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Abstract: Recently, the side channel keeps the attention of 
researchers in theory of pairing, since, several studies have been 
done in this subject and all they have the aim in order to attack the 
cryptosystems of Identification Based Encryption (IBE) which are 
integrated into Smart Cards (more than 80% of those cryptosystems 
are based on a pairing). The great success and the remarkable 
development of the cryptography IBE in the recent years and the 
direct connection of this success to the ability of resistance against 
any kind of attack, especially the DPA (Differential Power 
Analysis) and DFA (Differential Fault Analysis) attacks, leave us to 
browse saying all the studies of the DPA and DFA attacks applied 
to a pairing and we have observed that they have no great effect to 
attack the cryptosystems of IBE. That is what we will see in this 
paper. In this work we will illuminate the effect of the DPA attack 
on a cryptosystems of IBE and we would see on what level we can 
arrive. Thus in the case where this attack can influence on those 
cryptosystems, we can present an appropriate counter-measures to 
resist such attack. In the other part, we will also propose a 
convenient counter-measure to defend against the DFA attack when 
the embedding degree is even. 
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1. Introduction 

The Identification Based Encryption: IBE is an idea 
proposed by Adi Shamir in 1984 [1] as a concept and we had 
to wait until 2001 at which Boneh-Franklin [2] and Cocks [3] 
have materialized and applied with success the concept of 
Shamir. With the birth of those two new arts, several 
companies have begun work with IBE instead of PKI: Public 
Key Infrastructure; we may cite the two famous companies: 
Voltage security and NoreTech. This usage has given birth 
for the first time in the World in 2 November 2004 the 
integration of IBE cryptosystems in a Smart Card by 
Gemplus International. Which opens the door to all kinds of 
attacks of side channel applied to the cryptosystem’s of IBE 
programming in a Smart Card, especially the DPA 
(Differential Power Analysis) attack, the DFA: Differential 
Fault Analysis is also a powerful attack. The scheme of 
Cocks is ineffective since it transforms bit by bit and it is 
shown that for an equivalent security of 128-bits we need a 
time 13 times larger than the standard X.509 of PKI, as long 
as the scheme of Boneh and Franklin is known as being the 
most famous and the most used, since, this scheme recovers 
more than 900 of the sites of Google. All the other 
cryptosystems of IBE which are based on the Random 
Oracle [2] [4] or not i.e on the Standard Model [5] [6] [7] 
have the same schedule as [2]. The scheme of Boneh and 

Franklin is based on what is called pairing; therefore 
attacking this latter using a DPA can attack the scheme in 
global. According to our knowledge, there is no study in the 
literature of the DPA attack that has applied clearly and 
directly against the IBE cryptosystems, all the studies have 
limited their search on the attack of pairing. Our goal in this 
work is to project the DPA attack to the IBC cryptography 
that is built into the Smart card.    
In order to succeed the DPA attack against the pairing, two 
cases can be offered, secret is in the first argument of the 
pairing or in its second argument.  Following the traditional 
methods [8] [9], when we make the secret in the first 
argument, this makes a natural counter-measure against the 
DPA attack.  N. El Mrabet et al in [10] make to default this 
idea, more, the authors in [10] proposed a method to succeed 
the DPA attack and this when it is the position of the secret, 
in the first argument or in the second argument.  
Unfortunately, the study [10] is not effective; we will talk 
about its limit in section 3.3.   
Our first contribution in this paper is to give a new approach 
to succeed a DPA attack against the pairing; our method can 
be applied when it is the position of the secret, first argument 
or second argument. To see the efficiency of our method we 
will compare it with that of N. El Mrabet et al which is 
purely practical (more it make to default the recognized [8] 
[9]), and this following the number of traces.  In addition to 
this, we will traduce our proposition in IBC: Identification 
Based Cryptography (IBE is a kind of IBC).  This is for the 
first time is introduced, as all the study of the DPA attack 
restricts their search on the pairing. 
In order to defend the DPA attack against the pairing, there 
are three counter-measures: the counter-measure of J.S. 
Coron [11]; that’ of D. Page and F. Vercauteren [8] and the 
one of C. Whelan and M. Scott [9].  As a second contribution 
of this paper we first study the rigidity of those counter-
measures, more we will give new ones to defend the DPA 
attack.  
In other part, the DFA attack is another kind of side channel 
it relates the ability to investigate cipher and extract key by 
generating faults in a scheme. The faults are often caused by 
changing the voltages tampering, applying radiation and so 
forth.  
The traditional study of the DFA attack applied to a pairing 
are introduced by D. Page and F. Vercauten who proposed a 
fault attack against the algorithm of Duursma and Lee, N. El 
Mrabet [12] improve their method in order to satisfy the  
algorithm of Miller and so the pairing, but his study operate 
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only when the embedding degree k is equal to 4.  In their 
turn D. Yunqi et al [13] generalize [12] to the case when the 
embedding degree k is even. Our third contribution behind 
this work is to give a convenient counter-measure against the 
attack of D. Yunqi et al. 
The organization of the lecture is as follows : First we give in 
section 2 some basics concepts of everything we can need in 
our study;  the traditional study and the principal  of the DPA 
attack will be given in section 3; in section 4 we expose our 
proposition for a DPA attack, in 4.1 we will give an 
appropriate method to succeed the DPA attack against the 
pairing, in 4.2 we will include the projection of the  DPA 
attack  in the cryptosystem of IBE, and even on  those of 
IBC;  in 4.3 we will give a convenient counter-measures in 
order to resist against the DPA attack applied to a pairing;  
section 5 expose a convenient approach to block the DFA 
attack when the embedding degree is even, as a final step we 
will terminate with a conclusion. 

2. Some Basics 

2.1    Introduction to Identification Based Encryption  
An Identification Based Encryption (IBE) is a public key 
system where the public key can be an arbitrary string such 
as an email address. The corresponding private key can only 
be generated by a central authority, called Private Key 
Generator (PKG). The PKG uses a master key to issue 
private keys following identities request. 
Unlike a conventional public key infrastructure (PKI), IBE 
eliminates the need for a public key distribution 
infrastructure. There is essentially no need for certificates 
and store individual public keys. The IBE guarantee an off 
line encryption, more, the public key are small by 
comparison with PKI.  Thus, IBE systems are considerably 
easier and so less costly to implement.  
Since the proposition of the scheme of Boneh and Franklin 
[2] to the challenge of Shamir, various Identity Based 
Encryption based on the pairing, have been proposed. In 
2003,  Sakai and Kasahara (prove of security in [4]) 
proposed an IBE scheme in the model random oracle; in 
2004 Boneh and Boyen [5] proposed yet in the model 
selective ID two scheme BB1 and BB2, the BB1 can also 
operate with random oracle; in 2005 and 2006 respectively 
Waters [6] and then Gentry [7] proposed a schemes in the 
model standard. Those entire schemes are based on the 
pairing. 

