mean of correspondifjg Having an

example sequence (fig. 3), the parameters for tMPK-2
model of the gap distribution are:

« A =1/(1/2*@1+ 4))= 2/E- shorter gaps
- A, =1/(1/2*(5+9))=1/7- longer gaps

sought parameter values. The found solution doehane to
be optimal, but causes the cluster probabilitygpraximate
the overall probability of at least one error litthe entire
cluster over the observed range (length of padettas 8480
bits).
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Table 1 Elliot's model parameters Green (or lighter) dashed line produced by the gamm
Parameter Value distribution model competes with the MMPP-2 modedt
Py 5 000000090198e-4 being visibly different from the real data, henesd optimal
than the Elliot’s model.
P,, 5.769910104226€-5
Probability of 1 error bit in a n—bit cluster, P(1,n)
h1 0.35102171697854 1 ‘ ‘ ‘
1 G
h, 0.99988517734807 o %_: -
3 0.8 T R

o
3
T

Gamma distribution parameters (tab. 2) are extdaatng
the observed mean and variance values of the lparst and
error gap process in a received error packet frb@) and
(11). The mean value of error gap and burst lealgthg with
the variance is computed from the available trace.

o
2
T

Errorless cluster probability
[=} =]
» ul
T T

Table 2 Gamma model parameters

o
w
T

Parameter Value
0210 Channel trace
bgap 5138.375364 % Elliot model
0.11 Gamma model
X MMPP-2 model
Coap 0.008202 oL — a
10 10 10
Byurst 1556.487058 Cluster length
c, 0.001961 Figure 4. Probability of an errorless cluster in packets
uret received with errors for real data, Elliot's modgdmma and
Hyper-exponential distribution parameters (tab. &d hyper-exponentially generated data
mixture components are estimated using the nogelrisdhm
and equations outlined in section 3.1.3. 4.3 Model parameters

Histograms presenting the results of the genergtingess

Table 3. Hyper-exponential model parameters , . i X
for all models are depicted in two figures, bothrevehowing

Parameter Value the probability of occurrence of various burst/dapgths.
Pgap 0.9744 Figure 5 depicts the histogram of error bursts,levfig. 6
A 0.3983 demonstrates the histogram of error gaps foundhenetrror
oen packets of the real and generated data sets.
Pyap, 0.0256 Real channel data is depicted with the thick, blick to
A 0.0006 give reference. It is difficult to visually find@early superior
gaR approximation and therefore a mathematical apprassitg
pburstl 0.7710 Jeffrey’s divergence is used later on.
Avursy 0.7323 1 ‘
o Channel trace
pburs% 0.2290 *  Elliot model
A 0.8l Gamma model ||
burst 0.1145 x MMPP-2 model|
4.2 Cluster Error Analysis P(1,n) .06}
Cluster is a grouping of several consequent bibsnfthe E
observed sequence. If any of the bits in the dstequal to &

©
~
:

“1”, meaning an error bit is present in the clustee entire
cluster is considered as error cluster. Clustelyaisareflects
the set’s ability to hold multiple moments and ined set 0.2}
statistics. The relation to former definitions is

P(l, n) =1- p(n), wheren is the cluster length. Cluster of

length 1 in all cases represents the true bit itibg as 0 2 2 o burstlenge 8 10
only 1 bit is considered a cluster.

Results of the cluster analysis for all 3 modeld #re real
data are depicted in fig. 4. The original dateeigresented by
a filled black line. The gamma distribution creates an anomaly (fig- &)sharp
Elliot's model generated data represented by tHe(darker) peak — in case of error burst generation. This s a
dashed line have very similar cluster error prolitgas the unexpected, yet explainable result. Consideringt tha
real channel over the entire observed interval shgwhe 9generating methods for gamma distribution mainiguton

reason for its wide application. generating random variable with shape paramatexl.

