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In an era where technology rapidly enhances various sectors, medical services have greatly benefited,
particularly in tackling the prevalent issue of hair loss, which affects individuals' self-esteem and
social interactions. Acknowledging the need for advanced hair and scalp care, this paper introduces a
cost-effective, tech-driven solution for diagnosing scalp conditions. Utilizing the power of deep
learning, we present the Grey Wolf-based Enhanced Deep Belief Neural (GW-EDBN) method, a
novel approach trained on a vast array of internet-derived scalp images. This technique focuses on
accurately identifying key symptoms like dandruff, oily scalp, folliculitis, and hair loss. Through
initial data cleansing with Adaptive Gradient Filtering (AGF) and subsequent feature extraction
methods, the GW-EDBN isolates critical indicators of scalp health. By incorporating these features
into its Enhanced Deep Belief Network (EDBN) and applying Grey Wolf Optimization (GWO), the
system achieves unprecedented precision in diagnosing scalp ailments. This model not only
surpasses existing alternatives in accuracy but also offers a more affordable option for individuals
seeking hair and scalp analysis, backed by experimental validation across several performance
metrics including precision, recall, and execution time. This advancement signifies a leap forward in
accessible, high-accuracy medical diagnostics for hair and scalp health, potentially revolutionizing
personal care practices.

Keywords: Gradient Filtering; Techniques for Centroid and Invariant Moment; Improved Neural
Belief Neural; Scalp Detection and Optimisation of Grey Wolves.

INTRODUCTION

Hair significantly influences a person's appearance. It's made up of a thin outer layer that repels water,
accounting for about 1-8% of its structure. The bulk of hair, around 80-90%, is keratin, a tough protein that
shapes into spirals or sheets. Along with these, hair has a bit of melanin, less than 3%, which determines its color
[1]. This mix not only gives hair its unique look but also its strength. External factors like climate changes,
humidity, temperature fluctuations, and exposure to chemical or physical treatments affect the keratin layer of
hair, causing it to become brittle and develop cracks, thereby impacting its quality [2]. Yet, comprehensively
studying hair remains challenging due to its intricacies, resulting in limited research on hair damage despite its
susceptibility to various issues [3, 4]. Hair is susceptible to damage caused by various chemical compounds and
physical elements like combing, dyeing, detergents, and exposure to ultraviolet radiation [5]. The widespread
utilization of Scanning Electron Microscopy (SEM), particularly in microscopy advancements, has enabled the
detailed examination of microscopic hair characteristics.

However, a comprehensive quantitative classification of hair damage typically relies on manual techniques

Research Article

about:blank
https://orcid.org/0009-0007-5121-4999
https://orcid.org/0000-0002-8517-2578
mailto:wei.lin@lpunetwork.edu.ph


V. Khan and D. K. Subramaniam / IJCNIS, 16(1),1-182

such as Energy- SEM photographs of microscopic hair structures are processed using a variety of physical and
chemical techniques, including dispersive X-ray (EDX) spectroscopy [6]. Many people suffer from scalp and hair
problems, including dandruff, folliculitis, hair loss, and oily hair. These conditions are frequently linked to bad
daily routines, unbalanced diets, elevated stress levels, and environmental contaminants. These scalp issues are
the focus of recent advancements in specialized treatments like nontraditional hair therapy [7]. Nearly 70% of
adults experience scalp hair disorders, according to the World Health Organization (WHO), which may be related
to internal variables such as hormone imbalances, genetic predispositions, medical illnesses, or other underlying
issues [8].

The evaluation of scalp hair quality within existing standard procedures for scalp hair treatment is
predominantly done manually. Concerns about hair loss are prevalent among women, men, and children [9]. Hair
loss often signifies an underlying medical issue—some stemming from genetics, while others are temporary,
triggered by illness, stress, cancer treatments, weight loss, or iron deficiency. The impact of baldness or hair loss
extends beyond mere physicality, significantly affecting both social life and overall health [10]. Consequently,
there's been a heightened emphasis on the serious consideration of hair and scalp care.

Although professional hair salons or medical and cosmetic clinics offer hair care and scalp assessments, these
services come at a significant cost [11]. However, advancements in the computing power of smart devices have led
to the availability of more affordable hair and scalp analysis systems. Hair loss can result from various factors
such as ageing, gender, illnesses, hereditary traits, stress, misuse of hair care products, inadequate nutrition, and
exposure to diverse temperature zones. Notably, hair loss has increasingly affected younger individuals in recent
times [12]. The psychological effects, such as lowered self-esteem brought on by thinning hair and an early
receding hairline, encourage people to pay more attention to hair and scalp health, with many turning to specialist
hair care shops or medical and cosmetic clinics for assistance [13].

Delays in treating hair loss frequently lead to eventual baldness or negative health implications, regardless of
how expensive these treatments may be. Being a skin component, the scalp may lose hair as a result of external
variables or underlying medical issues in an individual [14]. Many disorders of the scalp, including folliculitis,
seborrheic dermatitis, psoriasis, allergies to the scalp, and dry or oily scalp, add to the increasing need for
reasonably priced instruments that allow for quick diagnosis of scalp problems [15, 16].

In order to provide a comprehensive assessment of scalp images, numerous research projects have examined
various aspects of scalp conditions, including health state, diameter, density, oiliness, and the number of
individual hair follicles. With technological advancements, there's been a growing interest in preventing and
remedying hair damage. However, traditional observational methods face challenges in swiftly and precisely
identifying areas of hair breakage. Recent strides in artificial intelligence have presented opportunities for
researchers by introducing advanced deep-learning models tailored for detecting hair and scalp damage. This
study introduces an effective model that leverages deep learning techniques to automatically detect and categorize
damage in hair surface images, utilizing SEM images and scalp photographs.