2.2    General vision in the pairing 
The pairing are proposed by the mathematician Weil and 
Tate in front of XX-th century, since 1993, they are used in 
cryptography with a negative role according to two attack 
[14][15], they are converted to have a constructive role in 
2000 with the tripartite protocol proposed by Joux [16] and 
the proposal of Boneh and Franklin [2] in 2001. The pairing 
is a bilinear map, which take two points on an elliptic curve 
and provides an element of the multiplicative group of n-th 
roots of unit. It has three fundamental proprieties: Bilinear, 
Alternative and Non-degenerate. 
Among the pairing we cite: Weil, Tate, Eta, Ate, Twisted 
Ate, (the two last are a variant of Tate), but in cryptographic 
implementations we often encounter widely the two first. 
 
 

         2.2.1    Explicit formula of pairing 

Let’s: r be an integer prime with the characteristic of Fq, 
K=��� a field that contains all roots of unity of order r,   
P ∈ E(K)[r] ,Q ∈ E(K) two points; DP and DQ two divisors of 
degree 0 with disjoint support and finally  f�� , f�� two 

functions with:  div(f�� ) = rDP,  div(f��)= rDQ  
 

Tate Pairing:  
The Tate pairing is an application: 
 

tr : E(K)[r] × E(K)/rE(K)             K*/(K*)r   (1) 
 

Such that: 
 

tr(P,Q) = f�� (DQ) modulo (K*)r  (2) 
 

But to have an exact formula we will have: 
 

tr(P,Q))=  (f��  �D��)(����)/� (3) 
 

Weil Pairing:  
The Weil pairing is defined as follows: 

 

er : E[r] × E[r]                 µr    (4) 
(µr is all the rth roots of unity)  
 

Where: 
 

er(P,Q) =
���  (��) 
���  ����   (5) 

 

Algorithm of Miller:  
The calculation of the pairing is not effective until the 
invention of the algorithm of Miller in 1986 [17] (the 
algorithm was developed in 2004 [18]). 
The formula of pairing includes the rational function fr and to 
calculate it, Miller use the following iterative method: 
We define the following divisors Di (for an extra definition 
we send the interested to [19]): 
 

Di = i[P + R] + i[R] + [iP ] + [O]  (6) 
 

By the same we can write: 
 

Dr1+r2 = (r1 + r2) [P + R] + (r1 + r2)[R] + [(r1 + r2)P] + [O] (7) 
 

Then: 
 

Dr1+r2 = Dr1 + Dr2 + div (Lr1P, r2P)/div(V(r1+r2)) (8) 
 

We can so extract the following iteration: 
 f(�����)(Q) = f(��)�D�� × f(��)�D�� × ����,����

!(��"��)��   (9) 
 

The algorithm of Miller is just based on (9) 
 

          
               Algorithm of Miller (P, Q, r) 
 
Input: r=(rn...r0)(binary representation), 
           P ∈ G1(∈ E(Fq)) and  
           Q ∈ G1( E∈ (��� )) 

Output: fr,P (Q) ∈ G3 (∈ ���) : 
T              P 
f1             1 
f2             1 
For i = n - 1 to 0 do 
     T            [2]T 
     f1            #�$×l1(Q) 
      l1 is a tangent line to the curve in T. 
     f1            f1 × v1(Q) 
     v1 is the vertical to the curve in [2]T. 
      If  ri=1  then 
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          f2             #$$× l2(Q) 
           l2 is the line which pass from (PT). 
           f2           #$$ × v2(Q) 
           v2 is a vertical line which pass  from the point  
           P + T. 
        End If 
End For 
Return f1/ f2 
 
 

2.3  Basic scheme of Boneh and Franklin 
IBE was proposed by Adi Shamir in 1984 [1] as a solution to 
the problem of the revocation of the public key and the 
requirement of the certificate in PKI. In IBE (Identification- 
Based Encryption) the public key can be represented as an 
arbitrary string such as an email address. Its corresponding 
private key is generated by a Private Key Generator (PKG) 
who authenticates users according to their corresponding 
identities. 
This idea was proposed by A. Shamir only as concept. And 
we will wait until 2001 at which D. Boneh and M. Fanklin 
[2] propose an elegant scheme in the model Random Oracle 
using the pairing. In the following we remember the basic 
scheme of Boneh and Franklin, we send the interested to the 
original paper [2] for a more details. 
To encrypt a message M ∈ {0,1} n, choose a number r ∈ Zq 
and the public parameters: 
 < q, G1,G2, e, n, P, Ppub = sP, QID, H2 >  (see [2] for a more 
details). 
The message is encrypted as follows: 
C = < rP, M + H2(g

r) >=< U, V > 
With g = e(QID, Ppub) ∈ G2* 
 

To decrypt this message using the private key 
dID = sQID ∈ G1,  
 

Calculate: V+H2(e(dID, U)) = M 
 

Note that: 
 

e(dID, U) = e(sQID, rP) = e(QID, P)sr = e(QID, Ppub)
r = gID

r  (10) 
 

    2.4   Smart Card 
We can reference the idea of a Smart Card to the year 1947 
at which an Engineer British  noticed that under the effect of 
a large current, a Bakelite substrate volatilizes irreversibly by 
creating an effect on its memory, hence the idea of a portable 
memory. The concept of the Smart Card was invented in the 
year 1974 by Roland Moreno. But the Smart Card doesn’t 
exist publicly until 1983, since then it begin to be developed 
by decreasing the number of its remaining unit and 
increasing the number of its bits (32 bits in 2005). To have a 
common physical characteristics of Smart Cards, several ISO 
(International Organization for Standardization) have been 
proposed and they are carrying from 1987. Two types of 
Smart Cards: Memory cards and Microprocessor cards, also 
known as asynchronous cards. In the cryptography we are 
interested only in this latter because it is often used for 
computer security and cryptography, as it focuses a 
coprocessor which contains many of the operations 
cryptographic: multiplication, etc. DES encryption... 
Unfortunately, Smart Cards can simply brittle against worm 
attack like the one given in [20], against side channel like 
differential power analysis, timing attacks, fault analysis, etc.    
 

3.  Background Information on the DPA 
Attack  
 

3.1    Introduction 
Differential Power Analysis (DPA) is a powerful technique 
which allows recovering secret data that is manipulated in 
the interior of a Smart Card or any circuit (hard disk of PC) 
by monitoring power signals.  
The DPA is based on statistical methods (the average 
distance, the Pearson coefficient, maximum likelihood, etc). 
In general, DPA make a statistical study from multiple 
curves. 
There are several types of DPA, the most powerful is 
HODPA (High Order DPA), as it uses a statistical methods 
on the correlation of several input parameters and 
measurement results. 
The DPA attack was planned in 1975 by Roland Moreno. A 
theory research study is given by P. C. Kocher, J. Jaffe, and 
B. Jun in 1999 [21]. 
Most electronic circuits today (especially those of a chip) are 
based on CMOS technology. In this technology the state 
change causes a door charge or a discharge electrical of the 
transistors that are considered as capacity C. And so for a 
change of state of one bit from 0 to 1, a charge is stored in 
the capacity and this amount to the fact that the capacity is 
connected to VDD. For the converse (1-0) the capacity 
discharges, the state transitions of bit 0 to 0 or 1 to 1 does not 
contribute to the variable global of the electrical circuit. 
 

