
Copyright © 2024 by Author/s and Licensed by IJCNIS. This is an open access article distributed under the Creative Commons Attribution License which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1

International Journal of Communication Networks and Information
Security
2024, 16(1), 6358
ISSN: 2073-607X,2076-0930
https://https://ijcnis.org/

A Constructive Model for Cyber-Attack Prediction Using
Efficient Weighted Bi-Directional Learning Approaches

Bondili Sri Harsha Sai Singh 1, Mohammed Fathima 2, Thota Teja Mahesh 3, Mohammad Sameer 4,

Dinesh Kumar Anguraj 5, Padmanaban Kuppan 6

1,2,3,4,5,6Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddesswaram, Guntur, Andhra Pradesh,
India.

*Corresponding Author: dineshinnov@outlook.com

Citation:B. S. H. S. Singh, M. Fathima, T. T. Mahesh, M. Sameer, D. K. Anguraj, K. Padmanaban, “A Constructive Model for
Cyber-Attack Prediction Using Efficient Weighted Bi-Directional Learning Approaches,” International Journal of Communication
Networks and Information Security (IJCNIS), vol. 16, no. 1, pp. 1-18, Jan. 2024.

ARTICLE INFO ABSTRACT

Received: 12 Jan 2024
Accepted: 15 Apr 2024

Anomaly detection algorithms based on machine and deep learning are currently the most promising
techniques for identifying cyber-attacks. However, hostile attacks lower forecast accuracy which is
made against these techniques. The resilience of anomaly detection has been measured using a
variety of methods in the literature. They neglect to consider the fact that a little disruption in an
anomalous sample caused by an assault like a denial of service might cause it to become a genuinely
normal sample, but a huge perturbation can transform an anomalous sample into a truly normal
sample without affecting the whole system. Even so, it can lead to it being wrongly classified as
normal. The approach for determining an anomaly detection model's resilience in industrial contexts
is presented in this work. To detect abnormalities brought on by various cyber-attacks; this work used
the method of a Support Vector Machine (SVM) for feature extraction and weight analysis. In this
case, a unique deep learning-based Bi-LSTM (Bi-directional Long Short Term Memory) only requires
a disruption of 60% with 99.6% accuracy of the original sample to create adversarial samples as
opposed to the model, which requires a disruption of the entire original sample.

Keywords: Cyber-Attack, Prediction, Deep Learning, Feature Representation, Anomaly

INTRODUCTION

Industry 4.0, or the fourth industrial revolution, is now in progress. It is largely propelled by the industrial
processes' adoption of new computer concepts and technology. We highlight the adoption of big data, the
Industrial Internet-of-Things (IIoT), which connects numerous the fifth generations of mobile networks (5G),
which enables communications to have low high bandwidth [1], delay and optimizes the analysis of massive
volumes of data, connects diverse and devices with limited resources to the Internet. Industry 4.0 has benefits, yet
it's also making it easier for new cyber-attacks to target industrial equipment and vital operations [2]. Traditional
security methods soon become ineffective due to the frequency and variety of cyberattacks. Due to the increasing
amount of highly specific and one-of-a-kind the academic community is utilizing machine learning (ML) and deep
learning (DL) techniques to identify attacks in a semi-supervised or unsupervised way for (zero-day) attacks
impacting many businesses [3]. The most promising and efficient ways to identify hidden attacks in the existing
situation involve systems for anomaly detection (AD) that use ML and DL [4]. In industrial processes, these
systems can differentiate between normal and aberrant behaviour in contrast to conventional methods, without
depending on databases that now preserve the patterns of cyber-attacks.

However, adversarial attacks may be used to compromise the present AD solutions based on ML/DL,
rendering them inappropriate for use in actual systems. Adversarial attacks involve manipulating ML/DL models

Research Article

about:blank
https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035
mailto:dineshinnov@outlook.com

B. S. H. S. Singh et al. / IJCNIS, 16(1),1-1892

to change the behaviour of the models or obtain sensitive data. Evasion attacks are among the most pertinent
adversarial attacks now in use since they are used in the system's assessment phase after the model has been
trained. The basic objective of evasion attacks in malware-affected industrial contexts is to create samples that
mimic the behaviour of the virus (Anomaly samples), and erroneously identify them (as normal samples),
allowing the virus to surreptitiously harm commercial equipment or processes.

Adversative attacks provide fresh security and trust issues that have an impact on methods for detecting
cyber-attacks based on AD, and ML/DL in general. Data scientists are already putting in great effort to provide
correct and reliable AI-based solutions in a variety of application settings [5]. The pillars required to create
trustworthy AI have recently been highlighted by IBM [6]. Robustness is one of these pillars, and its major
objective aims to assess how resistant ML/DL models are to malicious assaults. once the degree of robustness has
been determined, it may either be utilized in adversarial training, which modifies the network using adversarial
samples, to raise the model's resistance, or in addition to conventional performance indications, it can be
provided to end users.

The literature has provided a variety of measures to gauge the robustness of a model. The most often used
metrics are empirical robustness (ER), local loss sensitivity (LLS), and cross-Lipschitz extreme value for network
robustness (CLEVER) [7]. The computer vision field is only one of the many application areas where these
measures are quite helpful. When used to assess the durability of AD in business environments, they have
limitations [8]. The inability to distinguish between an adversarial sample and a malicious sample that fools the
anomaly detection that is excessively turned into a normal sample change is one of the most important constraints.
Think about a water distribution procedure, for instance, where a cyber-attack known as a denial of service (DoS)
is conducted. The objective of this cyberattack is to cut off the water supply for a certain location. The valves that
regulate the water supply accept values between 0 and 1, or entirely closed to fully open. To shut the valves and
stop the supply, the DoScyber-attack can thus change such properties. Furthermore, an attacker may alter the
DoS samples to make them hostile if they want to carry out a DoScyber-attack without being detected by the AD
system [9].