Leveraging grey wolf optimization with a deep belief neural network enhances the precision of hair damage
detection. The primary objective of this designed model is to accurately identify and diagnose scalp issues within a
reduced execution time. Furthermore, there's a focus on refining feature extraction techniques through centroid
and invariant moment methodologies.

Below is a summary of the designed model's primary contribution;

Initially, the system is taught using separate collections of scalp hair and SEM pictures.

Next, create the Grey Wolf-based Enhanced Deep Belief Neural (GW-EDBN) model to precisely forecast
issues with the hair and scalp.

A pre-processing method called Adaptive Gradient Filtering (AGF) is employed to remove noise from the
dataset [17].

Using centroid and invariant moment approaches, feature extraction is carried out to extract the pertinent
features [18].

Following that, in order to categorise scalp detection, the retrieved features are updated to the classification
layer using EDBN [19].

Grey wolf optimization (GWO) [20] is used to optimize the EDBN parameters in order to accurately detect
symptoms related to scalp hair.

Lastly, the outcomes of the developed model are compared to other existing models in terms of precision,
recall, precision, time to execution, error rate, and F-measure.
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LITERATURE REVIEW

Analysis of Energy-Carrying Collaborative Communication Technology

A Convolutional Neural Network (CNN) with a Deep Learning (DL) foundation was presented by Lintong et
al. [21] to effectively detect hair damage from scanning electron microscope (SEM) images. Their model
distinguishes variations in the hair surface indicative of diverse levels of damage and employs CNN for this
detection. While successfully categorizing damage into weak, moderate, and high levels, their model encounters
challenges associated with over fitting.

In an independent investigation, Ming-Che Chen et al. [22] introduced Scalp Eye, a scalp diagnostic system
integrating Deep Learning (DL) and Artificial Intelligence (AI) methodologies aimed at improving scalp health
monitoring. Scalp Eye integrates a portable microscope, captures scalp images, utilizes cloud infrastructure,
incorporates a mobile application, and relies on a training server to identify scalp hair symptoms. While achieving
a precision rate of 98.25% in comparison to existing models, Scalp Eye faces operational challenges such as
vanishing gradient issues and errors during execution.

The author of [23] developed an expert system with the goal of precisely diagnosing diverse hair loss
conditions including ringworm, lichen planus, seborrhea, and baldness. Utilizing a dataset comprising images of
hair loss and expert language snippets, this method assists physicians in making diagnoses. Although validation
with medical students demonstrated improved performance, there was a clear need for enhanced accuracy.

Furthermore, the Norwood-Hamilton technique for determining and evaluating scalp surface state was
introduced by the author of [24]. Utilizing a microscope and webcam camera sensors, this method extracts image
characteristics crucial for evaluating scalp and hair conditions, offering users vital information about their
physical state. Although enhancing computational efficiency, this approach encounters challenges with
classification.

The study of [25] looked into the use of corresponding photos to classify hairy scalp issues using machine
learning (ML) and deep learning (DL) models. They used classification learner apps to compare and apply
different DL and ML algorithms, and they were able to categorise these photos with an accuracy of 89.77%.
However, this model experiences increased execution time in classifying hairy scalp issues.

A multifunctional Mask R-CNN framework was developed by the author of [26] to categorise hair follicles
and evaluate the severity of hair loss. Initially, ResNet systems were trained on small scalp images, expanded,
enhanced, and then utilized for feature extraction analysis. This model evaluated hair loss degrees in specific scalp
areas based on individual follicle conditions, enhancing classification accuracy by 4 to 15%. However, it
encounters a challenge with a low recall rate. Hansoo, et al [27], introduced a groundbreaking deep-learning
model capable of swiftly and accurately identifying various scalp conditions without needing additional scalp
information. This method boasts high precision, achieving an average accuracy of 98.78%. Nevertheless, it faces
issues related to vanishing gradients. Jeong, et al [28], proposed the Scalp Grader model—an Artificial
Intelligence (AI)-based mechanism for diagnosing and categorizing scalp disorders. By retraining system images
using EfficientNet and CNN learning models, this approach identifies and classifies scalp conditions with
accuracies ranging from 87.3% to 91.3%. However, it contends with a high error rate. Minjeong et al [29]
developed a highly accurate model specialized in alopecia analysis. Utilizing a collection of alopecia photos,
including varying severity levels, normalization, and augmentation techniques significantly improved the dataset.
This DL model received an accuracy rating of 95.75% and an F1 score of 87.05% when compared to other
ensemble models. Nevertheless, this model necessitates increased execution time.

