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Abstract

In the modern world, data volumes are constantly increasing, and
clustering has become an essential tool for identifying patterns and
regularities in large datasets. The relevance of this study is
associated with the growing need for effective data analysis
methods in programming. The objective is to evaluate different
clustering techniques within the programming domain and explore
their suitability for analysing a wide range of datasets. Inductive
and deductive methodologies, concrete illustrations, and visual
techniques were employed. The clustering techniques were
implemented using RStudio and Matlab tools. The study's findings
facilitated the identification of crucial attributes of clustering
techniques, including hierarchical structure, cluster quantity, and
similarity metrics. The application of several data analysis and
visualisation approaches, including k-means, c-means, hierarchical,
least spanning tree, and linked component extraction, was
illustrated. This study elucidated the clustering approaches that may
be optimally employed in various contexts, resulting in enhanced
precision in analyses and data-informed decision-making. The
study's practical significance is in enhancing programmers'
methodological toolset with tools for data analysis and processing.

Keywords: Data Mining, Programming Algorithms, Object
Grouping, Cluster Analysis, Information Arrays

1. Introduction
Today, in an information society, the amount of data is consistently increasing, and the problem

of handling this data has become crucial for different domains, including programming. Mastery of
contemporary clustering techniques is a fundamental need in the programming domain. With the
advancement of information technology and the growth of data quantities, the need to create and
optimise clustering algorithms for diverse purposes such as customer segmentation, social network
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analysis, image processing, and anomaly detection in data remains significant. The significance of
the study stems from the need for efficient analysis and processing of various types of data.
Although clustering techniques are widely used, there remain significant concerns and challenges
that warrant further investigation. These include selecting the most suitable clustering technique for
a specific task, determining the optimal number of clusters, and addressing the unique
characteristics of different data types. Moreover, the rapid advancement in programming technology
and the introduction of new data types call for continuous updates and modifications to clustering
algorithms.

Researchers in various countries, including Kazakhstan, have been exploring issues
related to data clustering within the realm of programming. One study examined methods
for clustering vast amounts of data to address real-world programming challenges. The main
goal was to develop programs in programming languages that meet specific optimality
criteria and generate data clusters. Another research focused on data processing techniques
in the medical field, analyzing infections and patients' medical records to create models,
establish data processing algorithms, and use clustering techniques for data characterization,
employing the k-means algorithm and density-based clustering with AUTO configuration. A
different approach proposed a methodology for identifying and automatically resolving
discrepancies in large datasets used for urban transportation analysis, incorporating a
versatile module that operates on two levels, using statistical methods and machine learning
algorithms, including the k-means clustering method and a multilayer neural network, to
detect and rectify discrepancies. Additionally, a study investigated a clustering technique to
manage co-reference relationships in the Kazakh language, aiming to consolidate personal
names related to individuals in texts by using various methods, such as the Tomita-parser
and clustering algorithms, to enhance the accuracy of extracting and combining named
entities. Finally, a cluster analysis conducted on the regions of Kazakhstan using the
"STATISTICA" computer system and hierarchical classification methods identified two
main clusters of regions with similar socio-economic characteristics, reporting the results of
dividing a specific set of areas into clusters using Ward's method and full linkage techniques
on dendrograms.

The purpose of this study is to review contemporary clustering methods in programming
and investigate their applicability for analyzing specific datasets. The following tasks are
addressed: selecting the optimal clustering method for programming, determining the
optimal number of clusters, adapting methods to new data types and evaluating the
effectiveness of methods in practical tasks.
2. Related Works

[6] introduced two methods for determining the number of centers in fuzzy clustering based on
two-level programming. The first method employs an evolutionary algorithm and has been
practically validated, while the second method combines mean shift and fuzzy clustering. The
results of numerical experiments show that both proposed methods successfully determine the
number of cluster centers and enhance data analysis and image segmentation. [7] investigated the
problem of modelling time-varying operations in complex optimization tasks for energy supply
systems. They proposed using clustering methods, including traditional ones (k-means, hierarchical
clustering) and shape-based methods. The authors compared the effectiveness of these methods
using examples of battery optimization and gas turbine planning. The study revealed that centroid-
based clustering methods more reliably represent operational aspects of optimization tasks but are
biased in evaluating the objective function.