3.2  Theoretical principle of the DPA Attack 
In this study the DPA attack that interests us is that applied 
to a pairing (in all this study we note the pairing by e), hence, 
for the attack to have a sense, we consider that both the input 
of the pairing e are: P public parameter and R the secret that 
we seeks. To perform the attack we associate a hypothesis 
about the value of a bit of R, and we give several different 
entries of our choice to the known parameter P. Repeatedly 
running the algorithm to compute the pairing ie Miller with 
these entries chosen and we memorize the traces of current 
T11,T12,..,T1m, (500 ≤ m ≤ 1000 as it was specified in [22]). 
DPA make assumptions about the secret (hypothesis bit by 
bit), it determines the correct hypothesis of the secret and to 
determine this latter, we make the following analysis: 
For a clear analysis of the data, we assemble the current 
traces T1j into two sets depending on the value of bit b 
running in Miller (the calculation of the pairing e is based on 
the algorithm of Miller) named the bit target. We then form 
two sets T0 and T1: 
 T1j ∈ T0| Miller (Pj, R) [b] = 0, we change Pj according to 
our choice 
T1j ∈ T1| Miller (Pj, R) [b] = 1 (11) 
For each hypothesis, M0i and M1i are respectively the average 
of the sets T0 and T1. 
 

M&' = ∑ �1 − Miller�P0, R�2b4�. T&'708�n − ∑ �1 − Miller�P0, R�2b4�708�
  (12) 

 

M�' = ∑ �Miller�P0, R�2b4�. T�'708�∑ �1 − Miller�P0, R�2b4�708�
  (13) 

 

We then calculate the difference between these two averages: 
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                       MDPA = M1 - M0 (14) 

 

If the hypothesis is not correct, the bit b is equal to the actual 

bit with probability 
�
$ for each Pj. So the trace of current 

caused by transitions of different types ([0-1] and [1-0]) can 
be found in a same set (T0 or T1). Therefore, it is likely that 
the two averages M0 and M1 are equal and that the curve of 
DPA is flat and close to zero.  
On the other hand, if the hypothesis is correct, the bit b is 
equal to the actual bit with a probability of 1. Therefore the 
traces of current caused by transitions of the same type ([0-1] 
or [1-0]) will meet in a same set (T0 or T1) and therefore a 
strong peak amplitude will be displayed. 
 

3.3 Traditional study of the attack DPA applied to the 
pairing 
 

The early studies of DPA attack applied to a pairing are 
started from 2006. The first study is that of D. Page and  F. 
Vercauteren [8], they exploited a study applied to the 
Duursma-Lee algorithm, but it is not effective as it is 
restricted only on the algorithm of Duursma-Lee and on the 
supersingular curve, it does not touch and develops the DPA 
globally. C. Whelan and M. Scott [9] brought a study more 
global, it can be applied either on Tate, Ate, Eta. Since, they 
focused their study in the arithmetic operations which are 
developed within the algorithm of Miller: Multiplication (the 
Shift and XOR method), Root square reduction. The same 
idea was used by Tae Hyun Kim et al [23] in which they 
concentrate only on Eta pairing.  
All these studies are theoretical. A more practical study was 
proposed by Nadia El Mrabet et al in 2009 [10] and we had 
not met any similarly practical study applied to a pairing. 
More it put in default the two studies [8] [9]. 
According to N. El Mrabet et al instead of use the Miller to 
attack pairing, it suffices only to use the equation of the line 
l1 developed for example in coordinate Jacobean. The attack 
can be applied to other coordinates: Affine, Projective, more 
to Edward, but it is preferable to use the Jacobean, according 
to [24] in which the authors prove that those coordinate are 
more suitable to accelerate the calculate of pairing (the 
calculate of f2 in algorithm of Miller can  omit-see algorithm 
of Miller in section 2.2).  
To validate the DPA attack practically against the algorithm 
of Miller, the authors in [10] has implemented a circuit in 
which they evaluate the equation of the line l1 
 

(l1(xQ, yQ) = Z3Z
2yQ-2Y2– (3X2 - aZ4) (Z2xQ - X))  (15) 

 
in Miller algorithm. The authors divide the circuit in three 
steps. So, to succeed the DPA attack [10] it suffice to attack 
firstly Z from step (2) R1=Z2 × xQ and then determine X from 
step (3)  (R1=Z2 × xQ - X). Once the two coordinate X and Z 
are determined it shall be easy to attack the remaining 
coordinate Y from the equation of the elliptic curve. 
This study is not practical for the following reasons:   
Firstly, the circuit is simulating to architecture of 8 bits and 
for a level of security of 160 bits, the authors propose to just 
divide the architecture in 8 bits, but, this is not true. Because 
we are not in the case of DES, since the DES is divided to 
SBOX (SBOX1 + …+ SBOX8) connected by XOR, we can attack 
each SBOX in last step (in the 16-th round) which is encrypted 
on 6 bits and do the research exhaust on the remaining 8 bits 
(56-48 = 8). As to l1 it is not possible to divide it in pieces of 

8 bits, because, it developed the compute of the total bits 
(160-bits).  
But this problem can be solved by simulating a circuit for a 
wanted security.  
Another weak weakness in [10], is that we cannot base the 
success of the DPA attack on a circuit that serves this 
success; we would so make to attack the software without 
rebuild a helpful hardware! A circuit similar to that proposed 
in [10] can speed up the calculation in the Smart Card, but 
because of the threat of the DPA attack we cannot integrate it 
in smart wearing secrets. We must so find ways to attack the 
cards that have a hardware standard, do not forgetting that ID 
card (specialize for cryptography) can have a particular 
construction. 
In the following proposition we will take into account all 
those weaknesses. 
 

4. Dynamic and Convenient Study For an    
attack DPA  

 

4.1  Proposition of a convenient DPA Attack against the  
pairing 
 

As we have pointed out, the study [10] makes in default both 
[8] and [9]. In [9] make the secret in the first parameter of 
the pairing is a cons-measure, like [10], we will make to 
default this idea.   
To succeed the DPA attack against the pairing which is 
based on the algorithm of Miller, we will treat the two cases: 
secret is in the first argument (1st case) and in the second 
argument (2ed case).  
 
1st case:  The compute of the algorithm of Miller’s is based 
on the order r of the first argument, we propose to attack this 
order and after calculate the inverse r’ of this r. Attacking 
this order allows us to attack the point in search in the IBE 
cryptosystems (that’s we will see later).  The method to 
attack the order r is as follow:  
To attack r (see the algorithm of Miller in section 2.2), we 
can use the SPA (Simple Power Attack), but since it is easy 
to find a cons measure against the SPA (SPA is almost 
ineffective today), we propose so to use the DPA. 
In Miller’s algorithm there are two different steps, a step 
which calculates the doubling and another calculate adding, 
following the binary representation of r. If ri = 0 (ri is the 
binary representation of r in step i) Miller calculate the 
doubling and if  ri = 1, the addition operation is liveliness to 
be calculate in the algorithm of Miller. So if we could 
distingue the kind of a step (adding or doubling) which is 
run, we could then determine the type of the bit r (0 or 1) in 
the step in question.  To do this, we propose to block the 
algorithm of Miller for example in the step doubling  
We suppose for example that ri = 1 where ri is the binary 
representation of  r  (see algorithm 2.2) 

1. If  f(Q) - (Q) = 0 put Ti in T0  
Where f is the function computed by our self by the 
algorithm of Miller in the step doubling, without 
using Miller algorithm which we search to attack its 
secret. We note that Q is known.  
Until g is the function we can initially turn by the 
algorithm of Miller (which contain the secret) in the 
step doubling.   