Seung Hyun [30] introduced an inventive method for categorizing and scoring scalp issues—the Scalp
Photographic Index (SPI). This system rates five characteristics of scalp disorders on a scale of 0 to 3 using a
trichoscope. The correlation between dermatologist scalp evaluations and SPI grading proved strong for each of
the five scalp aspects. While SPI grading demonstrated significant internal consistency and acceptable reliability,
it faced challenges with classification accuracy. On another front, Mrinmoy Roy [31] devised a deep-learning
approach to predict hair loss and scalp-related conditions. After gathering 150 images from various sources, the
information was cleaned up and added to a 2D CNN model. The model's validation rate was 91.1%, while its
training accuracy was 96.2%. However, issues emerged concerning over fitting and vanishing gradients (Table 1).
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Table 1. Below is a full synopsis of the Literature Survey

Reference Technique Advantages Disadvantages

[21] DL based CNN
Better classification results

Improve efficiency Over fitting problem

[22] Scalp Eye Better detection
High precision

Vanishing gradient problem
Error

[23] Effective Expert System
Improve hair scalp diagnosis

system
Less error rate

Less accuracy

[24] Norwood-Hamilton Technique
Improve computing efficiency
Provide actual information Classification problem

[25]
Experimental Evaluation of ML

and DLModels
Classify the hairy scalp

problem
High execution time
Less accuracy

[26] Mask R-CNN

A more precise and efficient
algorithm

Increasing classification
accuracy

The recall rate is low.
Error

[27] Surface-Sensing CNN
Gained better accuracy of

98.78%
Less error rate

Vanishing gradient issue

[28] AI-Scalp Grader
Data reliability ranged from

87.3 to 91.3%
Improve dataset

The error rate is high.
High cost

[29] DL Based Scalp Image Analysis
Better accuracy and F1 score

High effectiveness
The model required more

execution time

[30], [31] Development of a New
Classification System

SPI grading revealed good
correlations

Great internal consistency and
acceptable reliability.

Less reliability
Classification accuracy is

low.

[31] Hair and Scalp Disease Detection
System

Better training and testing
accuracy

High scalability

Over fitting and
disappearing gradient issues

Numerous research endeavours have been dedicated to detecting hair and scalp issues, employing various
methodologies such as CNN, expert systems, Scalp Eye, ML, and the Norwood-Hamilton model. However, despite
these efforts, finding an accurate and fitting solution has been challenging due to several persistent issues. The
challenges include low classification and detection precision, vanishing gradient problems, over fitting, long
running times, errors, complex data, difficulties in identifying and forecasting scalp conditions, problems with
classification, and persistent over fitting issues.

An optimization-focused Enhanced Deep Belief Neural (EDBN) model was developed to address these
important issues. The goal of this model is to generate precise outcomes within the hair scalp system while
overcoming optimisation obstacles. Furthermore, it significantly enhances the efficacy of scalp and hair diagnostic
devices, leading to better experimental results.

METHODOLOGY

In this study, we developed a special system called GW-EDBN, inspired by Grey Wolf behavior, to spot
and figure out hair and scalp issues by looking at photos of scalps found online. This system is really good at
noticing four main problems: oily hair, folliculitis (which is like scalp pimples), dandruff, and hair loss. To make
sure we're really accurate, we first clean up these photos using a method called Adaptive Gradient Filtering (AGF)
to get rid of any visual mess or mistakes. Then, we use special techniques to pick out important details from these
images, which help us understand what's going on with the scalp. After finding these key details, we feed them
into our system to help it recognize scalp issues. We also make our system smarter using a strategy called grey
wolf optimization (GWO), fine-tuning it to catch scalp problems more accurately. Thanks to all these steps, our
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system gets really good at telling apart different hair conditions and spotting scalp problems, making it a great
tool for understanding hair health better.

Figure 1. Suggested Approach

In this study, we used several tools written in Python, like TensorFlow, Scikit-learn, Pandas, NumPy, and
Matplotlib, to run our experiments. TensorFlow helped us build and train complex models for deep learning, such
as the Deep Belief Neural Network (DBNN), and we made it even better with something called grey wolf
optimization. Scikit-learn gave us a bunch of useful methods for organizing our data, picking out important bits,
and figuring out how well our models worked. Pandas and NumPy were key for dealing with our data and doing
math stuff quickly and accurately, like getting our data ready, managing lists of features, and all sorts of
calculations. Lastly, we used Matplotlib to make charts that show how our experiments went, comparing how
different models did over time.

We picked these Python tools because they're well-liked, easy to use, have all the features we need for our
study, and work well with other tools we're using. They also are known for working fast, being able to handle big
projects, and having a lot of people using them who can help out. This makes sure we can do our experiments
without too many hitches and that others can repeat what we did if they want to.

Pre-Processing Using Adaptive Gradient Filtering (AGF)

When working with tasks like sorting things into groups or predicting values, Adaptive Gradient Filtering
(AGF) is a super useful step to prepare your data. It's especially good for dealing with data that has lots of details,
is pretty noisy, or has complex relationships that aren't straight lines. AGF helps clean up images by getting rid of
the unwanted noise but keeps the important patterns untouched. This makes everything clearer and easier to
work with.This process involves the identification of noise by contrasting each pixel with its neighbouring pixels,
allowing the adaptive filter to distinguish and label noise accordingly.

The dataset includes greyscale, which changes more in noise than background areas. Calculate the sliding
window's grayscale variation S(a,b) as it scans the image to evaluate the noise characteristics of each pixel. Next,
possible noise-candidate pixels undergo the filtering process. Suppose that j shows all eight directions and that
the gradient in each direction is ),( baJ j . The following is the definition of the judgment rule found in

Equations (1) and (2):
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In which,  is a representation of the gradient operator, N refers to the commotion and BA symbolises the
surrounding region. The images that have been categorised as noise are subjected to the filtering modification
once each pixel has been classified. After updating, the pre-processed images are delivered to the feature
extraction stage.

Feature Extraction Using the Center and Intrinsic Moment Methods

Gaining critical picture features is made possible by applying centroid and invariant moment extraction
methods. Employing these methods for image analysis frequently results in resilient and immensely valuable
features. Centroid features help us find the exact middle of an object, while invariant moments give us details
about the object's shape and how it's spread out, without changing even if the object is moved or turned. By
combining these two methods, we can get both the position and shape details of objects, which makes it much
easier to recognize and classify them correctly. This technique is really useful in a lot of different areas, like
looking closely at medical images, keeping track of objects in videos, or identifying faces. It's all about pulling out
the right details from images to make sure we get accurate results.