In his research, [8] considered the problem of effective clustering in wireless sensor networks
(BSN) within the Internet of Things (IoT). The study offered a novel approach that integrates the
merits of the k-medoids method with the affinity propagation (AP) method. Initially, the affinity
propagation (AP) technique is employed to ascertain the count of cluster heads and choose the most
suitable cluster centres for k-medoids. Then, the modified k-medoids method is utilized to construct
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the network topology. This approach allows for a more uniform distribution of cluster heads,
enhancing network performance [9, 10].

Authors in [11] introduce an online clustering method called Contrastive Clustering (CC),
which performs contrastive learning at both the instance and cluster levels. Positive and negative
instance pairs were created in the dataset, and their representations in the feature space were
optimized for contrastive learning. This method simultaneously improves cluster representations
and assignments, allowing for cluster assignments to be computed for new data [12, 13]. In the
context of classification tools, [14] presented a comparison of Python and R programming
languages, highlighting the functionality of their packages. The aim of the study is to identify
changes in the Mariana Trench data. The methodology included hierarchical cluster analysis and the
construction of cluster maps with marginal dendrograms. The results revealed three distinct groups
of profiles grouped by height ranges with maximum depths. Dendrogram visualization in cluster
analysis effectively represents data grouping, sorting, and classification using machine learning
algorithms [15]. The presented software codes allow sorting datasets in similar studies to group data
based on attribute similarities [16-18].

The paper by [19] proposes a clustering method based on the analysis of social networks with
experimental and control groups in a programming course for freshmen. The study identified a
significant improvement in learning efficiency, and female students in the experimental group
demonstrated better social outcomes [20]. A new clustering method was proposed by [21]. It
considers various size constraints, iteratively minimizes errors by assigning data to clusters based
on size constraints, optimizes integer linear programming, and updates cluster centers [22].

Authors in [23] address the problem of task allocation among a set of robots with balance
constraints to improve their efficiency. They introduced a balance constraint that minimizes travel
differences between robots and ensures an equal number of tasks for each robot. To solve this
problem, they utilized clustering methods, analyzed clustering approaches, and their applicability
considering balance criteria using a dataset. The results showed that the k-means clustering method
is most suitable for solving problems with complex topologies and can scale to work with different
task and robot quantities compared to other clustering methods [24], [25].

In the study by [26], specific open-source software for clustering is presented, including open-
source code. Clustering was implemented in programming languages such as R, Java, C++, and
Python. In the paper by [27], user behaviors in smart card systems are classified in the context of
public transportation demand analysis. As classical methods are unsuitable for working with time
series, a classification method for users’ daily smart card transactions based on cross-correlation
measure, hierarchical clustering, and metric parameters was proposed [28], [29]. The clustering
results were compared with the dynamic time warping method. The authors also developed a
programme in R and tested the method on smart card transaction data from a public transportation
system. The results showed that cross-correlation is more effective for classifying time series, and
this method can identify different user behavior patterns.

Clustering plays a crucial role in data analysis and machine learning, involving the grouping of
similar data points according to specific criteria or patterns. A range of clustering algorithms exists
to address diverse applications and challenges across numerous industries (see Table 1).

Table 1. Summary of Clustering Methods
Method Features Advantages Limitations

Fuzzy clustering
methods

Evolutionary algorithm Successfully determines
cluster centers

Limited information
on other methods used

Mean shift and fuzzy
clustering Enhances data analysis Specific to fuzzy

clustering

Clustering for
energy supply

systems

Traditional and shape-
based methods

Effective for modeling
time-varying ops Centroid-based

methods are biasedComparatively evaluates
optimization

Clustering in
wireless sensor

networks

Combines k-medoids
and AP methods

Uniform distribution of
cluster heads Complex method

descriptionEnhances network
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Method Features Advantages Limitations
Performance

