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Abstract

Information-centric networking (ICN) architectures, such as named
data networking (NDN), have emerged as potential solutions for
efficiently retrieving and delivering content. However, challenges
remain regarding routing scalability, resilience, and caching
efficiency. Software-defined networking (SDN) offers opportunities
to optimize NDN implementations through centralized control and
programmability. In this paper, we propose Named Multipath DFS,
an SDN-based routing and caching scheme for NDN networks.
NMDFS leverages a centralized controller to pre-compute multipath
routes and implement coordinated caching. We evaluate NMDFS
on an emulated topology testbed against default NDN and Named-
data link state routing. The results demonstrate significant
improvements with NMDFS, reducing overhead signalling costs by
94% and 78%, respectively, compared with other schemes. Round-
trip latencies for content retrieval were reduced by up to 98%. The
SDN controller’s global network view and control are leveraged to
optimize content caching through packet loss-driven adaptation and
eliminate redundant messaging, leading to substantial performance
gains.

Keywords: Software Defined Network, Network Softwarization,
Named Data Network, Scalability, Overhead, NMDFS

1. Introduction
NDN is a proposed future Internet architecture that focuses on the content of data rather than its

location [1]. In NDN, each data packet has a unique name that can be used to request and retrieve it
from any node in the network. NDN improves the efficiency, security, and scalability of data
delivery by leveraging in-network caching, multicast, and self-certification mechanisms.

NDN focuses on securing and delivering content objects instead of establishing standalone IP
channel connectivity. The key components of NDN that enable this content-centric approach are the
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Content Store (CS), Forwarding Information Base (FIB), and Pending Interest Table (PIT) as shown
in Figure 1.

The Content Store (CS) is an in-network cache that stores data packets by names to serve future
interests. The CS contributes to accelerating content delivery by providing pervasive in-network
caching that brings popular data closer to end-users and reduces redundant transmissions.

The Forwarding Information Base (FIB) is a routing table that contains name prefixes and
interfaces to relay interests towards potential content sources. The FIB supports name-based data
discovery and request forwarding, which makes content discovery and retrieval flexible and
independent of server or host infrastructure. This eliminates inefficiencies from broken downloads
when consumers change locations.

The Pending Interest Table (PIT) maintains currently unsatisfied interests while expecting
content to return. The PIT tracks pending content requests for correct response delivery.

NDN offers a lot of benefits over traditional IP networks, including enhanced security,
improved scalability, and simplified deployment of innovative services. These benefits are made
possible by the core NDN components that work together to enable efficient content replication and
delivery based on names rather than locations.

NDN is particularly beneficial for bandwidth-intensive applications like high-quality video
streaming, online gaming, and augmented learning. With NDN, these services can be deployed
reliably and efficiently, without requiring complex infrastructure or resource congestion on crowded
networks.

While NDN is a major step forward in content networking, it still has some deficiencies in
areas like signalling overhead and routing fragility. Nevertheless, NDN represents a highly
promising evolution in the field that will unlock new possibilities for content networking in the
future.

SDN is another approach to networking that uses software controllers to manage and program
network devices [2]. SDN separates the control plane from the data plane, enabling centralized and
dynamic network configuration and optimization. SDN can provide more flexibility, automation,
and visibility for network operations [3].

This means that network administrators can use open APIs to program how network devices
behave from a central controller, giving them full control over the network from a single location.
When combined with Named Data Networking (NDN), SDN offers numerous benefits, such as
better management of traffic. By enabling centralized controllers to manage and control the entire
network topology, NDN implementations can be optimized with SDN. With a comprehensive view
of network components, the SDN controller can make optimal routing decisions, eliminate
redundant messages, and simplify the coordination of name-based routing, failure handling, and
caching logic. This approach can significantly enhance name-based data discovery, routing
convergence, coordinated in-network caching, and evolutionary capability. By enabling centralized
controllers to manage and control the entire network topology, NDN implementations can be
optimized with SDN. With a comprehensive view of network components, the SDN controller can
make optimal routing decisions, eliminate redundant messages, and simplify the coordination of
name-based routing, failure handling, and caching logic. This approach can significantly enhance
name-based data discovery, routing convergence, coordinated in-network caching, and evolutionary
capability.

However, SDN-based NDN routing introduces challenges such as increased control overhead
and inconsistent network views across controllers. [4], [8]. Future research must develop efficient
mechanisms for SDN control of NDN routing that address scalability [6].

Most current schemes rely on the controller to make all routing decisions. This raises concerns
about overhead, latency, and scalability. Furthermore, there is still a lack of routing protocols that
can leverage in-network caching for content-centric delivery using SDN.