Technique for Obtaining Centroid Characteristics

In deep learning and working with images, finding the "centroid" is a really useful trick. It's like figuring out
the main gathering point or the average spot in a bunch of data. When it comes to images, this method helps us
find where exactly an object is sitting. The centroid is basically the spot that sits right in the middle of all the parts
of an object, found by averaging out the places of all its pieces. This is super handy for understanding more about
where things are in pictures. If a document contains N discrete points NYY .....1 , next, the centroid ( EC ) is

decided by Equation (3):





N

j
je Y

N
C

1

1
(3)

Shapes in image processing and computer vision are essentially composed of pixels, and the centroid is the
weighted average of all the pixels that make up the shape.

Open CV's moment feature aids in locating the center of a blob. A clear comprehension of the Image Moment
holds significant importance in this context. Image Moment, functioning as a weighted average of pixel intensities
aids in determining specific image attributes like radius, area, and centroid. Typically, developers convert the
image into a binary format before commencing centroid identification. Below, equations (4) and (5) show how to
calculate the centroid:

00

10
a m

mC  (4)

00

01
b m

mC  (5)

In which, aC symbolizes the a centroid's coordinate, bC symbolizes the b centroid's coordinate, and m
symbolizes the current. How to get the centroid of a blob using Open CV will also pinpoint the center of the blob
by performing the following activities:

Make the picture grayscale.

A reduction in the image size.

Once the seconds have been calculated, locate the image's middle.

Techniques for Extracting Invariant Moment Features

In computer vision and image processing, invariant moment feature extraction is frequently used to obtain
image attributes. Moments are mathematical functions that describe how items are arranged and shaped in
images. Computing a sequence of moments that are resistant to specific transformations, including scaling,
translation, and rotation, is necessary to extract invariant moment properties. For example, moment invariants
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are used to extract detailed characteristics for shape recognition and identification analysis. This method is widely
used in many disciplines, especially in tasks related to recognition because of its efficacy in producing feature
vectors that accurately represent a picture.

"Invariant" is the word ( vI ) is used to describe an image's (or function's) property that remains constant or

only slightly varies as the image is modified.

When ),(f ba is the initial picture and 0D symbolizes the transformer function of the picture, or deterioration

operator, wherein a then b are the coordinates of the image's pixels and f result is the intensity of each pixel,
and

    fDJfJ 0 (6)

Equation (7) is commonly used to express an invariant as a vector,

 nJJJJ ,......,, 21 (7)

Here, 'n' represents the number of edits made to the picture. Using equation (6) across voids, mapping each
invariant vector from the image dataset should ideally result in the identification of discrete clusters representing
diverse objects. This occurs due to the significant divergence in values for I among the various objects.

The Moment Invariant technique primarily captures the structural attributes of binary images. This
technique is closely related to moments that are calculated from binary images, which are also known as
silhouette moments. The universal calculation of any instant type of order is described by Equation (8),  besides
 a function measuring picture intensity  ba,f of mn size of bits.

   bafbaNM
a

a

b

b
f ,,

1

0

1

0









  (8)

In which, fN stands for the factor of normalization,  symbolizes the times Core,  and also  consists

of the specific polynomial of the orthogonal basis and its product. By classifying the most recent Moment family
based on the characteristics of Kernel's polynomials, many kinds of moments are produced. As a part of what's
known as "Moment Invariants," 2-D geometric moments characterize the distribution function within an image.
These moments assist in establishing orthogonal invariants concerning linear transformations, including factors
such as translation, scaling, and rotation, through a collection of moment invariants rooted in algebraic function
theory. This function is also referred to as the Geometric Moment Invariant (GMI). The GMI function's general
definition M of the directive sr regarding the continuous function in two dimensions  baf , intended for

....3,2,1,0, sr is stated in Equation (9).
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When it comes to the study of digital images, Equation (9) can be expressed as (10);
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In which  ba,f indicates the value of a pixel in a size picture mnx . The central moments of equation ten
can be determined using Equation (11);
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. The scaling factor in Equation (12) can then be used to derive the

invariant qualities for normalising the central moment.
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The six invariants to translation, rotation, and scaling functions are defined by equation (13).
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These seven moments (13) could be regarded as the seven characteristics of the invariant moment. The
gathered attributes are then updated to the classification layer utilising EDBN in order to classify scalp detection.

Categorization of Enhanced Belief Neural (EDBN) Systems

Using enhanced deep belief neural networks, or EDBNs, is how the scalp is identified in the scalp detection
method. This section provides an introduction to EDBNs, detailing the construction of an EDBN-based classifier.
Researchers utilize EDBNs to generate deep features from file types, serving as effective feature extractors.
EDBNs facilitate the representation of underlying data through a systematic layer-by-layer supervised learning
approach. These networks are rooted in a base structure known as the Restricted Boltzmann Machine (RBM),
functioning as a neural network comprised of two layers—one exposed and one hidden. Figure 2 illustrates the
structural arrangement of an EDBN.

Figure 2. Composition of EDBN

Within a layer of an RBM (Restricted Boltzmann Machine), units are not directly connected to one another.
Instead, connections exist between the visible and hidden layers through symmetric weights. The hidden units are
pivotal in establishing meaningful correlations observed in the visible units. The weights of an RBM are found
using a greedy layer-wise pretraining technique, which makes weight initialization easier. Using unlabeled data,
this unsupervised approach of data preparation defines the generative weights of an RBM. Equation 14 uses the
weights of the RBM for the visible and hidden layers to represent the energy of a joint configuration.