The DoScyber-attack would have no effect if these characteristics took the value 1 (totally exposed), though,
because of the severe disruption [10]. The adversarial attack is seen as successful in both situations, although it
has no detrimental effects on the industrial gadget in the second. As a result, a technique is required to distinguish
between these two adversarial versions and offer a trustworthy indicator of the model's resilience [11]. The
diversity of data formats employed in industrial settings is another issue. There are discrete values, continuous
values, or even timestamps, typically with internal consistency constraints, which makes it difficult to calculate a
gradient or create a reliable adversarial sample, in contrast to image recognition and other domains like audio
signals, where values frequently float. The following additions are made in the current study to address the prior
constraints [12]. In some ML and DL-based approaches for testing to determine if a prediction model is robust in
industrial settings contexts, numerous auxiliary DL models (support models) are used because abnormality
persists in a poor sample. This method offers a robustness metric that modifies the performance metric while
taking into account four key phases. It is important to note that the suggested technique focuses on evaluating
rather than creating a strong model and emphasizes the adaptability of a trained AD model. An analysis of an
online dataset was used to validate the recommended approach [13], a genuine, though simulated, industrial
setting. Some authors notably show how standard Long Short-Term Memory (LSTM) and 1D-CNN models
calculate resilience while dealing using time-series information. The most resilient model should be considered
for deployment in a real setting. According to tests, the robustness of the model is 1.1, which is about twice as
strong as the LSTMmodel's. The major contributions of this work are:

1) The input data is taken from online resources where the pre-processing step is adopted to enhance the
work quality and performance;

2) The feature extraction process is done with SVM to predict the features of attacks. It helps to prevent the
spread of attack consequences and predicted in earlier stages;

3) The classification process is done with BiLSTM to provide accurate prediction outcomes with better
outcomes than conventional approaches. It helps to reduce error by sequentially analysis and prediction without
aggressive process; Metrics like the Detection Rate (DR) and False Alarm Rate (FAR) are used to assess
performance.

The project is structured as follows: Section 2 lists relevant gaps and active projects. The procedure is
described in greater depth in Section 3. The numerical findings are presented in Section 4, and the conclusion is
presented in Section 5.

https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035

B. S. H. S. Singh et al. / IJCNIS, 16(1),1-18 93

LITERATURE REVIEW

The most current techniques of network intrusion for SDN are covered in this section. A variety of ML and
DL-based botnet technique identification attacks have recently been developed by researchers [14]. Recognizing
botnet and DDoS attacks has been the subject of some pertinent research. Su et al. presented "high-level PSI-
rooted subgraph-based features" and also employed a hybrid approach that combines botnet detection on the IoT
using deep learning and machine learning techniques [15]. Their main objective was to swiftly and effectively
identify the attack using the fewest attributes possible to save space. An unsupervised learning-based IoT botnet
sensor system was created by Gamage et al. [16]. They use the "Grey Wolf Optimization (GWO) algorithm" to
perform hyperparameterization on SVM to identify the key characteristics of a botnet attack. The recommended
method aids in identifying IoT botnet attacks launched by knowledgeable, exposed nodes [17]. We found N-BaIoT,
a different network-based solution to anomaly detection that uses deep auto-encoders to find attack traffic while
taking snapshots of network activity. Aldweesh et al. proposed a hybrid PSO algorithm along with a voting
mechanism to detect botnet attacks in IoT environments [18].

The PSO is utilized in this technique to choose the important and noteworthy characteristics, DNN, Decision
Tree (DT) C4.5, and SVM are used in the election process to detect botnet attacks. A CNN-based technique called
BoTIDS was suggested by Ferran et al. [19]. In comparison to LSTM and RNN, they found that their method
produced superior outcomes when applied to both the entire dataset and a set of 10 characteristics that were
chosen at random. However, compared to the entire dataset, the assessment findings on a subset are superior. We
noticed yet another Anomaly Intrusion Detection System (AIDS) based on CNN [20]. Datasets from Network
Intrusion Detection (NID) and BoT-IoTare were used to evaluate this system. When compared to BoT-IoT, the
suggested system achieved efficient results on the NID dataset.

Hassan et al. discovered a two-level DDoS assault detection method based on information entropy (IE) and
DL [21]. The suspicious port's components must be located in coarse granularity they first used information
entropy. Next, they employed a fine-grained detection strategy based on CNN to differentiate between both the
attack and regular traffic. For the purpose of demonstrating the efficacy of DL approaches for the detection of
hazardous traffic, A DNN-based network intrusion detection system was created [21]. DDoS attacks may be
detected in SDN settings using the Autoencoder and RNN combination approach known as DDoSNet [22]. A
technique for detecting DDoSLSTM was presented by Yin et al. and evaluated its effectiveness in comparison to a
Random-Forest (RF) approach [23]. The error rate was lowered from 7.517% to 2.103% by employing this
technique. Wang et al. depict the LUCID DDoS detection system, as a straightforward and useful deep learning-
based solution demonstrating CNN's capacity to categorize traffic flows as legitimate or malicious [24]. The
approach described by Yang et al. relies on SVM and is supported by Genetic Algorithm (GA) and Kernel Principle
Component Analysis (KPCA) [25]. The inventors of this approach tuned the hyper-parameters of the SVM by
using GA and KPCA to minimize the dimensionality of the features. They offer an improved Kernel Function (N-
RBF) to lessen the noise brought on by feature fluctuations. Otomo et al. conducted research to identify the DDoS
attack using neural networks using Particle Swarm Optimization (PSO)-BP and standard entropy measures [26].

Li et al. made use of the first use of trigger mechanism to increase DDoS attack detection performance. The
overhead of the controller and switches is decreased by using this technique [27]. In the study by Kunang et al.,
another hybrid approach based on DNN and ANNs was presented [28]. The authors integrated the RNN and
LSTM methods to categorize Emotet, Zbot, Dridex, and Salty are the four most significant bot assaults [29]. In
the study by Sherubha et al., a different hybrid approach was recommended based on CNN and LSTM [30].
Information gathered from nine commercial IoT gadgets was used by them to deploy this strategy in a genuine
testbed, which they used to identify the attack. To identify DDoS and phishing attacks, the authors of [31]
suggested a distributed method built on the foundation of LSTM and CNN with a further cloud-based component.
Gamage et al. described a technique for detecting DDoS attacks that combines Deep Belief Network (DBN)-
inspired Fuzzy and Taylor-Elephant Herd Optimization (F-TEHO) [32]. The three components that make up this
methodology are extraction, selection, and categorization of features. To choose the most important
characteristics, the Holo-entropy approach is utilized after the unprocessed packet data, and the feature
extraction module extracts features. The FTEHO approach is then utilized to complete the categorization
procedure. A new strategy based on dual address entropy and computing influenced by cognition is suggested in
[33]. This method initially extracts the characteristics from the flow table using the dual address entropy before
classifying the traffic as normal or an attack. This technique makes it easier to identify an attack early on and
quickly resume regular communication [34-35].

https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035

B. S. H. S. Singh et al. / IJCNIS, 16(1),1-1894

Figure 1. Flow Diagram of the Proposed Model

METHODOLOGY

Identifying and thwarting attacker attack flows is crucial for successfully defending the IoT environment from
DDoS attacks using botnets. A flow is made up of several packets that contain identical information (source and
destination port numbers, source and destination IP addresses, and other protocol-related information) and is
sent in both directions. In an attack flow, the originating IP address belongs to the attacker. Assume we have y
classifications and N flow samples. Assume, that each flow sample is represented by the notation X =
F1, F2, F3, . . . , FN ∈ Rd∗N , where N is the total number of flows, F_i is the ith flow, and d is the number of original
features incorporated in a flow. The real tables of a Fi flow are yi = 0 and 1 . We want to create a complete
procedure (ypred(i) = yi) for anticipating a label as the real label.