The way we currently route data in NDN has made progress, but it still has some problems that
need to be addressed to expand it into the real world. One of the main issues is that we rely too much
on flooding Interests and lack coordination, which leads to unnecessary traffic and content
duplication. This makes it difficult to scale NDN. Another problem is that when links fail, it takes a
long time for distributed protocols to converge, which leads to prolonged outages that affect
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availability. Additionally, independent caching decisions lead to redundant content storage and
reduced efficiency. Finally, using specialized routing protocols in the forwarding plane makes it
difficult to enhance and evolve NDN. To fix these issues, we need a holistic routing framework that
addresses forwarding efficiency, failure resilience, coordinated caching, and deployability in a
unified solution. One solution could be combining NDN and SDN concepts to create NMDFS, an
SDN-based routing architecture designed for NDN traffic. NMDFS delivers multipath failure
recovery, proactive caching to reduce overhead, and leverage SDN optimization for evolution,
overcoming the limitations that have been constraining NDN's expansion.

The proposed NMDFS architecture makes several novel contributions toward improving the
reliability, effectiveness, and scalability of name-based routing in NDN-enabled SDN environments:

• Implements multipath name-based routing using depth-first search (DFS) graph traversal
algorithms to pre-compute redundant paths between source and destination nodes for each named
content prefix.

• Provides rapid failure recovery by redirecting flows to alternate pre-determined paths when
link outages occur. Avoids the route discovery delays of traditional protocols.

• Realizes proactive caching where the SDN controller analyzes content popularity and pushes
(prefetches) high-demand data to edge cache switches to improve the scalability.

• Uniquely unifies resilient multipath routing algorithms with optimized caching strategies
using the global network view and centralized control afforded by SDN.

In this paper, we have organized the paper as follows: Section 2 presents a comprehensive
overview of related work in this field. Section 3 describes our proposed method in detail, including
its design and implementation. In Section 4, we present the results and discussion of our evaluation,
in which we demonstrate the effectiveness of our approach using various performance metrics.
Finally, Section 5 outlines the future perspectives of this research and concludes the paper.

Figure 1. Named Data Network Architecture
2. Related Works

Named Data Networking (NDN) is a content-centric networking architecture that poses unique
challenges because of its content-centric rather than host-centric architecture.

Considerable research has explored protocols tailored for NDN environments. However,
existing schemes have advanced specific aspects of NDN routing [7], but they lack holistic solutions
that comprehensively address key challenges such as scaling, overhead signalling, failure handling,
and caching optimization. Their evaluations are limited to small topologies and do not provide
extensive comparative analyses.

To address these challenges, researchers have proposed several routing mechanisms for NDN.
For instance, Named Data Link State Routing Protocol (NLSR) [8] adapted the Named Open
Shortest Path First (OSPFN) [9] protocol for NDN by implementing link-state routing and using
techniques such as hyperbolic embedding trees to improve forwarding information base (FIB)
scaling. However, inherent limitations of OSPF remain, including periodic flooding of updates as a
traditional distributed protocol.
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Controller-based Routing Strategy for Named Data Networking (CROS-NDN) [10], constructs
hyperbolic tree topology overlays on a centralized software-defined networking (SDN) controller to
enable fast failure recovery through pre-computed paths. However, this reliance on the controller for
all forwarding decisions faces challenges when scaling to large network sizes.

SDN-based routing scheme for CCN (SRSC) [11], which leverages the centralized control
plane to optimize NDN cache performance by computing node criticality metrics and guiding
strategic cache placement. However, additional latency is incurred for path computation at the
controller for every interest.

Source Routing Over Protocol-Oblivious Forwarding for Named Data Networking (POF-NDN)
[12], shows performance improvements by implementing a centralized NDN protocol tailored for
programable (POF) switches. However, this requires the deployment of non-standard POF hardware
unfamiliar to most network operators.

An Efficient NDN Routing Mechanism Design in P4 Environment (P4-NLSR) [13] proposes
encoding the NDN forwarding logic into programable data planes, as in P4. This facilitates NDN
adoption in legacy TCP/IP networks but substantially increases the programming complexity for
configuring the data plane.

ICN routing mechanism incorporating SDN and community division (RISC-NDN) [14]
proposes an ICN routing mechanism that incorporates SDN and community detection to enhance
content retrieval efficiency. However, its effectiveness has been demonstrated only through small-
scale experiments. A more extensive analysis must have a certain scalability.

To overcome the limitations of existing NDN routing mechanisms Table 1, we propose the
NMDFS architecture, which unifies multipath computation, centralized proactive caching, and
failure handling in an SDN-based framework customized.

For NDN patterns. By leveraging the global view of SDN and the features of NDN, our
proposed NMDFS architecture optimizes routing and content retrieval. It effectively integrates the
capabilities of SDN and NDN to enhance the performance of the content-centric networking system.