2. If  f(Q) - g(Q) = 1 put  Ti in T1 
Calculate T =<&= - <�= , where <&=  and <�=   are the average of the 
packet T0 and T1   respectively.  
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If the curve T represent one or lot of pick of consumption so 
ri = 1, if not ri = 0 
In order to block the algorithm of Miller in the step doubling 
or adding suffices to know or at least to simulate the number 
of the clock cycles of doubling and that’s of adding. In 
another way, we can simulate two points in an experiment 
card: 1st argument and 2ed argument. After, we can ask Miller 
to show to us for example DOU and ADD when it finishes 
from doubling and adding respectively. Even if, the point of 
the first argument may be different from the point R in 
search, but we can at least simulate the time for adding and 
doubling.  
Using this method it will be easy for us to determine the kind 
of each step, step by step using a DPA attack, starting with 
step 1, 2, 3 and so forth.  
 
2ed case: We describe the attack considering that in this case, 
we can have several methods to exploit it. For example, to 
attack the second parameter, we can consider the following: 
In the algorithm of Miller we need the computation of the 
line l1 and that’s of v1 which are respectively the tangent and 
the vertical (line 10 and 12 in Miller’s algorithm-see section 
2.2). Those two lines have in their expressions a second 
parameter correlate with that’s of the first argument in a form 
simple; we can therefore use simpler expressions among 
them (especially the vertical) to conduct a DPA attack.  
To see the effectiveness of our method over that of [10] we 
keep the same parameters as it, the first parameter will 
therefore be in Jacobean coordinates, as this is very useful 
for the acceleration of the pairing [24], until the second is 
only in the Affine coordinate. The equation of the line l1 will 
have so the form: 
 

l1(xR, yR) = Z3Z
2yR - 2Y2 - (3X2 - aZ4)(Z2xR - X)  (16) 

 
The coordinates (X, Y, Z) are for the point of the first 
parameter (point P public) that we change according to our 
choice, so, playing on this choice we can obtaining a good 
results. Since, Z3 = 2YZ we execute always our algorithm of 
Miller for YP = 0. This allows us to eliminate the part that 
contains yR in l1 which will have the form: 
 

l1(xR,yR) = (aZ4 - 3X2)(Z2xR - X)  (17) 
 

We note that if we take always YP = 0, we can get more 
points, so a good chance to succeed the DPA attack. Since, 
we can fix ZP and searching for XP suitable in the equation of 
the elliptic curve E:  Y2 = X3 +aXZ4 +bZ6    (which is in the 
projective coordinates, it can be calculated from the points 

((
>�?�� , @�?�A) in the Affine coordinates). Like that, for each ZP 

chosen, we can obtain at most three XP convenient from the 
equation X3 +aXZ4 +bZ6 = 0.  
So, for each ZP suggested we may get 1 ≤ number (XP) ≤ 3. 
Applying the DPA attack as previously (section 3.2) to 
Miller’s algorithm by combining the points (X, 0, Z) as 
points of the first argument that we changes each time, we 
are interested only in l1 which have the form (17). This 
allows us to extract bit by bit xR, after it is simple to extract 
yR from the equation y2 = x3 + ax + b. 
Following the coordinate used in the first argument and those 
of the second argument (Affine, Projective, Jacobean or 
Edward) we can exploit other methods. 
 

4.2 Translation of our DPA attack to the  IBE and  IBC 
 

Firstly, we will treat the case where the secret is in the first 
argument (case related to the order). Our proposal in this 
sense does not affect directly the secret, but we will see that 
it is enough useful to attack the cryptosystems of IBE and 
IBC (Identification Based Cryptography). We will limit our 
study to the cryptosystem of Boneh and Franklin (section 
2.3), the study is also valid for [4] [5] [6] [7] and others, we 
just play on their syntax. Before exploiting this, we can say 
that operating the IBE cryptosystem in the Smart Card has no 
sense, as its password can be fairly cryptanalysis in the 
authentication phase (attack presented in [25])  that’s why 
Smart Card request (require) a secure channel between 
sender and receiver,  this is impractical.  
For ongoing communication between the sender and receiver 
concerning a subject, the sender can reuse the scheme of 
Boneh and Franklin to encrypt the messages to the receiver, 
always with the same parameters < q, G2, G2, e, n, P, Ppub = 
sP, QID, H2 >, the only thing that he can changes is r which 
he change it for each message (in fact C =ciphertext= < rP, 
M+H2(g

r) > = <U,V >). Therefore to not recalculate it each 
time, the sender just programs the function: 
 

r                gr = e(QID, Ppub)
r 

 

He stores it in somewhere, and the best place to keep it away 
the eyes of the opponents in order to reuse the calculations 
by changing only r, is in the Smart Card. Since it is 
imperative to access to this, which is impossible. 
The only things left to an opponent are to use a covert side 
channel attacks and more particularly a DPA attack. To 
program (the sender) gr, three opportunities are offered to us:  
Use r in the first argument (gr = e(rQID,Ppub)), in the second 
argument gr = e(QID,rPpub) or in the exponent gr = 
e(QID,Ppub)

r. 
This is for a communication, sender to receiver. For the 
opposite (i.e receiver to sender), because of r which is 
changing each time, it is possible that the receiver need the 
calculation of e(dID,U) = e(sQID, rP) and then to reuse it, he 
store it in a smart card.  
We will light up all the three case of ciphers and that’s of 
decryption.  
Begin with the first case of encryption.  
In this case, the secret is placed in the first argument and 
therefore according to our method (paragraph 4.1) it suffices 
only to attack the order r’ of rQID. Attacking r’ and 
familiarizing with the order of rQID of the point QID, allows 
us to attack r, as r=rQID- r’.  
In made rQID is not known but since QID is public, we can for 
example calculate it using the following algorithm: 
 
                Algorithm to calculate kP 
 
Input: a = m, B = O, C = QID; 
If a is even a             

B
$, B=B, C=2C; 

  If a is odd,  
     a               a-1, B=B+C,C=C; 
    If a ≠ 0, go to step 2. 
 
     End if 
   End if 
End if 
Output B 
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Remarks: 

1. To calculate rQID we can initialize with m=q, as 
QID ∈ G1, this latter is cyclic with order q. With 
bQID (b < q is of our choice, we can choose it great) 
we can accelerate the previous algorithm. We 
demand to the algorithm to profit t in the output 
when bQID=O. So rQID = tb-1. 

2. We cannot attack r from rQID, rP or any another 
expression, as it is a discrete logarithm problem. 

3. The authority can give to the user rQID as the 
sender Alice need it to calculate for example,  
e(rQID, Ppub) (to calculate the order of rQID, Alice 
need to know QID).  
 