The comparative research of deep learning and feature selection for flow categorization is covered in this part.
It would increase effectiveness and accuracy and assist in categorizing the normal and attack flows. The planned
research's operational phases are depicted in Figure 1. The first step is to arrange the incoming parcels on a lovely
table. Second, each packet flow is independently calculated and extracted. Third, the best feature threshold values
for the feature weights are used to choose the best features. Finally, a subset of the chosen features is created, and
this feature subset is then used as input for the DL classifiers.

Dataset

The experiments' websites are taken from the actual network environment. The collection of safe websites
comes from Alexa. The world rankings of websites are made public on the Alexa website, which is run by Amazon.
It includes a large amount of URLs and comprehensive website rating data. We gather popular Alexa lists of
websites that are deemed to be safe. We obtained 24,800 regular web pages from Alexa after removing a few
incorrect, error, and duplicate pages. The collection of phishing websites is from PhishTank.com. An up-to-date
and reliable list of phishing websites may be found at the well-known phishing webpage collecting website
PhishTank.Before publication, PhishTank gathers all suspected phishes reported by anyone and assesses each one
to see if a fraud attempt has been made. Due to the short lifespan of phishing websites from September 2019 to
November 2019 gathered 21,303 PhishTank-listed phishing websites and pre-processed those that did not adhere
to the grammatical norms. Between the training and test sets, there is a ratio of 0.75:0.25.

Pre-Processing

Port and protocol information, flow ID, source and destination IP addresses, and date are some of the

https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035

B. S. H. S. Singh et al. / IJCNIS, 16(1),1-18 95

characteristics that are left out to make the dataset more general. By eliminating the aforementioned attributes,
the DL techniques adopt the broader DL methods' inability to attribute certain IPs, ports, and protocols as attack
nodes. After that, empty and unbounded values are screened out of the dataset. Following normalization, the
dataset is labelled with 0 and 1 for the normal and attack flows, respectively. There are 41,242 attack flows and
48,390 normal flows in the sample as was mentioned in the section above. When testing DL algorithms in real-
time environments where the proportion of normal to attack flows is consistent, the imbalance is maintained in
the dataset.

Feature Extraction

In the context of an IoT network, the Pcap format is used to capture the dataset. To train deep learning
algorithms, we converted the dataset from pcap format to CSV using the CIC Flow Meter V4. With 83 features,
CIC V4 generates bidirectional network flow statistics from the recorded file. A collection of unidirectional packets
makes up a network flow that follows a certain protocol and moves from source to destination over time. The
transformed dataset contains 89,632 flow records overall and 83 characteristics. The dataset also includes the
same 83 characteristics for 41,242 attack flows and 48,390 normal flows.

Feature Selection

Even though some of the aforementioned elements are important for determining attack vectors, others
might not have much of an impact on the classification outcomes, they all increase computational time and cost.
To improve classification accuracy and raise performance, we must choose the best characteristics that can
differentiate between the regular and assault flows. The research initial dataset included 83 features, which were
refined down to 15 key features using SVM for weighting and iterative selection, allowing us to enhance model
efficiency and maintain computational effectiveness. In our research, we employ a feature selection technique that
chooses an ideal subset of features from a given collection of characteristics without altering the original features,
i.e. {F1, F2, …, Fd} where d is the high-dimension features of X, and the number of characteristics is d. We propose a
technique that can convert features with high dimensions d into features with low dimensions r(r < d)to choose
the best flow features for attack recognition. Our research's two concepts of feature weighting and threshold
adjustment form the foundation of the feature selection approach. Algorithm 1 shows the feature selection process
in action.

Algorithm 1:

Input: Set feature F = {F1, F2, …, Fd}, threshold weight ∝, no. of chosen features r.

Output: Chosen feature set F'

Computer weighted features

1. Compute F';

2. For(i = 0; i < d; i ++)do

3. Evaluate weight (Fi) based on r i ;

4. if(|r i < ∝)then

5. Compute features Fi;

6. else

7. F = Fi;

8. end if

9. end for

10. Evaluate the feature set with F

11. ReturnF'

Weight Analysis

In our trials, we divided the entire dataset into five feature subsets with the best features using iterative
wrapper-based feature selection using SVM. Based on how well each characteristic predicts the outcome, the SVM
gives weights to each one. For identifying the attack, the characteristics with greater weights are regarded as
crucial. The absolute values that the SVM allocated to the weights for various attributes are provided. During
iteration, the attributes are chosen based on a threshold value produced by the weights' threshold tuning
procedure. A feature subset of the characteristics that had weights larger than or equal to the threshold

https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035

B. S. H. S. Singh et al. / IJCNIS, 16(1),1-1896

(Fn (wn) ≥ α) was chosen. The DL classifiers were then fed feature subsets with the best features as input. Based
on feature weights, a straightforward threshold tuning technique chooses the best threshold value. The tuning
approach calculates a cut-off value that lies between the lowest and maximum feature weights. As a cut-off that
can shrink the dimension of the features, the ideal threshold values can be calculated.

Prediction Model

The comparative research of deep learning and feature selection for flow categorization is covered in this part.
It would increase effectiveness and accuracy and assist in categorizing the normal and attack flows. The first step
is to arrange the incoming parcels on a lovely table. Second, each packet flow is independently calculated and
extracted for the properties listed in Table 1.

Table 1. Parameter Setup

Parameter Value

Network size
Kernel size
Strides
Total cell
Batch
Dropout
Epochs

Learning rate

3
128
1
128
64
0.5
10

0.001

Third, the best feature threshold values for the feature weights are utilized to choose the top characteristics.
The selected qualities are then aggregated into a feature subset, which is then given as input to the maximum
pooling of the DL classifiers. The representation Xi of the network i serves as the convolutional layer's input. The
matrix Ri the following convolution is: for a certain convolution kernel W.