Contrastive
clustering

Contrastive learning Simultaneously
improves clusters Limited information

on dataset usedPositive and negative
instance pairs

Allows cluster
assignments for new

data

Comparison of
Python and R

Hierarchical cluster
analysis

Effective data grouping
and sorting Limited to Python and

R comparisonDendrogram
visualization

Utilizes machine
learning algorithms

Social network
analysis

Experimental and
control groups Improved learning

efficiency

Oversimplified
assumptions about

network homogeneity
Better social outcomes

(female)
Scale sensitivity and

data sparsity

Size-constrained
clustering

Size constraints and
optimization

Minimizes errors with
size constraints Requires integer linear

programmingIterative data
assignment Updates cluster centers

Task allocation
for robots

Balance constraint Minimizes travel
differences Focuses on balance

constraintsK-means clustering Suitable for complex
topologies

Open-source
software for
clustering

Multiple programming
languages

Access to open-source
software

Lack of
comprehensive

documentation and
user support

User behavior
classification

Cross-correlation
measure

Effective for classifying
time series Specific to time series

dataHierarchical clustering Identifies user behavior
patterns

3. Methodology
This study combined inductive and deductive reasoning with real-world examples and visuals to

explore how data can be clustered in programming. Through inductive methods, the research
uncovered patterns and structures within the data that weren't apparent before clustering. Induction
involves drawing broader conclusions from specific examples, which in this case, meant examining
individual data points to find commonalities and emerging patterns. This approach enabled the
discovery of new relationships within the data, enhancing understanding of its core characteristics
and significant elements. By clustering similar data points, distinct patterns and traits became
evident, providing deeper insights into the data's fundamental qualities.
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Figure 1. Research on Value Selection Method of Clustering Algorithm
This research used deductive methods to identify patterns in the data and come to conclusions.

Deductive reasoning involves using logic to draw specific conclusions from general statements. The
study carefully built upon already spotted patterns to see what further conclusions could logically
follow. Combining deductive with inductive methods, and supporting these with real examples and
visuals, allowed for a thorough investigation into data clustering in programming. Inductive
methods helped discover underlying patterns, while deductive reasoning was applied to interpret
these patterns, thereby enriching the study's findings.

In practical examples, clustering methods such as k-means, c-means, hierarchical clustering,
minimum spanning tree, and connected component extraction were examined. These methods were
implemented using various simple programs developed using R and Matlab languages. Each
programme corresponded to a specific clustering algorithm and performed its task. The results of
practical examples not only validated the theoretical effectiveness of the algorithms but also served
as a basis for formulating clear recommendations for their application in the field of programming.
Visual methods played a crucial role in this study, allowing the results of the developed programmes
to be visually represented.
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Figure 2. Practical Guide to Sparse Clustering
Standard scientific documents describing various methods, algorithms, and principles of

clustering in the computer industry were studied, and small programmes were written to implement
certain clustering algorithms using RStudio and Matlab tools. Specific formulas were used to assess
the computational complexity when comparing clustering algorithms. For k-means and c-means
algorithms: O(nkl) , for the hierarchical method: O(n2) , for the minimum spanning tree:
O(n2 log n ) , and for hierarchical clustering: O max n,m , m < n(n − 1)/2 . Thus, the
combination of methods used allowed for in-depth exploration in the field of data clustering in
programming.

4. Results and Discussion
Clustering is an essential tool for data analysis with numerous applications in the modern world.

Utilising clustering methods in the field of computer science allows for the automation of data
analysis processes and pattern recognition. This, in turn, can lead to more efficient and informative
decision-making in various domains. In general, clustering is the process of grouping similar objects
or data into clusters, where objects within the same cluster are similar to each other, and objects
from different clusters are dissimilar. Various classifications of clustering algorithms can be
identified: based on data processing methods (hierarchical and flat algorithms) and based on data
analysis methods (crisp and fuzzy algorithms). Hierarchical algorithms (taxonomy algorithms)
construct a system of nested partitions of objects into clusters, resulting in a cluster tree where the
root represents the entire dataset, and the leaves represent individual objects (smallest clusters). Flat
algorithms create a single partition of objects in the dataset into non-overlapping clusters. In crisp
(non-overlapping) algorithms, each object in the dataset is assigned a cluster number, meaning each
object belongs to only one cluster. In fuzzy (overlapping) algorithms, each object is associated with
a set of real values indicating the degree of membership to clusters, meaning each object belongs to
each cluster with a certain probability.
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During the iterations of cluster analysis, various linkage methods are applied, which serve as
criteria during the merging (for agglomerative algorithms) or splitting (for divisive algorithms) of
clusters. Among the linkage methods, determining the proximity between two clusters, individual
linkage methods are identified, including the following: single linkage, complete linkage, and group
average methods. In the single linkage method, the distance between clusters is determined by the
distance between the closest objects in these clusters, often leading to clusters tending to form
chains. In the complete linkage method, the distance between clusters is determined by the distance
between the farthest objects in these clusters. It is used when clusters appear as widely separated
groups of points. The method of inter-group linkage can be unweighted or weighted. In unweighted
linkage, the distance between clusters is calculated as the average distance between all pairs of
objects in the clusters. This method is effective when objects form distinct groups and works well
for long (chain-like) clusters. In weighted linkage, the distance between clusters is calculated
differently from the unweighted method, taking into account weight coefficients, which represent
the sizes of the clusters (the number of objects in them). This method is applied when clusters have
unequal sizes.