Figure 5. Burst error histogram for all models and the real
channel data
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Generating a distribution with shape parameter 1, such Table 4. Jeffrey’s divergence for generated histograms
as the case of this modeling problem, is the doroivery Burst Error Gap Error
specialized algorithms. One such recent algorithd] vas histogram Histogram

used for experiments documented by this paper. The Elliot 0.0690 0.0270

algorithm however wasn'’t able to generate errosblengths Gamma 0.1222 0.3566

and holding the desired gamma distribution shape. MMPP-2 0.0472 0.0202

Surprisingly enough only 4x greater shape paramgétstill
too small for most generators (including the Madab 5 Conclusions

implementation), was enough to model (fig. 6) th®rgaps _ _
comparatively well as Elliot’s model (visually). Data set extraction from physical layer of IEEE 803 and

further modeling was performed at the Institute of
Telecommunications, Slovak Technical University in

o8 "5 Channel trace Bratislava. Error burst and gap features of theuwrap traffic
0.7 : *  Elliot model | exhibited exponentially shaped heavy-tailed behawvidoth
1 Gamma model processes’ distributions, which is relatively comméor
0.6r \ x  MMPP-2 modelq - . .
X wireless channels with heavy interference. Demaiestr
05k " ‘ i modeling techniques verified applicability of gamfaaction
B and MMPP-2 modeling when compared to Elliot's model
204 . used for instance in [7] to model the insta-packeall scale
£ error process.
0.3r 1 Gamma distribution seems to fail in modeling thesiba
02l i properties of the channel due to lacking propennapes for
random variable generation of distributions withapé
0.1 . parametercl] 1. Unless a more effective algorithm than
: [14] for generating the gamma random variable with
00 e 10 extremely small shape parameters is proposed, ingdel
Error gap length error burst and error gap process becomes a diffand
Figure 6. Error gap histogram for all models and the real relatively ineffective, imprecise task.
channel data On the other hand, the MMPP-2 could be further ictered

for bit-error burst and gap process modeling andd:even
Hyper-exponential distribution (MMPP-2 model) arglya be applied instead of the Elliot’'s model in a cagcanodel
has a visually more similar shape to the histogedmained presented in [7]. A significant improvement to paeder
from the trace than both gamma and Elliot's modelgxtraction of MMPP-2 model in a form of novel pregd
Especially for error gaps the Elliot's model andmgaa parameterization technique in section 3 makes ssibde to
distribution are for gaps longer than 2 units Vilsuéess estimate the hyper-exponential parameters dynalyieaid
precise. adaptively. The experimental results prove thas & viable
. method for error process modeling and deserves more
4.4 Jefirey's divergence attention in the future. Also, threshold estimati@mains a
Histograms obtained by analyzing error burst an® ggocal point of further research — proper threshold
process of the generated data were compared weh f@entification could improve the accuracy of the NARF2
original histogram using the Jeffrey’s divergent®8)(taken model, albeit already more useful for error gap st
from [15]. If H andK are two histograms, then Jeffrey'smodeling, than Elliot's model, regarding the protigb
divergence is defined as: histograms. In order to capture the cluster prdimtgfig.4)
more efficiently, several new parameters could teed to

produce a betteP (1,n) fit.

_ h K
d, (H' K) - Z(h log m *klog m (18) Generative and descriptive methods could be usgether to
' improve the model characteristics, as demonstratethis
) paper, modeling using MMPP-2 model can theoretich#
Wherem = (h + k)/2. The smaller the distance, the moresyen more precise than Elliot's model with the st
similarity exists between the two compared histotggaon a advantage lying in the possibility to efficientind easily
bin-to-bin basis. Only the bins with identical valu are obtaining the MMPP-2 parameters directly from theerved
analyzed. trace, whereas the Elliot's model requires sigaifity more
Results of the comparison of all models with thetddram calculations and solving of a set of nonlinear digua for
produced by real trace using Jeffrey’s divergenab.(4) are parameter estimation.
for both — burst and gap error modeling - in fawfrthe Where the empirical methods fail to achieve theioEd
MMPP-2 model using a second-order hyper-exponentigdodel accuracy is cluster probabilitgy—P(1,n) solely

d'smbl.mon’ both  visually frorn the histogram andbecause the generalized Elliot's model is optimitefit this
numerically from the Jeffrey's divergence. Gamma

distribution places third in the comparison bothudlly and statistic precisely.
numerically. The results confirm what can be encpity
seen in fig. 5 and fig. 6.
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