Once r is attacked it will be simple to calculate:   
e(QID, Ppub)

r = gr. 
Turning now to the second case of the encryption i.e   
e(QID, rPpub). Our method of the second case allows us to 
attack directly rPpub, so easily calculating e(QID,rPpub) = gr. It  
still to us now the 3th of the encryption i.e the case bound to 
the exponent (gr = e(QID, Ppub)

r).  
To calculate the exponentiation several methods can be used, 
we cite for example that’s of string by Chain or by Window, 
both these methods are sensitive to the consumption attacks. 
For example, with the first i.e by Chain a DPA attack is 
effective to find the secret (the study of Jean-Sebastien 
Coron [11]) as that of Window; we just apply a SPA attack 
(Pierre-Alain Fouque et al [26]). We cannot explain those 
methods, more, we cannot bring any proposal and as there 
are several methods to exploit exponentiation, we can limit 
only to give the appropriate counter-measures.  
Going now to the decryption, in e(sQID,rP) the secret door in 
the first argument it is dID, since, the second point rP is 
public. Then the attack of e(sQID, rP) can be made with the 
same  ways as 1st case of the encryption i.e attacking the 
order r’ of sQID and using rQID we can determine s=rQID-r’, 
but this is very dangerous, as s is the master key. 
Attacking gr may present a threat to the communication 
Alice-Bob as it allows to calculate H2(g

r), because H2 is 
public. This allows the opponent Eve to attack one of the 
messages in the communication Alice-Bob, after she can 
calculates M + H2(g

r) + H2(g
r)= M. So, she can follow the 

communication Alice-Bob. Our adversary Eve in this case 
has a near relation to Alice or to Bob, she may be a colleague 
or a client of work. 
 
In reality, Smart Cards are used to hidden a signature or a 
protocol of Key agreement protocol, since likely, an 
authority can sign the private key of a sender to a receiver in 
a Smart Card. We have examine all the signatures: Sakai-
Ohgishi- Kasahara’s ID-based signature (IBS) [27],  Hess’s 
IBS [28], Cha-Cheon’s IBS [29] Paterson’s IBS [30] and we 
note that it doesn’t give good result. The great goal that we 
imagine to attack a signature is to attack the secret key SID 
and because of the pattern formulas of [27] [28] [29] [30] 
and the fact that the signatures can be reused once time; we 
note that this is hard.  
By contrast, the DPA can influence on the Key agreement, 
because for example if we take the scheme of Chen Kudla’s 
Key Agreement [31], it is possible that an entity A stores a 
key  KAB = e(SA,TB +aQB) in a Smart Card. But, attacking at 
the same time SA and TB + aQB is hard, since when we 
change one of the inputs to carry out an attack DPA we lost 

the secret. Then, either we attack SA which is the key secret, 
using the same method of 1st case of encryption, or, attacking   
TB + aQB using the 2ed case of encryption and after 
calculating TB +aQB -TB (since TB = bQB is public). But 
attacking KBA = e(QA,QB)s(a+b) is hard, except that if we have 
the opportunity to get two cards, one that contains   
KAB = e(SA, TB + aQB)  
and the other contains   KBA = e(TA+bQA, SB).  
This may be through a cooperation between two opponents, 
one (Eve) have the opportunity to get a card that contains 
KAB while the other (Cesar) can get the card that contains 
KBA. So Eve can access to s after she attack SA = sQA using 
the method of the 1st case of encryption, by the same method 
Cesar can calculate a+b after he has access to the order of  
TA + bQA = (a+b)QA.  
So, the key: K = kdf(KAB) = kdf(KBA) =  kdf(e(QA, QB)s(a+b)) 
can be extract easily, kdf is the key derivations of the 
function (kdf may be a hash function   H2: G2           {0,1}*).  
The same method can be applied to other protocols. 
As we have present the effect of a DPA attack on IBE 
cryptosystem’s (and IBC), we move now to know in what 
level we can arrive by comparing our method with [10] 
which is purely practical. We compare our method: make the 
secret in the first argument and in the second argument with 
the study [10] which addresses only the first argument. Our 
comparison take into account only the numbers of traces of 
each method, we perform the comparison forgetting that we 
must reusing the analysis by increasing the number of traces 
obtained when a peak not desirable is display (insufficient 
air). According to [22], the studies will almost succeed when 
the secret correlate with a point public number between 500 
and 1000 for a multiplication and a number of 65 280 = 2952 
for the subtraction.  
For our experiment (table I) we accept 800 = 2552 choice for 
the two studies [10] and our, also we accept that the two 
points P (public) and R (secret) have the same order of 160- 
bits in the security. 
 

Table I. Comparison between [10] and Our Study 
 

 
nbtraces is the number of traces.  
It is visible that: 
 

216552 = 2165 × 25 << 2165 × 2065  
and that 
 

2168 × 5 × 51 = 2165 × 2040 << 2165 × 2065.  

Study [10] nbtraces to 
attack ZR 

nbtraces to 
attack XR 

nbtraces to  
attack 
l1=sum 

One bit 2552 traces 28×5×51 
traces 

255(5+23×51) 
traces 

160 bits 2165×52 
traces 

28×5×51 
traces 

2165×2065 
traces 

Our nbtraces to attack 1st 
argument (order r) 

nbtraces to attack 2ed 
argument (xR) 

One 
bit 

2552 traces 28×5×51 traces 

160 
bits 

2165×52 traces 2168×5×51 traces 
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4.3    Convenient Cons-measure  
 

A cons-measure permits to resist against any attack of side 
channel, in particular an attack DPA.  
The counters measures are divided in two types: hardware 
and software, but in the sequel we are interested only in 
software.  
Several cons-measures have been proposed against a DPA 
attack applied to a pairing, we include: 
(∀λ ∈ Fp*,  (X, Y, Z) = (λ$X, λFY, λ Z) proposed by Coron 
[11];  e([s]P,[r]Q) = e(P,Q)sr such that sr = 1 mod(l), with l is 
the order in the algorithm of Miller, this cons-measure is 
introduce by Page and Vercauteren [8];   
e(P,Q) = e(P,Q + R)e(P,R)-1 proposed by Scott [9].  
We are going to make in default some of those cons- 
measures, begin with the first. This cons-measure was based 
on the homogeneity so (λ$X, λFY, λ Z) can play the same 
role as (X, Y, Z), but this cons-measure is fragile. Since, if 
we attack (λ$X, λFY, λ Z) we can attack (X, Y, Z) basing on 
the fact that:  G ?
G�> × λ Z=cte0               X = cte1Z

2  (18) 
 

Also: 
G�>
GA@ × λ Z = cte2             Y = cte3XZ  

Y = cte1cte3Z
3  (19) 

 