Rj = f(W ⊗ Vj:j+h−1 = b) (1)

When the bias is represented by b, ⊗ the convolution process is indicated by, and the activation function by f
(•). Convolution is followed by 1-Maxpooling, which takes the feature map's most significant properties and
decreases network parameters:

Xj = max (Rj) (2)

By combining the input data with convolution, CNN extracts the local characteristics. Due to its tolerance for
noise and distortion, it can deal with common obfuscation strategies that do not alter harmful attacks better.

Algorithm 2:

Input: Dataset, learning rate, optimizer, epochs, round

Output: Prediction accuracy

1. Set learning parameters based on the prediction model;

2. Initialize network parameter based on random values; //vector matrix

3. For training round do

4. Choose subset from dataset to form training batch;

5. if no. of rounds = 0 then

6. Return accuracy

7. end if

8. Initialize batch and evaluate labels and prediction values y;

9. Compute loss among the actual and predicted values;

10. Compute loss for provided optimizer;

11. Update vector matrix with learning rate (p);

12. if training round reaches the epochs then

https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035

B. S. H. S. Singh et al. / IJCNIS, 16(1),1-18 97

13. Terminate classifier training process;

14. end if

15. end for

Bi-LSTM

By combining LSTM in both forward and reverse directions, the BiLSTM is generated and receives the output
vector from CNN. In typical neural networks, the hidden layer is replaced with LSTM, which employs a memory
cell structure. Figure 2 depicts its cell structure. The main components of an LSTM the input gate, output gate,
and forget gate all belong to a memory cell. Below is a description of the ��ℎ cell's updating procedure.

it
ft
ot

= σ
Wi
Wf
Wo

ht−1 +
Ui
Uf
Uo

xt +
bi
bf
bo

(3)

C� = tanh (Wcht−1 + Ucxt + bc) (4)

Ct = ft . Ct−1 + it . C� t (5)

ht = ot . tanh (Ct) (6)

Here, "xt " stands for "current input, "i, " "o, " "f, " "C˜, "C "h, " temporary memory cell state, memory cell state
and hidden layer output value respectively. The weight matrices are denoted by Wf, Uf, Wi, Ui, Wo, Uo, Wc, and Uc
while biases are denoted by bf, bi, bi, and bc. Finally, BiLSTM creates the output feature vectors gathered from both
directions inside cell t . The connections between website sections make perfect sense. From the websites, many
different time scales and long-distance connections may be learned via BiLSTM with success. Based on the local
features that CNN has learned, it can then extract possible semantic information. By focusing on a single piece of
information, the very fine-grained qualities that may be extracted from sequence data are accomplished via the
attention mechanism. Each feature item in the BiLSTM-produced feature vector has a different effect on the
degree to which the phishing website may be detected. The model's complexity primarily stems from the SVM and
Bi-LSTM components. The SVM operates with a computational complexity of O(n^3), and the Bi-LSTM processes
data with a complexity of O(tdh), where t is the sequence length. This complexity ensures robustness while
balancing the computational load.

Figure 2. Bidirectional LSTM

The model can improve its capacity for decision-making for crucial aspects by providing various features
varying attention. The following are the calculating formulas:

a = tanh (h) (7)

∝ = softmax (wTa) (8)

x =
t

∝ h� (9)

https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035

B. S. H. S. Singh et al. / IJCNIS, 16(1),1-1898

Where w stands for weight, h denotes the attention of h , represents the output of the BiLSTM, and after
weighted summing, the feature vector is known as x. After the features have been recovered, the feature vectors
from each channel are combined to create the fusion vector Xi for the site. In the following step, the fully
connected layer and sigmoid function are used to forecast the website category. During the training phase, the
difference between the actual value and the predicted value is computed using a cross-entropy loss function. The
loss function is as follows if the actual category and anticipated value are i and yi, respectively:

J Y', Y = −
1
n

i=1

n

[yi log yi
' + 1 − yi log (1 − yi

')]� (10)

RESULTS AND DISCUSSION
The tests are carried out using the network controller in the virtual environment. In our tests, we made use of

MATLAB 2020a which is compatible. MATLAB 2020a is frequently used for simulating IoT-based networks that
are free to use and support network protocols. The operating system, hardware specs, and RAM are Intel Core i7,
8GB. The MATLAB 2020a framework is used to implement the deep learning classifiers in MATLAB 2020. The
customized centralized IoT-based network architecture is created for experimentation. In this architecture, a
complicated tree network structure is used, moreover, on the data layer, hosts and switches are centrally
controlled by a network deployed in the control layer. The elements that make up the application layer are the
feature extractor, DL classifier, flow statistics collector, and mitigator. The system structure also includes switches
and a controller. Six hosts are linked to switch S1, while three hosts are connected to each of the other switches.
The ''ping'' command is run on every host once the topology has been successfully developed to confirm that every
host can connect to the other hosts. Our target server is H13, and we chose H2 as the bot master, along with the
bots H3, H4, H5, and H6. To create genuine or background traffic, the other hosts are employed. The traffic is
sent by the switches, while the controller manages the entire network and spots attacks.

In our tests, in an IoT environment, we conducted botnet-based DDoS strikes using Python scripts. After the
topology has been established, to make host H13 a target server, we run "target.py" on it. Then, on H2, H3, H4,
H5, and H6, respectively, "botmaster.py" and "bot.py" are run. The idea of socket programming was used to build
particular ports for the bots. The bots wait for the botmaster commands at their designated ports. The botmaster
sends a message to all of the bots with the date, time, and preparation instructions for the attack. The target server
receives the attack traffic after all of the bots' dates and times match the time specified by the bot-master. The
onslaught lasted 14.26 minutes in total.

To provide typical or background traffic, this work employed a Distributed Internet Traffic Generator (D-
ITG). Each host issues the ITGSend and ITGRecv commands to transfer and receive data. We inject more than
200 flows onto the network as background flows to make the background activity seem real. For the transmission
rate of each flow, the TCP protocol follows constant, uniform, exponential, Poisson, and gamma distributions.
Additionally, we change the packet size for each flow using several distributions, including gamma, Poisson,
exponential, uniform, and constant. Fig. 3 depicts an illustration of a flow rule used by the D-ITG to provide
regular traffic. Flow rules are used on many sites to produce and accept traffic, and each row. As an illustration,
after the second backdrop flow in the third background flow occurs in the red box, and so on. Host H13 (10.0.0.13,
port 5000) is the required one. The amount of packets delivered is equally split between 500 and 1000, and each
packet has 512 bytes. The traffic in this flow, which is based on the TCP protocol, lasts for 12000 milliseconds. We
can see that the network has successfully received an immunization against background traffic.