The next category of linkage methods involves methods based on the linkage between cluster
centers. When these methods are used, distances between the centers of weighted clusters, also
known as centroids, are calculated after adding an object to a cluster. This category includes
centroid-based methods, median-based methods, and dispersion-based methods. Centroid-based
methods can be unweighted or weighted. In unweighted centroid linkage, the distance between
clusters is determined by the distance between the centroids of the weighted clusters. At each stage
of the algorithm, the centroid of each cluster is located at the point with the average coordinates of
all objects in the cluster. Weighted centroid linkage differs from the unweighted method by taking
into account the weight coefficients, representing the sizes of the clusters (the number of objects in
them). In median-based methods, distances between any cluster and the new cluster formed by
combining two clusters are determined as the distance between the cluster and the midpoint of the
line segment connecting the merged clusters. The Ward’s method, a dispersion-based method, is
based on a different logic. It combines not the clusters that are maximally close in some sense but
those whose merger results in the smallest increase in within-cluster dispersion, minimizing the
“spreading” of clusters formed at previous stages.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-based
clustering algorithm that groups data points based on their density, effectively identifying clusters of
varying shapes and sizes. In turn, Mean Shift is a mode-seeking algorithm that iteratively shifts data
points towards areas of higher data density, converging to cluster centroids [30]. Hierarchical
Agglomerative Clustering (HAC) builds a hierarchy of clusters by recursively merging or splitting
clusters based on a defined linkage criterion. In addition, Gaussian Mixture Model (GMM)
represents data as a mixture of Gaussian distributions and uses the Expectation-Maximization
algorithm to estimate the parameters of these distributions. Self-Organizing Maps (SOM) are
unsupervised neural networks that map high-dimensional data onto a lower-dimensional grid,
preserving the data's topological relationships [31].

Various features can be highlighted to classify different algorithms. For instance, the method of
object allocation to clusters includes bottom-up and top-down algorithms. In bottom-up algorithms,
objects are initially grouped into a single cluster and then successively divided into smaller clusters.
In top-down algorithms, each object is initially assigned its own cluster, and these clusters are
sequentially merged until the desired level of separation is achieved. Quadratic error algorithms
create clusters based on a mathematical expression to compute the root mean square deviation.
Artificial intelligence systems employ neural networks for object separation. In the logical approach,
data is divided into clusters using decision trees. Despite all types, approaches and methods of
clustering, it is customary to distinguish the following algorithms: k-means, c-means, hierarchical,
allocation of connected components, minimal spanning tree and layered clustering. There are other
algorithms (methods) as well; however, these are the most popular and widely used ones (Table 2).

Table 2. Comparison of Clustering Algorithms
Clustering
algorithm

Cluster
shape

Computati-
onal Input data Results
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complexity
K-means

Hypersphere O(nkl)

Number of clusters Cluster centers

C-means Number of clusters and degree
of fuzziness

Cluster centers
and membership

matrix

Hierarchical

Arbitrary

O(n2)
Number of clusters or distance

threshold for hierarchy
truncation

Binary cluster
tree

Selection of
connected
components

Depends on
the

algorithm
Distance threshold R Tree structure of

clustersMinimum
spanning tree O(n2 log n ) Number of clusters or distance

threshold for edge removal

Layered
clustering

O max n,m , m
< n(n
− 1)/2

Sequence of distance
thresholds

Tree structure of
clusters with
different levels
of hierarchy

Note: k - number of clusters, l - number of iterations.
The work of the aforementioned clustering algorithms can be implemented in RStudio by