Envi,hi;θ=-n=1VIm=1HIvishitWst-n=1VIbnvis-m=1HIamhis (14)
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Somewhere, θ = {W, b, a}, vis, the binary state of the hidden t and visible s, vis, hit ϵ 0,1, W stands for the
symmetric weight parameters with VI×HI dimensions, The visible number units are denoted by VI, The bias
parameters of visible units are represented by b, the bias parameters of hidden units are represented by a, and the
number of hidden units is represented by HI.

The equation shows how each possible visible-hidden vector combination in an RBM is given a probability by
the energy function (15).

pr(vi,hi)∝exp(-Evi,hi) (15)

Equation 16 gives the derivative of a visible vector's log-likelihood with respect to the weights.

∂logP(v)∂wji=via,hibdata-via,hibmodel (16)

The expectation with respect to the given distribution indicated in the subscript is represented by the angle
brackets. 'via, hibdata' signifies the expectation pertaining to the training data, while 'via, hibmodel' denotes the
expectation linked to the model. The gradient of Equation (17)'s log, with 'ε' representing the learning rate, forms
the foundation for the weight update rule.

Δwmn=εvia,hibdata-via,hibmodel (17)

Contrastive divergence learning approximates the gradient Δwmn. The binary states of the visible units are
calculated by equation (19), and the binary states of the hidden units are computed by equation (18). The original
observable vector is recreated by the computed visible states. This learning rule offers a practical means of
estimating the gradient from the training data, proving valuable and adequate in identifying optimal features.

phit=1=11+exp(-ut-sviswmn) (18)

pvis=1=11+exp(-xs-thitwnm) (19)

It's evident that reaching optimal acquisition requires only a single step, significantly diminishing training
duration. Ultimately, the developed model successfully classifies conditions like oily hair, folliculitis, dandruff,
and hair loss in scalp detection.

Grey Wolf Optimisation (GWO) Method of Optimisation

Grey Wolf Optimisation (GWO) is a technique that addresses optimisation problems across multiple domains,
such optimising parameters for Enhanced Deep Belief Networks (EDBNs). It is inspired by the social structure
and hunting tactics of grey wolves. EDBNs encompass multiple parameters crucial for achieving peak
performance, and employing GWO proves efficient in optimizing these parameters, thereby enhancing the
network's effectiveness. This algorithm works like grey wolves hunting together. In a wolf pack, the alpha, beta,
and delta wolves lead the group. They're the top wolves that guide everyone else during the hunt by changing their
locations and actions, following some rules that sort of mimic how real wolves behave. Even the omega wolf,
which might not be as strong or influential, plays a role by helping find food. There's a diagram (Figure 3) that
shows how this wolf-inspired strategy is used to tweak the settings of an Enhanced Deep Belief Neural (EDBN)
network to make it work better. Then, there's a step-by-step guide that explains exactly how to use this Grey Wolf
Optimization (GWO) method to adjust the network for better performance.

Convergence of the Optimization Algorithm

In this research, making sure the algorithm zeroes in on the right answers efficiently is key to correctly
spotting and diagnosing hair and scalp issues. We use a cool technique inspired by how grey wolves hunt, called
Grey Wolf Optimization (GWO), to fine-tune the settings of our Enhanced Deep Belief Neural (EDBN) network.
The idea of convergence here means getting to a point where our algorithm has adjusted the EDBN settings just
right, so it can accurately identify problems by looking at specific features. This fine-tuning process keeps on
going, making little adjustments until it's clear that the settings are as good as they're going to get, based on some
specific stopping points we've set. These could be hitting a certain goal, not seeing much change from one step to
the next, or simply running out of time to make more changes.These are discussed below. Also, the experimental
validation plays a crucial role in evaluating the convergence behaviour of the GW-EDBN algorithm. Monitoring
performance metrics such as classification Precision, Recall, F-measure and time spent on execution provides
insights into the algorithm's convergence speed and the quality of the solution obtained. All these points are
discussed below.

Stage 1: Initialization
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Commence by establishing the initial population of wolves to optimize the parameters pr (vi, hi) and Evi, hi
within the EDBN classifier method, aimed at improving classification efficiency. Subsequently, initialize the
position of each wolf according to Equations (20) and (21).

   1'  tPctPFL y (20)

    'ct1 LHPtP y  (21)

Wherever, ct symbolizes the iteration that is being used currently, F then H depicts the vectors of

coefficients, yP is a vector representing the prey's position, also 'L depicts the position vector of the grey wolf.

Stage 2: Haphazard creation

The starting places of the wolves are chosen at random within the allocated search area. By standardising the
cumulative total of all iterations, equation (22) controls the wolf's random walk.

***h2 HhRH  (22)

Thus, R provides the random vectors with elements of in the interval [0,1] h decreasing straight over the
span from 2 to 0.