Experimental Results

The assessment metrics mentioned below are widely utilized to show off the DL-based IDS's efficiency and
performance. Among the performance measurements are the following metrics: F1 score, specificity, accuracy,
detection rate (DR), and false positive rate (FPR). These metrics are calculated using the network anomaly
classification confusion matrix. These performance measurements can be used to evaluate the effectiveness of any
approach that has been put into use. In contrast to True Positives (TP), which are attack records that are correctly
classified as attacks, False Positives (FP) are attack records that are correctly identified as assaults, according to
the confusion matrix and attack records that are wrongly labelled as normal is known as False Negatives (FN).It is
possible to quantify each of these assessment measures as follows:

Accuracy: The percentage of accurate answers identified normal and attack recordings to all recordings is
used to measure accuracy.

https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035

B. S. H. S. Singh et al. / IJCNIS, 16(1),1-18 99

Accuracy =
TN + TP

TN + FP + FN + TP
(11)

Detection Rate (DR): A precise ratio identified recordings of actual attacks is known as DR.It also goes by the
name Sensitivity or True Positive Rate (TPR). It's calculated as:

Detection rate = recall = TPR =
TP

FN + TP
(12)

False Positive Rate (FPR): FPR calculates the proportion of normal records that were mislabelled as attack
records.

FPR =
FP

TN + FP
(13)

Precision: The proportion of accurately recorded attack recordings which are genuine recordings of attacks is
called precision.

Precision =
TP

FP + TP
(14)

F1 Score: This acronym stands for the harmonic mean of recall and accuracy. When a dataset is used to train
an unbalanced method, efficiency is regarded as being more important than accuracy. A DL method's F1 score is
calculated as follows:

F1 − score = 2 ∗
Recall ∗ Precision
Recall ∗ Precision

(15)

Any implemented DL approach is considered to be the best if it has high accuracy, DR, precision, and F1
scores. In a similar vein, if the FPR is low.

Feature Selection Outcomes

Using strategies for feature weighting and threshold tweaking, we determined the significance of each feature
and divided them into five subgroups. The best threshold value was chosen using the weight values of all
characteristics in the threshold tuning approach. A feature subset was chosen and comprised of features with
weights that were equal to or more than the cut-off point. All features are included in F1 . The tuning procedure
selects 43 characteristics with weights of at least 1.80 to be incorporated into F2 , giving a value of α ≥ 1.8 as the
ideal result. The best threshold value was found to be F3 , which has 30 features with weights of α ≥ 2.70 .
Similarly, 23 characteristics from F4 were chosen based on α ≥ 3.15. Last but not least, F5 consists of 15 chosen
characteristics based on α ≥ 4.90 threshold value. For instance, Fig 6 displays the traits that were chosen forF4.

In an IoT context, the purpose of this part is to assess the DL methods' performance in detecting botnet-
based DDoS attacks. With almost similar method architectures, we were able to mimic and overserve the
performance of the various classification methods. The performance indicators mentioned in the section before
were calculated using a confusion matrix. Table 4 depicts the confusion matrix's general design. To locate the
attack traffic, we evaluated the effectiveness of five alternative DL strategies. Five subgroups of the training set are
created depending on the best attributes. For all of the techniques, we use almost identical structures (learning
rate, optimizer, batch size, learning rate, the amount of neurons and covert layers they contain as well as the
activation of both hidden and output layers). With the same structure and the same collection of characteristics,
we saw that the techniques yielded varying outcomes. To choose the best technique without adding to the
complexity of the procedures, the structural performance of the various approaches is evaluated.

Classification Performance

The likelihood of both attack and steady states being predicted has been effectively quantified using the
assessment metrics described in the preceding section. Most of the DL techniques we looked at show output
fluctuations that are linked to the number of features, suggesting that the prediction is best accurate when the
number of features is optimum. For traffic categorization, this study employed five DL algorithms: RNN, CNN,
MLP, LSTM, and DNN. We compared the predictions made by these algorithms, which have various
categorization capacities. Table 4 displays the confusion matrices for each of the five techniques for the F3
characteristics. The algorithms that are efficient in recognizing assaults with underreporting rates (FNR) of 0.78%,
0.40%, 0.59%, 0.87%, and 0.89%, respectively, are CNN, MLP, LSTM, RNN, and DNN. With a small variation, all
algorithms can recognize both normal and attack data with an accuracy of roughly 99%. Since the attack traffic
might put the IoT in peril, highly sensitive detection techniques are required.

https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035

B. S. H. S. Singh et al. / IJCNIS, 16(1),1-18100

Table 2. Feature Representation

Feature
Set Approaches Computational

Time (s)
Accuracy

(%) DR (%)

F1

RNN 264 98 97.1
CNN 202 98 97.5
MLP 142 98.1 89
DNN 202 98 97
LSTM 323 98.4 98.3

Proposed 102 99.5 99.5

F2

RNN 256 98.2 99.1
CNN 185 98.5 98.5
MLP 117 98.1 98.4
DNN 185 98.2 98.4
LSTM 223 98.3 98.3

Proposed 110 99.5 99.4

F3

RNN 263 98.3 98.2
CNN 181 98.3 98.6
MLP 142 98.1 98.1
DNN 154 98.2 98.1
LSTM 211 98.2 98

Proposed 112 99.5 99.6

F4

RNN 278 98.2 98.02
CNN 185 98.3 98.8
MLP 119 98.2 98.5
DNN 155 98.01 98.6
LSTM 231 98.1 98.7

Proposed 114 99.6 99.7

F5

RNN 259 97.5 97
CNN 202 97.8 97.5
MLP 117 97.8 97.6
DNN 202 97.3 97.8
LSTM 203 97.5 98.2

Proposed 115 99.6 99.8

Figure 3. F1-Feature Subset Comparison

https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035

B. S. H. S. Singh et al. / IJCNIS, 16(1),1-18 101

Figure 4. F2-Feature Subset Comparison

Figure 5. F3-Feature Subset Comparison

Figure 6. F4-Feature Subset Comparison

https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035

B. S. H. S. Singh et al. / IJCNIS, 16(1),1-18102

Figure 7. F5-Feature Subset Comparison

Then, as shown in Figure 5, for F3, all technique validation accuracy and loss curves are compared. Compared
to the other approaches, the accuracy curves for DNN and CNN are more stable and steeper as can be seen in
Figure 6. This indicates that the DNN and CNN approach function well and are significantly better than the other
algorithms.DNN, CNN, MLP, RNN, and LSTM each have validation accuracy of 99.30%, 99.37%, 99.33%, and
99.25%, respectively. The loss ratio of CNN and DNN is lower than that of the opposition. The loss curve's
fluctuation is most consistent with CNN. It can be observed that the CNN approach for attack detection is more
stable than other methods by comparing the accuracy and loss curves. This section compares the computing time
accuracy, detection rate, and training duration of each technique. Table 3 presents the results of the performance
comparison. About the broader trends, lowering the number of characteristics to a certain point enhances
classification performance.