writing code in the R programming language. RStudio is an integrated development environment
(IDE) that provides a user interface and a set of tools for working with R, a programming language
and environment for statistical analysis and data visualization. RStudio can be used not only for
data analysis but also for descriptive statistics, hypothesis testing, creating graphs, and regression
analysis [32]. It is recommended to use it for the following reasons: interactive data analysis
(RStudio provides an interactive environment for data analysis, allowing quick data loading,
visualization, and pre-processing before applying clustering methods); rich library (R has an
extensive package library, including many tools for clustering data); integration with visualization
(RStudio integrates data visualization directly into the development environment); community and
documentation (R and RStudio have active user communities and extensive documentation,
including numerous tutorials and books on data analysis and clustering); support for other languages
(RStudio can also work with other programming languages, such as Python, expanding its
functionality and enabling the use of various clustering methods available in different languages). In
summary, this platform offers a comfortable and robust environment for programming, data analysis,
and the implementation of clustering algorithms.

The code sample in RStudio using the R language to implement the k-means clustering
algorithm:

# Installation and loading of the library

install.packages(“stats”)

library(stats)

# Creating random data for clustering

set.seed(123) # for reproducibility

data <- data.frame(

x = rnorm(100, mean = 0, sd = 1),

y = rnorm(100, mean = 3, sd = 1)

)

# Selecting the number of clusters

k <- 3

# Application of the K-means algorithm
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kmeans_result <- kmeans(data, centers = k)

# Output information about the clusters

print(kmeans_result)

# Visualisation of clustering results

plot(data, col = kmeans_result$cluster)

points(kmeans_result$centers, col = 1:k, pch = 8, cex = 2)

The code creates random data, applies a k-means algorithm with three clusters, and outputs
information about them. It also builds a graph to visualize the results (Figure 3).

Figure 3. The Result of the K-means Algorithm
An example of code for hierarchical clustering can also be provided:

# Loading data for example
data(USArrests)
# Performing hierarchical clustering
hc <- hclust(dist(USArrests), method = “ward.D2”)
# Drawing a dendrogram (cluster tree)
plot(hc, cex = 0.6, hang = -1)

The code performs three main actions: First, it loads the "USArrests" dataset, which includes
arrest statistics for various US states over a specific period. Then, it applies the "hclust" function to
perform hierarchical clustering on this dataset. Lastly, it generates a dendrogram, a type of diagram
that illustrates the arrangement of the clusters formed, which can be seen in Figure 4.
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Figure 4. The Result of Hierarchical Clustering
Matlab is a versatile software that works well with RStudio for a variety of clustering tasks. It

serves as both an advanced programming language and an interactive platform, mainly used for
performing numerical calculations, visualizing data, developing and analyzing algorithms, creating
models, among other functions. While Matlab is favored in the software industry for its capabilities
in handling numerical computations, its installation process and high memory requirements can pose
challenges. The software comes equipped with a broad range of data manipulation tools, including
those for clustering, facilitating straightforward visualization of results. Moreover, Matlab's support
for parallel computing allows for the efficient handling of large datasets, a critical aspect in
clustering operations.

Matlab code snippet demonstrating the implementation of the c-means clustering algorithm:

% Generating random data for example
rng(‘default’); % Setting the initial value for the random number generator
data = [randn(100,2)+1.5; randn(100,2)-1.5];
% Selection of the number of clusters
k = 2;
% Initialisation of random centroids
centroids = datasample(data, k, ‘Replace’, false);
% Maximum number of iterations
maxIterations = 100;
tolerance = 1e-4;
for iter = 1:maxIterations
% Finding the nearest centroid for each point
distances = pdist2(data, centroids);
[~, clusterIndices] = min(distances, [], 2);
% Centroid update
newCentroids = zeros(k, size(data, 2));
for i = 1:k
newCentroids(i, :) = mean(data(clusterIndices == i, :));
end
% Convergence check
if max(abs(newCentroids(:) - centroids(:))) < tolerance
break;
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end
centroids = newCentroids;
end
% Visualisation of results
figure;
gscatter(data(:,1), data(:,2), clusterIndices);
hold on;
plot(centroids(:,1), centroids(:,2), ‘kx’, ‘MarkerSize’, 10, ‘LineWidth’, 2);
title(‘Clustering results using c-means algorithm (C-Means)’);
legend(‘Cluster 1’, ‘Cluster 2’, ‘Centroids’, ‘Location’, ‘Best’);
hold off;

This code implements the c-means clustering algorithm on random data. It starts by generating
random two-dimensional data, sets the number of clusters for separation, and then iterates, finding
the nearest clusters for each data point and updating centroids. The results are visualized on a plot,
where each cluster is represented by a different color, and centroids are indicated by black crosses
(Figure 5).