We replace in the equation  
 

Y2 = X3 + aXZ4 + bZ6, X and Y with their expressions in 
(18) and (19), which allow us to extract Z and then extract X 
and Y using always (18) and (19).  
By contrast, the cons-measure e([s]P,[r]Q) = e(P;Q)sr = 
e(P,Q) can render the service, since, we provide r, s such that 
sr = 1 mod l to mask P and Q. This cons-measure is hard, 
because make the secret in P or Q and mask this secret by r 
or s paralyzes the attack. Because, even if we try to attack the 
secret in which make in its expression one of the parameters 
s or r it still to us the second parameter in the other argument. 
It is not possible to attack simultaneously a secret multiply 
by one of the parameters, and attack at the same time the 
second parameter in another argument. Since, to attack the 
secret in one argument we must change the other argument 
and once we made that change we lose the second parameter. 
We note that the proposal [9] to choose a random r and s 
such that rs = 1 mod l can render the service is not true, 
because, we shouldn’t get the same r and s which are stored 
in the card.  
For the third measure we doubt in its efficacy, since in   
e(P,Q) = e(P,Q +R)e(P,R)-1 the secret is in its second 
argument masked by R (the secret must be Q, because if it is 
P the cons-measure has no role) and we retrench the mask by 
the expression e(P,R)-1. This expression has an inverse, and 
since the inverse consumes much electrically, we can so 
separate e(P,Q+R) from e(P,R),  then we can attack firstly 
Q+R,  after attack R, so calculate Q+R-R = Q. 
Now, as we have presented the effectiveness for each cons- 
measure, we’ll discuss the effect of these counter-measures 
in our methods.  
We start by the exponentiation, any previously proposed 
cons-measure in the literature does not resist to this 
operation. The two pairing Tate and Weil, admit in their 
output a reduction modulo l, because the output of Weil µl 

(the set of all l-th root of unit) and that of Tate is 
I∗
I∗K .  So for 

the tow pairing e(P,Q)l = e(P,Q), using this we can build a 

cons-measure. Choose λ as an arbitrary number, so e(P,Q)r = 
e(P,Q)r+ λl, we cannot extract r as we don’t know λ and in the 
preferable l (it is due to have an unknown l).   
Another cons-measure that we can brings against an 
exponentiation is to choose λ and λ such that λ λ’ = 1, then 
calculate e(λ P,Q) λ’r = e(P,Q). So, we cannot extract r as we 
don’t known λ’ and more λ.  
As concern our method, make the secret in the first 
argument, or in the second argument, the cons-measure 
e([s]P,[r]Q) = e(P,Q)sr such that rs = 1 mod l can render the 
service. In addition to the case make the secret in the first 
argument, we propose the cons-measure e(σP,Q) to paralyze 
the DPA attack. The σ is an invertible parameter that we add 
for example in the public parameters following the form: 
 < q, G1, G2, e, n, P, Ppub = sP, QID, σQID, H2 >, the 
parameter σ  is invertible with an inverse σ′, it suffices only 
to calculate e(σP, Q)NO  for decryption.   
Our method of the first argument consists to find the order of 
the secret to use it following the method that we have 
mentioned in paragraph 4.1 (i.e that’s of 1st case of 
encryption). For example in the scheme of Boneh and 
Franklin, our secret is r in the expression e(rQID, Ppub) that 
we can attack it by the method of 1st case of encryption. But 
if we change this expression by e(rσQID, Ppub), the only 
things that we can attack is rσ, we cannot attack anywhere r 
as we don’t know σ.  
As concerned make the secret in the second argument, 
because of the fact that the cons-measure  e(P,Q + R)e(P,R)-1 
is very expensive for a Smart Card,  more we doubt on its 
efficiency, we propose so to use the cons-measure e(P,Q+aP) 
as e(P,Q+aP)=e(P,Q). Because, e(P,aP)=1, P is public and a 
is a secret parameter chosen by the user. 
 

5. Dynamic and Convenient Study to block an 
DFA attack for any even Embedding Degree  

 

5.1   Traditional proposals  
 

In [8], D. Page and F. Vercauteren have proposed a fault 
attack against the algorithm of Duursma and Lee. Their 
attack consists to disrupt the number of iterations of this 
algorithm in coordinate Affine. In [12] N. El Mrabet 
developed their idea in order to satisfies the algorithm of 
Miller, her proposal requires to have two consecutive results 
in the step doubling or adding, which are fP,Q (Q) and fP��,Q (Q), and then calculate the ratio 
 R = �R"�,� (�)

�R,� (�)�    (20) 
 

The attack relies on solving a system obtained by 
identification elements in the basis of FT�. Using Jacobian 
coordinates and k = 4, the author found a simple system if rP��= 0 and a little difficult if rP�� = 1. 
As weakness, the [8] is only valid to the algorithm Duursma 
and Lee in which figure the product: 
 

∏ 2(−yQFW .7'8� y�
�

AWX� . σ(xQFW + x�
�

AWX� + b)$). (xQFW +xQ13i−1+b)2ρ−ρ2]  (21) 
 

So when we get two results after an injection of fault Rm’+r 
and Rm’+r+1, their relationship can be simplified to: 
 

(−yQFW . y�
�FWX� . σ(xQFW + x�

�FWX� + b)$). (xQFW + x�
�FWX�

+ b)$ρ − ρ$  (22) 
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It is obvious that solving this equation is not easy as we need 
to calculate an ith root, in addition to this weakness, for 
pairing in which remain an exponentiation (Tate, Ate, Eta, 
Twisted Ate  ...). To succeed the attack it requires reversing 
qk – 1, so know the root in question where k is a selected 
embedding degree. The problem was treated for  k = 3, k = 6 
in [32] and [9] respectively, but for general degrees, this pose 
a great problem, so exponentiation is counted in [9] as 
convenient cons-measure against DFA attack applied to a 
pairing.  
This problem does not arise for Nadia El Mrabet [12], as 
there are many methods in literature microelectronics that 
allow stopping the calculations before exponentiation, read 
the intermediate result between the execution of the 
algorithm of Miller and exponentiation, or cancel the 
exponentiation step. 
But, as it is said in [12] this attack presents only the case 
when the embedding degree was equal to 4. More, the 
authors found that the attack could not recover the secret in 
the case where rP�� = 1. The attack proposed in [13] 
generalize that’s in [12] as it present an attack DFA for any 
even embedding degree and when rP��= 1. In the sequel, we 
propose an appropriate cons-measure against the two attacks 
[12] and [13]. 
 

5.2 Proposal cons-measure to block the attack [12, 13] 
 

5.2.1 Small change in Miller to block an DFA attack 
for any embedding degree  

To block the attack [12] [13] i.e for any embedding degree, 
we propose to add a random integer r2 in the algorithm of 
Miller (paragraph 2.2) as it is elaborate in the algorithm 
below: 
 

Modified Algorithm of Miller (P, Q, r) 
 
Input: r=(rn...r0)(binary representation), 
           P ∈ G1(∈ E(Fq)) and  
           Q ∈ G1( E∈ (��� )) 

Output: fr,P (Q) ∈ G3 (∈ ���) : 
T             P 
f1            1 
f2            1 
r2 ∈ Fp 
For  i = n - 1 to 0 do 
    T            [2]T 
    f1            #�$×l1(Q) × r2 
    l1 is a tangent line to the curve in T. 
    f1            f1 × v1(Q) × r2 
    v1 is the vertical to the curve in [2]T. 
     If  ri=1  then 
        f2           #$$× × l2(Q) × r2 
         l2 is the line which pass from (PT). 
         f2           #$$ × v2(Q) × r2 
          v2 is a vertical line which pass      
         from the point P + T. 
     End If 
End For 

Return 
���� × r2

(numi=0)-(numi=1)-1 

 

Advertisement 1: The modified algorithm of Miller 
is correct and it can take the same result as the 
traditional algorithm can complete after the 
exponentiation final (Tate pairing and its variants). 