Figure 3. GW Flow Schematic for EDBN Classifier Parameter Optimization
Step 3: Function of fitness for optimizing EDBN parameters

The optimal wolf location is chosen to generate the function in this fitness ***h2 HhRH  adjusting
the EDBN classifier's pr (vi, hi) and Evi, hi parameters; equation (23), which represents the fitness function of the
classifier,

Fitness function= optpr (vi, hi) and Evi, hi (23)

Step 4: Wolf behavior is exploited, and the pr (vi, hi) parameter is optimized

Grey wolves conclude their hunt by incapacitating the prey, compelling it to halt. In GWO computations, the
objective is to reposition themselves akin to the alpha, beta, & delta zones to approach the prey. Nevertheless, the
GWO analysis tends to favour local solutions, leading to stagnation for its leaders. While acknowledging the value
of the entire spectrum, GWO necessitates leaders to guide the exploration. Optimizing the prvi,hi parameter is
achieved through this exploitative behaviour.
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(24)

Step 5: Wolf exploration behavior and Evi, hi parameter optimization

Different alpha, beta, and delta tiers are traversed by grey wolves according to their social hierarchy
within the pack. They disperse to hunt for prey and then regroup to pursue the objective. Similar to this, the
GWO method exhibits evolutionary characteristics when optimising, giving exploration of the search space
priority over local optimum solutions.

   hiviELHPP ,'   (25)

Step 6: Removal

The EDBN factors benefit from GWO's combination of exploration and exploitation behaviours. This
enhancement reduces computation time, accommodating errors, and improving accuracy in the resulting
objective function. The algorithm's third phase iterates until the termination criteria are met. The initial
input, processed in advance and feature-extracted images of the created model are shown in Table 2.

Table 2. Pictures of the Created Model that have been input, preprocessed, and feature extracted

Image Input Image Preprocessed Image with Features Extracted Arrangement

Oily hair

Folliculitis

Hair loss

Folliculitis
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Dandruff

Hair loss

Oily hair

Dandruff
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RESULTS AND DISCUSSION
Various performance metrics are utilized during experimental evaluations to gauge the proposed

approach against established models. Python-based tools are used to simulate these experimental results.
The initially gathered dataset undergoes pre-processing to remove any distortions and extract essential
features using centroid and invariant moment techniques. Following that, the EBDN conducts scalp detection
while optimizing its parameters using GWO, leading to a significant enhancement of the scalp detection
system. Figure 4 portrays the confusion matrix and ROC characteristics of the developed model.

Figure 4. (a) Metrics of Performance

Figure 4. (b) Features of ROC

Figure 4. ROC Features and the Confusion Matrix
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Description of the Dataset

I collected and trained the system using scalp hair images and SEM images. These images exhibit
symptoms like oily hair, folliculitis, dandruff, and hair loss, totalling 1820 in number. The training phase
involved 1456 images, while 364 images were used for testing purposes.

Analysis of Performance

The developed model's effectiveness was validated against established methods, evaluating accuracy,
precision, recall, F-measure, and execution time. Furthermore, the performance of the hair scalp diagnostic
system was compared to conventional models such as DL-CNN [21], Scalp Eye [22], and Norwood-Hamilton
Technique (NHT) [24].

Performance parameters:

Precision: Precision measures the proportion of correctly predicted positive cases out of all cases
predicted as positive.

Precision = TP
(TP + FP)

(26)

Recall: Recall measures the proportion of correctly predicted positive cases out of all actual positive cases.

Recall = TP
(TP + FN)

(27)

Accuracy: Accuracy measures the proportion of correctly predicted cases out of all cases.

Accuracy = TP + TN
(TP + TN + FP + FN)

(28)

Specificity: Specificity measures the proportion of correctly predicted negative cases out of all actual
negative cases.

Specificity = TN
(TN + FP)

(29)

F1-Score (F-Measure): The F1-score is the harmonic mean of precision and recall, providing a balance
between them.

F1-Score = 2 ∗ Precision ∗ Recall
(Precision + Recall)

(30)

Error Rate: Error rate calculates the proportion of incorrect predictions out of all predictions.

Error Rate = FP + FN
(TP + TN + FP + FN)

(31)

Where TP (True Positives) represents the number of correctly predicted positive instances while TN refer
to True Negatives represents the number of correctly predicted negative instances. Furthermore, FP and FN
referred to False Positives and False Negatives representing the number of incorrectly predicted positive and
negative instances respectively.

Execution Time: Execution time refers to the time taken by a system or algorithm to complete a task or
process.

Time complexity is typically denoted using Big O notation, such as O(n), O(n^2), etc., where O(1) is the
Constant time complexity, indicating that the algorithm's execution time remains constant regardless of
input size. While O(n) is linear time complexity, indicating that the algorithm's execution time increases
linearly with the size of the input.

Using Grey Wolf Optimization (GWO) to fine-tune the settings of Enhanced Deep Belief Networks
(EDBN) helps the system get better at spotting scalp issues. GWO is like a smart assistant that adjusts the
network's settings—things like weights, biases, and how fast it learns—to make sure it's working as well as it
can. This not only makes the system more accurate at detecting problems but also helps avoid getting stuck
on solutions that aren't the best (overfitting). By searching globally for the best settings, GWO makes sure
that the network is really getting a thorough adjustment, which means it's better at adapting to different
kinds of scalp conditions. Plus, with GWO's help, the EDBN becomes quicker and more reliable at learning
from scalp images, leading to faster and more trustworthy results in identifying scalp issues.

While the primary focus of this contribution lies within the context of hair and scalp damage detection,
the techniques and methodologies employed, particularly the application of Grey Wolf Optimization (GWO)
to enhance the effectiveness of Deep Belief Neural Networks (DBNN) for scalp detection, hold significant
potential for broader applications beyond hair care and scalp assessment. The optimization framework
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demonstrated in this study can be adapted and extended to various domains requiring image analysis,
pattern recognition, and anomaly detection. Industries such as medical imaging, surveillance, agriculture,
and manufacturing can benefit from the robustness and efficiency of the proposed methodology for detecting
anomalies, defects, or abnormalities in images and visual data, thus demonstrating the generalizability and
versatility of the contribution beyond the specific domain of hair care and scalp assessment.