Figure 5. The Result of the C-means Algorithm
The clustering algorithm with a minimum spanning tree can also be implemented:

% Random data generation
rng(‘default’); % Setting the initial value for the random number generator
data = [randn(100, 2); randn(100, 2) + 3];
% Calculating pairwise distances between the data points
distances = pdist2(data, data);
% Creating a graph based on distances
G = graph(distances);
% Obtaining the minimum spanning tree
T = minspantree(G);
% Visualising the edges of the minimum spanning tree
figure;
plot(T, ‘EdgeLabel’, T.Edges.Weight);
title(‘Minimum Spanning Tree’);
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% Setting the number of clusters
k = 2;
% Extraction of clusters from the edges
clusters = conncomp(T);
% Visualisation of clustering results
figure;
gscatter(data(:, 1), data(:, 2), clusters);
title(‘Clustering Using Minimum Spanning Tree’);

The programme starts by generating random data, calculating pairwise distances between points,
creating a graph based on these distances, and then finding the minimum spanning tree in this graph.
The clustering results are visualized, and the points are divided into clusters represented by different
colors on the plot (Figure 6).

Figure 6. The Result of the Minimum Spanning Tree Algorithm
It is also possible to implement clustering algorithms in programming for various tasks. For

example, there is a graph that is represented as a list of edges. The task is to find all connected
components in this graph (groups of vertices in the graph where each vertex is connected to another
vertex within the same group but not connected to vertices in different groups). The goal is to find
and output all such groups of vertices. This problem involves the algorithm for finding connected
components. The solution in the form of R code would be as follows:

# Graph represented as an edge list
edges <- data.frame(
from = c(1, 2, 3, 4, 5, 6, 7, 8),
to = c(2, 3, 1, 4, 5, 6, 7, 8)
)
# Installing the igraph library
install.packages(“igraph”)
library(igraph)
# Creating a graph from the edge list
graph <- graph_from_data_frame(edges, directed = FALSE)
# Finding connected components
components <- clusters(graph)
# Output of connected components
for (i in 1:length(components$csize)) {
cat(paste(“Connected component”, i, “: “, components$csize[i], “vertices(s)\n”))
cat(paste(“Vertices:”, toString(components$membership[components$membership== i]), “\n\n”))
}
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This code creates a graph from the edge list and uses the clusters function from the igraph
library to find connected components in the graph. Then, it outputs information about each
connected component, including the list of vertices belonging to that component (Table 3).

Table 3. The Result of the Connected Components Extraction Algorithm
Connected component 1

Vertices: 1, 1, 1 3 vertices

Connected component 2
Vertices: 2 1 vertex

Connected component 3
Vertices: 3 1 vertex

Connected component 4
Vertices: 4 1 vertex

Connected component 5
Vertices: 5 1 vertex

Connected component 6
Vertices: 6 1 vertex

Also, the authors requested other clustering algorithms. Thus, for DBSCAN, set the epsilon
(neighborhood distance) and minimum points parameters.

from sklearn.cluster import DBSCAN
from sklearn.datasets import make_moons
import matplotlib.pyplot as plt
# Generate synthetic data
X, _ = make_moons(n_samples=200, noise=0.05, random_state=0)
# DBSCAN clustering
dbscan = DBSCAN(eps=0.3, min_samples=5)
labels = dbscan.fit_predict(X)
# Plot the results
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')
plt.title("DBSCAN Clustering")
plt.show()
For Mean Shift, adjust the bandwidth parameter.
from sklearn.cluster import MeanShift
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
# Generate synthetic data
X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.6, random_state=0)
# Mean Shift clustering
meanshift = MeanShift()
labels = meanshift.fit_predict(X)
# Plot the results
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')
plt.title("Mean Shift Clustering")
plt.show()