Proof 1: r2 ∈  Fp, after raising to a power  
T���

� , the calculate 

can be simplifies to the original calculation, as, 

 r$
\�X�� = 1.  Since, ( 

T���
�  ) = ( 

T���
]�(T) ) × ]�(T)

�   

(result of Koblitz and Menezes [33]) and as  p_ − 1 = ∏ φ_′(p)_′/_   (23) 
 

So, φ�(p)= (p-1)/ ( 
T���
]�(T) )  (24) 

This result seems valid to a pairing in which figure 
exponentiation (Tate and its variants) and that Weil cannot 
benefit. But, it is possible to raise it to a power and it is 
proved that this operation is also useful to reduce the 
complexity of the Weil pairing. 

 
 
 

 

As [13] generalize [12], it suffices to make the proof for 
[13]. 
Proof 2: Begin with the case where rP�� = 0.  After the 
identification the two equations: 
 

R = fP��,Q (Q)
fP,Q (Q)$  

And  
 fP��,Q (Q) = fP,Q (Q)$ a2Z0FY0yσ − 2Y0$  

− 3�X0$ − Z0d��xZ0$ − X0�e (25) 
 

With the fact that:  
 

R = R2n-1 ξn-1 σ+ R2n-2 ξn-2 σ  + … + Rn σ+ Rn-1 ξn-1 +R1 ξ +R0  
 

                                                                                        (26) 
lead to the following system: 
 

gh
hh
hh
hi
hh
hh
hh
j 2Z0FY0yk�� = R$k��2Z0FY0yk�$ = R$k�$...2Z0FY0y& = Rk(−3Z0$�X0$ − Z0d�)xk�� = Rk��...(−3Z0$�X0$ − Z0d�)x� = R�−3Z0$�X0$ − Z0d�x& + 3�X0$ − Z0d�)X0 − 2Y0$

= R&

l 

 

                                                                                (27) 
 

After replacing the expressions of x and y respectively by: 
 

x0 + x1ξ + ::: + xn-1 ξn-1 and y0 + y1ξ + ::: + yn-1 ξn-1   (28) 
 

Carry out the relocation proposed in the modified algorithm 
of Miller to the system (27), this latter will be changing to: 
 

Advertisement 2: The modified algorithm of 
Miller resists to the fault attacks [12][13]. 
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gh
hh
hh
hi
hh
hh
hh
j 2r$Z0FY0yk�� = R$k��                                                            

2r$Z0FY0yk�$ = R$k�$                                                               .                                                 .                                                 .                                                  2r$Z0FY0y& = Rk                      ⇒                                                     
(−3r$Z0$�X0$ − Z0d�)xk�� = Rk��                                           .                                                   .                                                   .                                                  (−3r$Z0$�X0$ − Z0d�)x� = R�                                                     

r$�−3Z0$�X0$ − Z0d�x& + 3�X0$ − Z0d�)X0 − 2Y0$�= R&

l 

 
                                                                              (29) 

gh
hh
hh
hi
hh
hh
hh
j 2r$Z0FY0yk�� = R$k��                                                            

2r$Z0FY0yk�$ = R$k�$                                                               .                                                 .                                                 .                                                  r$Z0FY0 = λ&rO$                                  (B. 1)                                          
(−3r$Z0$�X0$ − Z0d�)xk�� = Rk��                                           .                                                   .                                                   .                                                  Z0$�X0$ − Z0d� = λ�rO$                     (B. 2)                                            

�−3Z0$�X0$ − Z0d�x& + 3�X0$ − Z0d�)X0 − 2Y0$�                             = λ$rO$       (B. 3)

l 

 
With r’2 represent the inverse of r2 in Fp (the two are not 
known). 

By (B.1), we draw Y0 = Go�′�?pA    (eq 1). 

The (B.2) lead to have  X0$ − Z0d = G��′�?pq  

After using those tow equation and (B.3), it leads to the 
equation: 
 

X0 = (λ$ + 3λ�x&)Z0r + 2λ&r′$3λ�Z0d        (eq 2) 

Substituting this equation in (B.2) permit to obtain: 
 

(λ$$ + 9λ�$x& − 9λ�$) Z0�$ + �4λ&$λ$rO$ + 12λ&$λ�x&rO$ −9λ13r′2Zj6+4λ04r′2 
                                                                         (eq 3) 
 

The latter equation (eq 3) cannot be resolved as it contains 
the two unknown Zj and r’2.  
The same things will be saying for the two equation ((eq 1) 
and (eq 2)) in which figure r’2. 
As a conclusion, we cannot any where extract the secret. 
Concerning the case where rP�� = 1, the attack is based on 
the two equations: 
 

R = �R"�,� (�)
�R,� (�)�                    

                                                                    

fP��,Q (Q) = fP,Q (Q)$ a2Z0FY0yσ − 2Y0$ − 3�X0$ −
Zj4xZj2−Xj(ZjXPZ2j2−X2jyσ)-( YPZ2j3−Y2j)x-
(XQY$0 − X$0YQZ$0))     (30) 

 

With the fact that: 
 
R = R2n-1 ξn-1 σ+ R2n-2 ξn-2 σ  + … + Rn σ+ Rn-1 ξn-1 +R1 ξ +R0 
                                                                                        (31) 
x=x0 + x1ξ + ::: + xn-1 ξn-1   (32) 
 

y= y0 + y1ξ + ::: + yn-1 ξn-1  (33) 
 

With the five equations (20), (30), (31), (32) and (33) we can 
extract the system: 
 

gh
hh
hh
i
hh
hh
hj

f&�XQ , YQ, X0, Y0, Z0, X$0, Y$0, Z$0� = a&f��XQ , YQ, X0, Y0, Z0, X$0, Y$0, Z$0� = a�…f$k�$�XQ , YQ, X0, Y0, Z0, X$0, Y$0, Z$0� = a$k�$f$k���XQ , YQ, X0, Y0, Z0, X$0, Y$0, Z$0� = a$k��YQ$ − XQF + 3XQ − b = 0Y0$ − X0F + 3X0Z0d − bZ0r = 0
Y$0$ − X$0F + 3X$0Z$0d − bZ$0r = 0

X$0 = −8X0Y0$ + 9�X0$ − Z0d�$
Y$0 = 3�X0$ − Z0d��4X0Y0$ − X$0� − 8Y0d

X$0 = 2X0Z0

l 

 

                                                                               (34) 
 