Table 3. Overall Performance Evaluation

Approaches

Web attack dataset
UNSW-NB15
dataset

Alexa-based dataset

Original dataset

DR (%) FAR (%) DR (%) FAR (%) DR (%) FAR (%)

CART 94.5 6 90 10 92 11

k-NN 92.5 8 88 11.8 90 12

SVM 92.6 7.4 91 10 93 11

RF 95.4 5 93 7.5 95 8

GM 97 2.8 96 4 96.5 5

ConvNet 98.5 9.5 98 12 98.2 13

Proposed 99 13.5 99.5 13.8 99.5 14

https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035

B. S. H. S. Singh et al. / IJCNIS, 16(1),1-18 103

Figure 8. DR Comparison

Figure 9. FAR Comparison

On F5 , LSTM has a minimum accuracy of 97.60%, although CNN and DNN frequently reach maximum
accuracy on subset-2 of 99.43% and 99.53%, respectively. In F3 , the CNN reaches a maximum detection rate of
99.60%, whilst the MLP only manages a minimum detection rate of 89.99%. We evaluate the accuracy rate,
detection rate, and computation time for subset 3 as an example. RNN, MLP, DNN, and LSTM are inferior to the
other four classifiers in comparison CNN's accuracy is 0.12%, 0.04%, 0.07%, and 0.21% higher. In a similar vein,
CNN has higher detection rates than other classifiers of 0.39, 0.19, 0.49, and 0.47 respectively. Additionally,
CNN's computation takes 39.51 seconds longer than MLP's, 27.75 seconds longer than DNN's, 81.29 seconds less
than RNN's, and 29.85 seconds less than LSTM's, but its accuracy is increased by roughly 0.04% to 0.21% and its
detection rate is increased from 0.19% to 0.49%. The lengthy training period may be tolerated since classifiers are
taught offline and aren't regularly updated, providing a high detection rate and accuracy. It implies that the
detecting algorithms need to be very accurate and take little time to learn. In addition, we found that the CNN
method outperformed the other two subsets (4 and 5) on F3 with 30 characteristics. With F4 characteristics, CNN
is 99.29% accurate and 99.26% accurate when using F5 characteristics. Even though the other subsets have fewer
features than F3 , the training time for CNN which is F3 is 3.98 seconds and 20.53 seconds faster than it would be
with the other subsets and its accuracy is 0.08%, 0.11%, and the detection rate is 0. Better by 25% and 0.53%.
Figure 3 to Figure 7 additionally displays the effectiveness of all classifiers utilizing all five subgroups in terms of

https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035

B. S. H. S. Singh et al. / IJCNIS, 16(1),1-18104

additional metrics, including accuracy and DR. RNN obtains a maximum accuracy rate of 99.29% with all features
set (Table 4).

Table 4. Confusion Matrix

Predicted Class

Class = yes Class = No

Actual Class
Class = yes TP FN

Class = no FP TN

A total score of 99.37% was given to CNN for all characteristics, with subsets 3 and 5 receiving minimum
scores of 99.03% and 99.11% respectively. All features were used by MLP to obtain a maximum of 99.94%, and
Subset-5 was utilized for a minimum of 98.98% of the data. DNN achieved a maximum accuracy of 99.75% using
all characteristics and at least 99.16% accuracy using F5 . About all characteristics, LSTM obtained F5 with a
maximum of 99.37% and a minimum of 97.36%. RNN's highest F1 score with F2 features is 99.22%, and with all
features, it is 98.57%; the F1 score for CNN was 99.37% with F2 and 98.61% with all features set, the F1 score for
MLP was 99.34% with F2 and 94.70% with all features, the F1 score for DNN was 99.48% with F2 and 98.50% with
all features, and the F1 score for LSTM was 99.09% with F3 and 77.30% using F5. As a result, the RNN's TPR with
F3 features may reach a maximum of 99.21% and at least 97.86%. With characteristics from F3 , CNN attained a
maximum TPR of 99.60% and a minimum TPR of 97.87; MLP reached a maximum TPR of 99.45% and a
minimum TPR of 89.99; DNN reached a maximum TPR of 99.49% and a minimum TPR of 97.29%; and LSTM
reached a maximum TPR of 99.31% and a minimum TPR of 97.44% with F5. The work may infer from the findings
above that by utilizing F3 characteristics, all classifiers yield accurate results.

In a particular case used in this article, the CNN approach outperforms other classifiers, producing more
consistent and useful results. As a result, this result has certain benefits: Without having specific knowledge of
traffic flow specifics, it is straightforward to gather training sets; using training sets with optimum features makes
the training phase easier; and using training sets with optimal features reduces the complexity of the procedures
and the need for resources. We choose the DL methods that have been tested on subset-3 characteristics to assess
and confirm how well they perform on the actual test bed. For the actual test bed, the network architecture is the
same as that in Figure 8. The flow statistics for forecasting regular or attack traffic flows in a genuine test-bed
setting have been created/collected using the same methodology as the training data. Each taught DL technique is
implemented separately in the controller. The technique then assigns either a ''0'' or a ''1'' to the incoming flow.
(For instance, all methods in our test specify ''0'' for the ordinary flow and ''1'' for the attack flow because there are
only two possibilities available). We utilized 50 consecutive judgments for each approach under two different
network conditions (normal and attack) to test the overall performance in real-time traffic. Figure 7 and Figure 8
display the accurate detection rate for each technique in real-time traffic. We found that all approaches' output
forecasts for normal flows are superior to those for attack flows. All techniques exceeded a 90% detection rate,
particularly CNN, which predicts typical flows with a 99% accuracy rate. Similarly to that, the detection rate of
techniques for attack flows is 87%, 97%, 85%, 93%, and 85%, respectively.

RNN takes longer to train than other techniques when comparing training times (for instance, in s) for F3
characteristics of DL approaches. It took some time for CNN to become proficient. CNN also has a somewhat
lower Detection time per flow and is faster (measured in microseconds (s)) than with other methods. A few flows
per second can be handled by the LSTM for attack detection as evidenced by the fact that its detection time is
substantially longer than that of other approaches. We may get to the conclusion using what we demonstrate
shows, CNN is the most effective technique for identifying botnet-based DDoS attacks in an SDN setting,
according to assessment parameters that include detection rate, training, and detection times. Fig 8 respectively
provides graphic representations of detection and training periods.