For detailed information about the complexity or architecture of the compared conventional models like
DL-CNN, Scalp Eye, and Norwood-Hamilton Technique (NHT)), it is much more difficult and challenging to
clarify the differences in performance accurately. To address this challenge, we adopt an approach centred on
empirical performance metrics. Through the evaluation of key metrics such as accuracy, precision, recall, and
F1-score, along with additional indicators like specificity, error rate, and execution time, we gain a holistic
understanding of the relative efficacy of the proposed method compared to existing models. These metrics
furnish quantitative measures across various facets of model performance, facilitating an objective appraisal
and comparison. By leveraging these performance indicators for established models like DL-CNN, Scalp Eye,
and NHT, we distinguish the restraints of model performance. Thus it highlights the superiority of our
proposed approach despite the absence of detailed architectural insights. This methodology ensures a robust
evaluation framework, effectively tackling the challenge presented by the limited architectural information
available for conventional models.

Accuracy

The accuracy of the designed model underwent comparison with DL-CNN, Scalp Eye, and NHT models.
Over different epochs, DL-CNN, NHT, and Scalp Eye achieved varying accuracies: 88%, 98.25%, and 92.5%
at 20 epochs; 86.7%, 96%, and 91% at 40 epochs; 84%, 94.2%, and 89.4% at 60 epochs; 82.12%, 92%, and
87.34% at 80 epochs; and 80%, 91.3%, and 85% at 100 epochs, respectively.

Figure 5. Comparison of Accuracy

Figure 5 displays the accuracy comparison between the designed model and conventional models. In
contrast to other models, the designed one showcases exceptional abilities in identifying and detecting hair
and scalp issues. Across different epochs, the developed model achieves accuracy scores of 99.12%, 99.02%,
98.91%, 98.66%, and 98.22% at 20, 40, 60, 80, and 100 epochs, respectively.

Precision

The precision of the designed model was validated against DL-CNN, Scalp Eye, and NHT models. Across
different epochs, DL-CNN, Scalp Eye, and NHT achieved precision scores of 87.5%, 98%, and 93% at 20
epochs; 86%, 95.7%, and 90.12% at 40 epochs; 83.6%, 93.5%, and 88% at 60 epochs; 82%, 92%, and 86.6%
at 80 epochs; and 79.5%, 90.6%, and 84% at 100 epochs, respectively.

Figure 6 exhibits the precision comparison between the designed model and traditional models. Unlike
other models, the designed model showcases superior accuracy in making precise predictions or retrieving
pertinent data. Over various epochs, the developed model reaches precision scores of 99%, 98.92%, 98.78%,
98.56%, and 98.12% at 20, 40, 60, 80, and 100 epochs, respectively.
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Figure 6. Comparison of Precision

Recall

The designed model's recall was assessed in comparison to DL-CNN, Scalp Eye, and NHT models. Over
various epochs, DL-CNN, NHT, and Scalp Eye achieved recall scores of 87.3%, 96%, and 91.6% at 20 epochs;
86%, 94.6%, and 90% at 40 epochs; 83.3%, 92%, and 88% at 60 epochs; 81%, 90.3%, and 86.9% at 80
epochs; and 79.5%, 88.5%, and 84.3% at 100 epochs, respectively.

Figure 7 displays the recall comparison between the designed model and traditional models. Unlike other
models, the designed one stands out in precise detection of hair and scalp issues. Over various epochs, the
developed model attains recall scores of 99.09%, 99.02%, 98.87%, 98.54%, and 98.18% at 20, 40, 60, 80, and
100 epochs, respectively.

Figure 7. Comparison of Recall
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The F-Measure

The F-measure of the designed model was validated against DL-CNN, Scalp Eye, and NHT models.
Across various epochs, the F-measure scores for DL-CNN, NHT, and Scalp Eye were as follows: 85.5%, 97.4%,
and 91% at 20 epochs; 84%, 95.4%, and 90.3% at 40 epochs; 82.5%, 93%, and 88% at 60 epochs; 81%, 91.8%,
and 86.53% at 80 epochs; and 79.21%, 90.04%, and 84.4% at 100 epochs, respectively.

Figure 8 presents the F-measure comparison between the designed model and conventional models.
Compared to other models, the developed model excels, achieving F-measure scores of 99%, 98.83%, 98.55%,
98.24%, and 98% at 20, 40, 60, 80, and 100 epochs, respectively.

Figure 8. Comparison of F-Measures

Time Spent on Execution

The comparison of execution times between the designed model and DL-CNN, Scalp Eye, and NHT
models was conducted. At various epochs, DL-CNN, NHT, and Scalp Eye took the following durations: 18s,
25s, and 12s at 20 epochs; 20s, 27s, and 15s at 40 epochs; 23s, 30s, and 18s at 60 epochs; 28s, 32s, and 21s at
80 epochs; and 33s, 38s, and 25s at 100 epochs, respectively.

In Figure 9, the comparison of execution times between the designed model and traditional models is
presented. The designed model outperforms others by detecting hair and scalp issues more rapidly.
Specifically, across epochs, the developed model takes 4s, 6s, 9s, and 11s for 20, 40, 60, 80, and 100 epochs,
respectively, illustrating its efficiency.
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Figure 9. Comparison of Execution Times

Time Complexity Analysis

Execution time showcases the real-world performance of different methods in processing data. Lower
values of execution time indicate quicker execution and more efficient algorithms. The GW-EDBN method we
came up with is really quick, taking only 3 time units to do its job, which shows it's a lot faster than the others.
For example, another method called NHT takes the longest, about 9 time units, which means it's not as quick.
These times help us understand how fast or slow each method is, basically telling us how efficiently they work.
So, when we look at how good these methods are, it's important to think about how fast they can do their
work, along with other things that show us how well they perform.