For HAC, choose the linkage criterion and set the number of clusters.

from sklearn.cluster import AgglomerativeClustering
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
# Generate synthetic data
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X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.6, random_state=0)
# HAC clustering
hac = AgglomerativeClustering(n_clusters=4)
labels = hac.fit_predict(X)
# Plot the results
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')
plt.title("Hierarchical Agglomerative Clustering")
plt.show()
For GMM, specify the number of components and initialize parameters.
from sklearn.mixture import GaussianMixture
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
# Generate synthetic data
X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.6, random_state=0)
# GMM clustering
gmm = GaussianMixture(n_components=4)
labels = gmm.fit_predict(X)
# Plot the results
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')
plt.title("Gaussian Mixture Model Clustering")
plt.show()
For SOM, define the grid size and learning rate.
from minisom import MiniSom
import numpy as np
import matplotlib.pyplot as plt
# Generate random data
data = np.random.rand(100, 2)
# SOM training
som = MiniSom(10, 10, 2, sigma=1.0, learning_rate=0.5)
som.train_random(data, 100)
# Plot the SOM grid
plt.pcolor(som.distance_map().T, cmap='bone_r')
plt.colorbar()
plt.title("Self-Organizing Map")
plt.show()

[34] present a method for efficient Dynamic Time Warping (DTW) and clustering of time series
data. The method considers DTW as an optimization problem solved using dynamic programming
and then clusters time series data by solving a second optimization problem using mixed-integer
programming (MIP). The authors also proposed an option to use k-medoids clustering to increase
speed when a global optimality certificate is not required. This approach was tested using a time
series archive and demonstrated a 33% speed increase compared to other clustering methods, which
increases to 64% for larger datasets. [35] improved the fuzzy k-means clustering method, one of the
simplest k-means clustering methods, by adding a recurrent neural network, leading to the creation
of a new method. In this method, the error of fuzzy k-means clustering is modelled through a
constrained optimization problem [36]. Simulation results on academic datasets confirmed the
effectiveness of the proposed method [37]. The common aspect between these studies is their use of
the k-means clustering algorithm.
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[38] investigated the clustering of software modules, allowing for a better understanding of
complex software systems by dividing them into more manageable modules. The authors concluded
that efficient automatic methods for clustering software modules are needed to manage resources. In
their paper, they conducted a literature review on clustering models and presented a taxonomy for
classifying existing research, categorizing clustering methods into three main classes. In addition,
they identified new challenges and areas for future research in the field of software module
clustering. [39] examined distance metric learning methods in clustering that utilize information
provided by experts in the form of constraints. They transform the data so as to comply with these
restrictions. However, since this transformation can alter the data distribution, the authors proposed
a method using Lagrange multipliers, which helps metric learning algorithms preserve the original
data distribution while considering the provided constraints [40]. The results show that this method
provides good clustering performance and a more accurate representation of data after
transformation.

Figure 7. A Quantitative Discriminant Method of Elbow Point for the
Optimal Number

[41] has illustrated that network communication datasets are essential for grasping and
scrutinizing the dynamics of today's computer networks. These datasets include diverse details
about network traffic, protocols, and communication trends. To deeply analyze these extensive
datasets, understanding the various data kinds, their configurations, and volumes is necessary.
Techniques such as fuzzy clustering, size-constrained clustering, and contrastive clustering play a
crucial role in breaking down network communication data. These methods reveal hidden structures
within the data, like communication trends, irregularities, and user behavior categories. In scenarios
like energy supply systems or wireless sensor networks, clustering helps in resource distribution,
load balancing, and assigning tasks efficiently. Using methods from social network analysis can also
illuminate the connections within networks and identify significant nodes, contributing to network
efficiency enhancement. The choice between Python and R for conducting clustering analysis
hinges on the user's particular needs and their comfort level with these languages, as both provide
strong open-source capabilities. By applying various clustering techniques, researchers can gain a
richer insight into network behaviors, boost network efficiency, and enhance security surveillance in
intricate communication settings.

Choosing the right clustering algorithm is critical to the success of data analysis projects. Table
4 outlines key considerations from the research findings that can assist in selecting the most fitting
clustering algorithm for specific data and objectives.