Discussion

In this work, we examine and implement DL methods to assist in locating botnet-based DDoS assaults in an
environment with assistance. As we assess the efficacy of the DL techniques, to locate the assault, we employ the
best features and the baseline hyper-parameters. Using a variety of evaluation criteria (including precision,
detection rate, training, detection time, etc.), we analyze the effectiveness of the DL approaches. The complete
training dataset is created in an SDN, as its collection setting rather than depending on out-of-date or traditional

https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035

B. S. H. S. Singh et al. / IJCNIS, 16(1),1-18 105

datasets, is a critical component of this work. Almost all studies employed conventional datasets, which are
unsuitable for SDN owing to imbalance problems as well as a flow-based nature. Additionally, rather than relying
on a dataset that has a lot of features, we partition the entire dataset into subsets (such as ideal features)
according to the relevance of each feature. These subsets have then been evaluated to see how optimal features
affect the performance of the approach. The effectiveness of each DL technique on the same group of features
varies according to simulation results; consequently, it follows that the best characteristics may raise the rate of
detection. We come to the conclusion that the suggested research should use CNN as the optimum method and
the chosen scenario based on the trial results and the preceding justification. With characteristics and the created
dataset, its accuracy is 99.37%. The detection rate of CNN during actual test-bed traffic is 97% for attack flows and
100% for normal flows. We also took temporal measures (such as training and detection timings) into account and
found that CNN's training and detection times were appropriate. As a result, CNN displays a respectable detection
efficiency or precision when identifying botnet-based attacks in the present in an SDN setting. Another important
advantage of the security technique utilized in this study is that it defends the IoT from DDoS attacks that use
botnets.

This study has the drawback of only applying botnet-based flooding DDoS attacks in IoT systems. Attacks
that aren't volumetric, such as malicious or low-rate DDoS attacks, cannot be reliably detected by it. Furthermore,
we concentrated on an environment with a single IoT device. This work will be expanded upon to examine low-
rate, spoof DDoS, and other malicious attacks utilizing hybrid DL methods on actual traffic. It's also a good idea to
train in real-time ways for updating IDS systems.

CONCLUSION

The resilience of deep models against attacks in industrial contexts was measured using a novel technique
explored in this study. The potential element of certain samples may revert to true normality after being subjected
to adversarial attacks and therefore not need to be considered when computing robustness. The process consists
of four steps: dataset acquisition, feature selection, extraction and prediction. To be exact, the technique
distinguishes between really adversarial and non-adversarial data using a set of models referred to as support
models and robustness is calculated exclusively for truly adversarial samples. Additionally, this work used the
proposed technique in an actual industrial setting. We assessed the adaptability of the models in this context. The
testing results demonstrated that the model outperformed the existing approaches more consistently in this
specific situation. As a consequence, the only needs to disrupt 60.1% of the original data compared to the other
standard CNN which has to perturb over 110% of the original samples. As part of our ongoing research, we want to
use the dataset to assess the resilience of prediction systems in other industrial contexts. This work also intends to
research the characteristics of several factors that will serve as support models. In addition, the work also intends
to research how robustness, adversarial samples, and interpretability techniques interact. The robustness of the
prediction model may be strengthened by employing interpretability approaches to identify adversarial samples
as one application of this work.

ETHICAL DECLARATION

Conflict of interest: No declaration required. Financing: No reporting required. Peer review: Double
anonymous peer review.

https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035

B. S. H. S. Singh et al. / IJCNIS, 16(1),1-18106

REFERENCES

[1] L. Tan, Y. Pan, J. Wu, J. Zhou, H. Jiang, and Y. Deng, “A new framework for DDoS attack detection and
defense in SDN environment,” IEEE Access, vol. 8, pp. 161908-161919, 2020.

[2] J. Ye, X. Cheng, J. Zhu, L. Feng, and L. Song, “A DDoS attack detection method based on SVM in software
defined network,” Security and Communication Networks, vol. 2018, 2018.

[3] J. A. Perez-Diaz, I. A. Valdovinos, K. K. R. Choo, and D. Zhu, “A flexible SDN-based architecture for identifying
and mitigating low-rate DDoS attacks using machine learning,” IEEE Access, vol. 8, pp. 155859-155872, 2020.

[4] O. Habibi, M. Chemmakha, and M. Lazaar, “Imbalanced tabular data modelization using CTGAN and machine
learning to improve IoT Botnet attacks detection,” Engineering Applications of Artificial Intelligence, vol. 118,
p. 105669, 2023.

[5] H. S. Ilango, M. Ma, and R. Su, “A feedforward–convolutional neural network to detect low-rate dos in IoT,
Engineering Applications of Artificial Intelligence, vol. 114, p. 105059, 2022.

[6] K. N. Rao, K. V. Rao, and P. R. PVGD, “A hybrid intrusion detection system based on sparse autoencoder and
deep neural network,” Computer Communications, vol. 180, pp. 77-88, 2021.

[7] H. T. Nguyen, Q. D. Ngo, D. H. Nguyen, and V. H. Le, “PSI-rooted subgraph: A novel feature for IoT botnet
detection using classifier algorithms,” ICT Express, vol. 6, no. 2, pp. 128-138, 2020.

[8] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher, and Y. Elovici, “N-baiot—
network-based detection of IoT botnet attacks using deep autoencoders,” IEEE Pervasive Computing, vol. 17,
no. 3, pp. 12-22, 2018.

[9] A. Al Shorman, H. Faris, and I. Aljarah, “Unsupervised intelligent system based on one class support vector
machine and grey wolf optimization for IoT botnet detection,” Journal of Ambient Intelligence and
Humanized Computing, vol. 11, no. 7, pp. 2809-2825, 2020.

[10]T. Saba, A. Rehman, T. Sadad, H. Kolivand, and S. A. Bahaj, “Anomaly-based intrusion detection system for
IoT networks through deep learning model,” Computers and Electrical Engineering, vol. 99, p. 107810, 2022.

[11]M. S. Elsayed, N. A. Le-Khac, S. Dev, and A. D. Jurcut, “Ddosnet: A deep-learning model for detecting network
attacks,” in 2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and Multimedia
Networks" (WoWMoM), Aug. 2020, pp. 391-396.