After applying the mutation proposed in the modified 
algorithm of Miller, the system (34) can be changed to: 
 

gh
hh
hh
hh
hi
hh
hh
hh
hh
j f&���XQ , YQ, X0, Y0, Z0, X$0, Y$0, Z$0� = b&f����XQ , YQ, X0, Y0, Z0, X$0, Y$0, Z$0� = b�…f($k�$)���XQ, YQ, X0, Y0, Z0, X$0, Y$0, Z$0�= b$k�$f($k��)���XQ, YQ, X0, Y0, Z0, X$0, Y$0, Z$0�= b$k��f$k = YQ$ − XQF + 3XQ − b = 0

f$k�� = Y0$ − X0F + 3X0Z0d − bZ0r
= 0f$k�$ = Y$0$ − X$0F + 3X$0Z$0d − bZ$0r
= 0

f$k�F = X$0 + 8X0Y0$ − 9�X0$ − Z0d�$ = 0
f$k�d = Y$0 −  3�X0$ − Z0d��4X0Y0$ − X$0� + 8Y0d

= 0f$k�| = X$0 − 2X0Z0 = 0

l 

 
                                                                               (35) 
 

The resolution of this system (multi-variants) is based on the 
search of the Gröbner basis which can engender it.  
This later is based on the method of eliminate term. 
Let < be an order monomial defined by the monomer of  
Fp[XP, YP, Xj, Yj, Zj, X2j, Y2j , Z2j ]. 
 

The search for a Gröbner basis can be done in general using 
the compute of S-polynomial [34]: 
 

Let f1 and f2, we have: 
 

S(f1,f2) = u1f1 - u2f2 
 

with lcm = LM(f1) U LM(f2) and ui =
}~7

��(�W)  
for i ∈  {1, 2}. With the fact that: 
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• LM (f i) represent the monomer of the head of fi, it 
is defined by: LM(fi) = X�, where ρ = max{α ∈ Nn 
such that: the coefficients of fi ≠ 0 }. 

•  LC(fi) is the dominant coefficient of fi, it is defined 
by LC(fi) = coef�icient(f')�. 

• LT(f i) is the head term of fi, it is defined by:  
LT(f i) = LC(fi) .LM(f i) 

 

The system (35) cannot be resolved following the sequel 
reason: 
 

Reason 
 

Firstly, the r2 figure necessary in the syntax of S-polynomial 
of f'��for any i ∈ {0, 1… 2n-1}, and this which is the 
function to be taken in (35), since: 
 

As we have multiplying each function of (35) (that’s of  
{0, …, 2n-1})  by r2, with, r2 ∈ Fp. So, the r2 exist in all the 
coefficients dominant of f'�� and this for any i ∈  
 {0, 1, ..., 2n-1}. 
 

As a consequence: 
We have, ∀ (i,j) ∈{0, 1,…, 2n-1}2: 
 S�f'�� , f0���   = 

}~7
���������(�W��) f'��   − }~7

���������(�p��) f0��    (36) 

 
                    = 

rO$( }~7
���������W��� f'��   − }~7

���������p���)f0��   (37)                                

                                                                                   
And, 
  ∀ (i,j) ∈ {0, 1,..., 2n-1} × {2n, ..., 2n+5}: 
 

S(f'�� , f0)=
}~7

���������(�W��) f'��   − }~7
��(�p) f0   (38) 

                                                         

            =r′$(
}~7

�������(�W��) f'��   − r$ }~7
��(�p) f0)  (39) 

 

To find a convenient Gröbner basis to the system (35), it 
suffices to use the algorithm of Buchberger [34]:  
 

 
Algorithm of Buchberger 

 
Input: 
 I = < f&��  ,…, f$k���� , f2n, …, f2n+5 > 

 ∈ Fp[XP , YP , Xj , Yj , Zj , X2j , Y2j , Z2j ] 
Output: G basis Gröbner of I. 
    G              f&��  ,…, f$k���� , f2n, …, f2n+5 

     CA             {S(fi,fj), 0 ≤ I, j ≤ 2n+5} 
    While CA ≠ 0 do 
       Choose s ∈ CA and extract the CA 
       r            s div G 
        If r ≠ 0 so 
         CA           CA U  {S(g,r), g ∈ G} 
         G              G U {r} 
        End if 
    End while 
Return G 
 
 
 
 

The compute of the step 5 can be done by: 
 

 

 r        r + LT(S(fi, fj)) (division of two polynomial with 
variant variables). 
 

Basing on two equations (37) and (39), the Gröbner basis of 
the system (35) is so: 
 

gh
hh
hh
hi
hh
hh
hh
j g&���XQ , YQ, X0, Y0, Z0, X$0, Y$0, Z$0� = 0

g����XQ , YQ, X0, Y0, Z0, X$0, Y$0, Z$0� = 0...g($k�$)���XQ , YQ, X0, Y0, Z0, X$0, Y$0, Z$0� = 0
g($k��)���XQ , YQ, X0, Y0, Z0, X$0, Y$0, Z$0� = 0

g($k)���XQ, YQ, X0, Y0, Z0, X$0, Y$0, Z$0� = 0
g($k��)���XQ , YQ, X0, Y0, Z0, X$0, Y$0, Z$0� = 0
g($k�$)���XQ , YQ, X0, Y0, Z0, X$0, Y$0, Z$0� = 0
g($k�F)���XQ , YQ, X0, Y0, Z0, X$0, Y$0, Z$0� = 0
g($k�d)���XQ , YQ, X0, Y0, Z0, X$0, Y$0, Z$0� = 0
g($k�|)���XQ , YQ, X0, Y0, Z0, X$0, Y$0, Z$0� = 0

l 

                                                                                       (40) 
 

The second step of the resolution of the system (40) consist 
to eliminate its parameters until find a polynomial with one 
variable; but in this case, the found polynomial is with  two 
variable, and this because of the existence of r2 (or the 
reverse of r2 which is r’2). As a consequence, the system (35) 
cannot be resolved. 
 

6.  Conclusion 
 

We have presented in those papers firstly a DPA attack 
against a pairing, or rather against Miller’s algorithm; our 
attack is effective whatever it is the position of the secret. 
We have translated DPA attack to the cryptography based in 
identity which is the first in the literature. The cryptosystems 
and the protocol’s of Key Agreement are sensitive to this 
attack by contrast the syntax of the scheme of signature make 
to their natural cons-measure against the attack. Our study is 
purely theoretical, even if we do not shown its success 
practically, but to get a material results we have based on the 
study of which is purely practical and we arrived at the 
conclusion that attacking a protocol of IBE for a level of 
security 160- bits, using our method we need at least 216552 
traces, which is expensive, but we cannot say that it is 
impossible especially for an active opponent. The attack is a 
real threat to the IBE, especially when we have effective 
precautions close to a protocol of IBE and we just want to 
assure our care, therefore a DPA attack can make the service. 
Since, we can only test certain bits, but we have presented 
the appropriate counter measures to resist it. Among the 
obstacle that can be presented to succeed a DPA attack it is 
to specify the position and the style of the coordinate used (is 
it in the first argument, in the second argument? Or does it 
have a Projective coordinates, Affine, Jacobean and so 
forth). Also we have the problem of time, since for a 
calculation of 1024-bits of RSA we need only 300ms, which 
is very small if one wants to consider only the time of the 
operations that construct this protocol!.  
Secondly, we have exposed a method to defend the DFA 
attack which is an even embedding degree. 
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