Table 4. Criteria for Selecting Clustering Methods in Data Analysis
Criteria Relevant Clustering Methods

Data characteristics

DBSCAN (for data with varying densities); Mean Shift
(mode-seeking for data with density peaks); K-means (for
well-separated, spherical clusters); Hierarchical Clustering
(for hierarchical structures); Gaussian Mixture Model (for
data with Gaussian-like distribution); Self-Organizing Maps
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Criteria Relevant Clustering Methods
(for preserving data topology); Fuzzy Clustering (for
assigning membership degrees)

Number of clusters
Methods based on validation metrics (e.g., silhouette score,
elbow method); Evolutionary algorithms (for automatically
determining the number of centers)

Cluster shape and size

DBSCAN (for arbitrary cluster shapes); Mean Shift (for
flexible cluster shapes); K-means (may require careful
initialization for non-spherical clusters); Hierarchical
Clustering (flexible for various cluster shapes and sizes)

Interpretability of clusters K-means (each point belongs to one cluster); Fuzzy
Clustering (assigns membership degrees)

Efficiency and scalability
K-means (efficient for large datasets); DBSCAN (may
struggle with high-dimensional data); Self-Organizing Maps
(may require tuning for large datasets)

Handling noise and outliers
DBSCAN (identifies noise points as outliers); Mean Shift
(may not handle noise well); Hierarchical Clustering (may
need to prune small clusters as noise)

Real-time or batch processing DBSCAN (can be adapted for real-time streaming data); K-
means (suitable for batch processing)

Need for hierarchical
clustering Hierarchical Clustering (naturally supports hierarchy)

Ease of implementation and
availability

K-means (widely available in libraries and tools); DBSCAN
(available in popular libraries); Mean Shift (commonly
implemented); Gaussian Mixture Model (available in
libraries); Self-Organizing Maps (may require custom
implementation); Fuzzy Clustering (available but less
common)

Thus, K-means is suitable for tasks where data needs to be divided into a predefined number of
clusters. C-means, utilizing fuzzy logic, is beneficial when data objects can belong to multiple
clusters with varying degrees of certainty. Hierarchical clustering provides a cluster tree, which is
useful for analyzing data at different levels of detail. Minimum spanning tree can be employed to
find minimal connections between data objects. This is useful in optimizing network connections,
route planning, and other tasks were finding the smallest costs for connecting points is necessary.
Layered clustering is suitable for analyzing data with multiple levels of clustering, for instance, in
organizing large hierarchical data networks.
5. Conclusion

In this study, various papers dedicated to clustering methods in the computer science field and
programming were analyzed. The most popular clustering methods were implemented, and the
results of the work of the programs were visualized using RStudio and Matlab tools. The purpose of
the study included the utilization of specific clustering algorithms in the context of programming
and the analysis of different types of data for their implementation. To achieve this purpose,
methods were employed that enhanced the efficiency of clustering algorithms and facilitated the
development of new methods capable of successfully addressing the set tasks. The strategies used in
the study led to more precise results in data processing and object categorization. It became clear
that there are many different clustering techniques, algorithms, and principles, each showing better
performance for specific tasks.

Based on this study's findings, we can offer some recommendations. When selecting a
clustering technique, it's essential to closely examine the specific task at hand since the effectiveness
of various methods can differ greatly depending on the characteristics of the data and the objectives
of the study. Utilizing a combination of methods and algorithms can lead to better clustering results,
particularly for datasets with diverse attributes. For research in specific areas, integrating relevant
domain-specific considerations when choosing and setting up clustering algorithms can make the
results more understandable. Properly preparing the data beforehand and choosing the right ways to
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measure distances between data points are crucial steps that can significantly impact the success of
clustering efforts. Using visual tools like dendrograms to map out the clusters can greatly aid in
understanding the data structure, helping to interpret the results and make informed decisions.
Providing software versions of newly developed methods or algorithms can be very useful for other
researchers. Furthermore, it's important to keep pushing forward with research in clustering, as new
methods and types of data continue to emerge, aiming to create algorithms that are both more
precise and efficient.

To sum up, clustering algorithms play a key role in the analysis and organization of data within
programming. For every task, there is an ideal clustering approach that can yield the best possible
outcomes. Persistent research into clustering techniques is critical to address the evolving landscape
of data types and specific research needs.
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