[12]K. S. Sahoo, B. K. Tripathy, K. Naik, S. Ramasubbareddy, B. Balusamy, M. Khari, and D. Burgos, “An
evolutionary SVM model for DDOS attack detection in software defined networks,” IEEE Access, vol. 8, pp.
132502-132513, 2020.

[13]A. A. Ahmed, W. A. Jabbar, A. S. Sadiq, and H. Patel, “Deep learning-based classification model for botnet
attack detection,” Journal of Ambient Intelligence and Humanized Computing, vol. 13, no. 7, pp. 3457-3466,
2022.

[14]G. D. L. T. Parra, P. Rad, K. K. R. Choo, and N. Beebe, “Detecting Internet of Things attacks using distributed
deep learning,” Journal of Network and Computer Applications, vol. 163, p. 102662, 2020.

[15]T. Su, H. Sun, J. Zhu, S. Wang, and Y. Li, “BAT: Deep learning methods on network intrusion detection using
NSL-KDD dataset,” IEEE Access, vol. 8, pp. 29575-29585, 2020.

[16]S. Gamage and J. Samarabandu, “Deep learning methods in network intrusion detection: A survey and an
objective comparison,” Journal of Network and Computer Applications, vol. 169, p. 102767, 2020.

[17]C. Robberts and J. Toft, “Finding vulnerabilities in IoT devices: Ethical hacking of electronic locks,” School of
Electrical Engineering and Computer Science (EECS), 2019.

[18]A. Aldweesh, A. Derhab, and A. Z. Emam, “Deep learning approaches for anomaly-based intrusion detection
systems: A survey, taxonomy, and open issues,” Knowledge-Based Systems, vol. 189, p. 105124, 2020.

[19]M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cyber security intrusion
detection: Approaches, datasets, and comparative study,” Journal of Information Security and Applications,
vol. 50, p. 102419, 2020.

[20]M. Ge, X. Fu, N. Syed, Z. Baig, G. Teo, and A. Robles-Kelly, “Deep learning-based intrusion detection for IoT
networks,” in 2019 IEEE 24th pacific rim international symposium on dependable computing (PRDC), Dec.
2019, pp. 256-25609.

[21]M. M. Hassan, A. Gumaei, A. Alsanad, M. Alrubaian, and G. Fortino, “A hybrid deep learning model for
efficient intrusion detection in big data environment,” Information Sciences, vol. 513, pp. 386-396, 2020.

[22]D. Li, L. Deng, M. Lee, and H. Wang, “IoT data feature extraction and intrusion detection system for smart
cities based on deep migration learning,” International journal of information management, vol. 49, pp. 533-
545, 2019.

[23]C. Yin, S. Zhang, J. Wang, and N. N. Xiong, “Anomaly detection based on convolutional recurrent autoencoder
for IoT time series,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 1, pp. 112-
122.

https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035

B. S. H. S. Singh et al. / IJCNIS, 16(1),1-18 107

[24]B. Wang, Y. Su, M. Zhang, and J. Nie, “A deep hierarchical network for packet-level malicious traffic
detection,” IEEE Access, vol. 8, pp. 201728-201740, 2020.

[25]H. Yang, and F. Wang, “Wireless network intrusion detection based on improved convolutional neural
network,” IEEE Access, vol. 7, pp. 64366-64374, 2019.

[26]Y. Otoum, D. Liu, and A. Nayak, “DL-IDS: A deep learning–based intrusion detection framework for securing
IoT,” Transactions on Emerging Telecommunications Technologies, vol. 33, no. 3, p. e3803, 2022.

[27]Y. Li, Y. Xu, Z. Liu, H. Hou, Y. Zheng, Y. Xin, Y. Zhao, and L. Cui, “Robust detection for network intrusion of
industrial IoT based on multi-CNN fusion,”Measurement, vol. 154, p. 107450, 2020.

[28]Y. N. Kunang, S. Nurmaini, D. Stiawan, and B. Y. Suprapto, “Attack classification of an intrusion detection
system using deep learning and hyperparameter optimization,” Journal of Information Security and
Applications, vol. 58, p. 102804, 2021.

[29]P. Sherubha, S. P. Sasirekha, V. Manikandan, K. Gowsic, and N. Mohanasundaram, “Graph based event
measurement for analyzing distributed anomalies in sensor networks,” Sādhanā, vol. 45, pp. 1-5, 2020.

[30]P. Sherubha and N. Mohanasundaram, “An efficient network threat detection and classification method using
ANP-MVPS algorithm in wireless sensor networks,” International Journal of Innovative Technology and
Exploring Engineering, vol. 8, no. 11, pp. 1597-1606, 2019.

[31]P. Sherubha and N. Mohanasundaram, “An efficient intrusion detection and authentication mechanism for
detecting clone attack in wireless sensor networks,” J Adv Res Dyn Control Syst, vol. 11, no. 5, pp. 55-68, 2019.

[32]S. Gamage and J. Samarabandu, “Deep learning methods in network intrusion detection: A survey and an
objective comparison,” Journal of Network and Computer Applications, vol. 169, p. 102767, 2020.

[33]C. A. Rieth, B. D. Amsel, R. Tran, and M. B. Cook, “Issues and advances in anomaly detection evaluation for
joint human-automated systems,” in Advances in Human Factors in Robots and Unmanned Systems:
Proceedings of the AHFE 2017 International Conference on Human Factors in Robots and Unmanned
Systems, July 17− 21, 2017, The Westin Bonaventure Hotel, Los Angeles, California, USA 8, 2018, pp. 52-63.

[34]J. Men, Z. Lv, X. Zhou, Z. Han, H. Xian, and Y. N. Song, “Machine learning methods for industrial protocol
security analysis: Issues, taxonomy, and directions,” IEEE Access, vol. 8, pp. 83842-83857, 2020.

[35]T. W. Weng, H. Zhang, P. Y. Chen, J. Yi, D. Su, Y. Gao, C. J. Hsieh, and L. Daniel, “Evaluating the robustness of
neural networks: An extreme value theory approach,” 2018, doi: https://doi.org/10.48550/arXiv.1801.10578.

https://orcid.org/0009-0008-7449-0651
https://orcid.org/0009-0004-3898-6140
https://orcid.org/0009-0004-3626-6270
https://orcid.org/0009-0002-1329-3415
https://orcid.org/0000-0003-2008-6828
https://orcid.org/0000-0002-6091-7035
https://doi.org/10.48550/arXiv.1801.10578

	International Journal of Communication Networks a
	Security
	INTRODUCTION
	LITERATURE REVIEW
	METHODOLOGY
	RESULTS AND DISCUSSION
	CONCLUSION
	ETHICAL DECLARATION
	REFERENCES