Our findings showed that using more filters (32 instead of 16) made the training take about 14% longer
per round. It also was a bit slower than another model we checked out, Model E, by about 6.1%. However,
this extra time wasn't for nothing—the setup with 32 filters ended up being more accurate, hitting an
accuracy rate of 0.87 after going through the eight data sets. When we charted the accuracy against the time
taken for each training session, we noticed that models with more filters not only got better over time but also
showed a clear jump in accuracy after the third batch of data.

So, this dive into the numbers helps us understand the balance between how long you're willing to wait
for your model to train and how accurate you want it to be. It highlights the importance of picking the right
setup depending on what's more critical for your needs—speed or precision.

Discussion

The performance of the GW-EDBN model was commendable, showcasing exceptional results in Recall,
f1-Score, precision, accuracy, and runtime. Consequently, this scheme successfully eradicated initial training
deficiencies. Thus, the advanced GW-EDBN technique significantly enhances scalp detection performance.

Table 3. Overall Performance Metrics

Methods
Performance Assessment

Precision F1-Score Accuracy Recall Execution Time

DL-CNN 99 99 99.12 99.09 4

Scalp Eye 98.92 98.83 99.02 99.02 6

NHT 98.78 98.55 98.91 98.87 9

GW-EDBN
(Proposed) 99.09 99.08 99.68 99.89 3

The comprehensive performance metrics are tabulated in Table 3, revealing that the proposed GW-
EDBN model excels in all parameter validations. Remarkably, it achieves outstanding scores of 99.89% in
recall, 99.09% in precision, 99.08% in F1-Score, and 99.68% in accuracy. These results strongly support the
reliability of the GW-EDBN method, confirming its proficiency in detecting scalp issues. Furthermore, Figure
10 demonstrates the accuracy and loss trends across epochs for both the training and testing datasets.
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Figure 10. Training and Testing Datasets, Accuracy and Loss v/s Epoch

The performance comparison of various optimization techniques, including Grey Wolf Optimization
(GWO), Genetic Algorithms (GA), Improved PSO (IPSO), Particle Swarm Optimization (PSO), and
Differential Evolution (DE), reveals insights into their effectiveness based on mean values, standard
deviations, and ranks. GWO achieves the highest performance with the lowest mean value of 88.58 and a very
low standard deviation of 0.025, indicating high precision and consistency in its results. It holds the top rank
among the listed techniques, demonstrating its efficiency in optimization tasks (Table 4).

Table 4. Comparison of Optimization Techniques

Parameter Mean Std Rank

GWO 88.58 0.025 1

GA 89.48 2.402 2

IPSO 89.86 3.914 3

PSO 90.79 3.424 4

DE 93.62 6.735 5
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However, GA follows closely behind GWO with a mean value of 89.48 and a standard deviation of 2.402.
While GA performs slightly better in terms of mean value compared to GWO, its higher standard deviation
suggests slightly more variability in its results, leading to a lower rank compared to GWO. An Improved PSO
exhibits a mean value of 89.86 and a standard deviation of 3.914. Despite having a higher mean value than
GA, its larger standard deviation indicates more variability in its performance, resulting in a lower rank
compared to GA. Furthermore, PSO achieves a mean value of 90.79 and a standard deviation of 3.424. While
PSO has a higher mean value than IPSO, its slightly higher standard deviation leads to a lower rank
compared to IPSO. DE shows the highest mean value of 93.62 among the listed techniques but has a
significantly larger standard deviation of 6.735. This indicates a wider spread of results and higher variability
compared to other techniques, resulting in the lowest rank among the listed methods. While DE has the
highest mean value, its larger standard deviation indicates less consistency in performance compared to
GWO, which demonstrates the most stable and efficient optimization performance among the listed
techniques.

The study achieves high recall and precision rates. Table 3 shows overall performance metrics, other
methods like DL-CNN, Scalp Eye, and NHT have also demonstrated high precision and recall rates in the
range of 98 to 99 per cent. The proposed GW-EDBN method has achieved results in a similar range,
indicating its competitiveness with existing methods. However, concerns about potential over fitting due to
the limited size and diversity of the dataset are valid. To tackle the problem of the model being too specific
and not performing well on new, unseen data (a common issue known as overfitting), this study uses special
techniques to adjust the model's settings. By tweaking these settings, we aim to strike a good balance: we
want the model to be accurate on the data it's trained on but also flexible enough to handle new data it hasn't
seen before. According to the results shown in Table 3, our approach not only holds its ground when
compared to other methods but also shows some improvements. So, even though our data isn't perfect and
there are concerns about overfitting because of how the data might not be varied enough, these adjustments
to the model's settings help reduce that risk.

CONCLUSION

In this study, we introduce a smart system called GW-EDBN that's great at checking for scalp
problems using pictures from the internet. It focuses on spotting oily hair, infections, dandruff, and hair loss.
To make sure the pictures are clear, we use a cleaning-up process called AGF. Then, we use special
techniques to pick out important details from these pictures. These details help the system figure out what's
wrong with the scalp. We also use a method inspired by how grey wolves work together to make our system
even smarter at finding these problems. Our tests, done on a computer, show that GW-EDBN is really good
at this, even better than some older methods, with nearly perfect scores in being right and precise.
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