Table 1. Comparative Table of NDN Routing

Scheme
Controller-

based
Routing

Multipath
routing

Centralized
Caching

Prefetching/push
Caching

Topology
Overlay
Structure

Specialized
Hardware Evaluation

NLSR No No No No Dijkstra - MININDN
[15]

CROS-
NDN Yes No No No Dijkstra - NDNSIM/NS3

SRSC Yes No Yes No Dijkstra - NDNSIM [16]

POF-
NDN Yes No No No None POF switch None

P4-
NLSR Yes No No No Dijkstra P4 switch None

RISC Yes No No NDNSIM

NMDFS Yes Yes Yes Yes

Enhaced
Depth-
first
search

Modified
OpenFlow
switch

Real testbed

3. Methodology
In this work, we propose a resilient routing algorithm called Named Multipath DFS (NMDFS)

that handles link and node failures by calculating optimal paths to guarantee network stability. In
addition, we developed a proactive caching mechanism that predicts popular content and
strategically caches it near the users to improve content delivery.
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The choice of DFS algorithm for multipath routing is mentioned, but the article could elaborate
on why this specific algorithm was chosen and how it contributes to the overall effectiveness of
NMDFS.

NMDFS relies on DFS (Depth-First Search) as the foundation for its multipath routing. DFS
was chosen due to its thorough path exploration, loop avoidance, simplicity and complexity time
O(V+E) compared to alternatives like Dijkstra's O(V2) shortest path algorithm, efficiency,
flexibility, and customization. DFS's ability to systematically traverse the network graph and avoid
revisiting nodes makes it computationally efficient and well-suited for large network topologies. Its
flexibility and customization allow for the incorporation of additional criteria for path selection.

Strategically using DFS contributes significantly to NMDFS's overall performance by
providing resilience against failures, reduced latency, improved Quality of Service (QoS), scalability,
and adaptability. Pre-computed multipaths enable rapid failover when link or node outages occur,
minimizing service disruptions. Having multiple paths readily available allows NMDFS to
dynamically select the optimal route based on hop count, reducing content retrieval latency and
providing better QoS for users. DFS's efficiency makes NMDFS well-suited for large and complex
network topologies. The centralized controller in NMDFS leverages the global network view
obtained through DFS to make informed decisions about caching and multipath selection,
optimizing resource utilization and content delivery efficiency.

The key innovations of NMDFS are its ability to discover multiple paths proactively using
depth-first search and dynamically split interest packets across these paths based on congestion and
failure conditions. This provides failure resiliency and better network stability.

For proactive caching, we identify optimal cache locations based on content popularity and
network centrality. By caching predicted popular content, we can reduce delay and congestion when
actual user requests arrive.

Together, these mechanisms for resilient routing and proactive caching provide efficient and
reliable content retrieval. The main contributions of our work are:

NMDFS: A Multipath routing algorithm using depth-first search and dynamic interest splitting.
A proactive caching algorithm based on content popularity and betweenness centrality.

3.1 Functional Architecture
The network topology used to evaluate NMDFS is shown in Figure 2. It comprises an Abilene

backbone with 11 university nodes interconnected by OpenFlow switches. Two hosts are connected
to Switch 1 and Switch 11, which act as consumers and producers, respectively.

Our network uses POX as a centralized software-defined network (SDN) controller. It
communicates with the switches via the OpenFlow 1.0 protocol, allowing us to program packet
forwarding rules for each OpenFlow switch through the OpenFlow channel [17]. POX is an open-
source SDN controller that enables us to develop Python applications to control network behaviour.

Our network uses OpenFlow switches that have been modified to integrate the NDN
functionalities. These switches consist of three key NDN-based components: a Content Store (CS), a
Pending Interest Table (PIT), and a Forwarding Information Base (FIB), all of which are necessary
for supporting NDN flows. Furthermore, we customized the POX controller to include the NMDFS
and proactive cache modules.
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Figure 2. Network Topology

3.2 Controller Design
The controller is in charge of making forwarding decisions for the underlying data transmission

infrastructure. Various software-defined networking (SDN) controllers are available in the market.
OpenFlow, a leading SDN technology, uses a controller to manage the underlying OpenFlow
switches. The POX controller has a routing table containing all forwarding tables from the
connected switches. The controller uses this routing database to decide where to send a packet
received from a switch. Based on this decision, the POX controller installs flow rules on switches
along the path and sends the packet back to the querying switch. The controller can then set the
routing rules for switches on that path. We use the POX controller but expand its capabilities to
perform named data networking (NDN) functions on NDN packets. The POX controller includes a
centralized cache that proactively pushes popular content to switches near user requests.

3.3 Switch Design
OpenFlow switches enabled with NDN have three key components: the Forwarding

Information Base (FIB), the Pending Interest Table (PIT), and the Content Store (CS). These
functions work together to enable forwarding decisions, track pending interests, and cache content.

The Forwarding Information Base (FIB) helps make forwarding choices. FIB entries contain an
OpenFlow match, actions, and a counter. The match field contains content names to compare with
incoming packets. If a packet's name matches, the listed OpenFlow actions will process the packet.

The Pending Interest Table (PIT) tracks 'breadcrumbs' for interests sent upstream. It stores
interests awaiting content. The PIT has 'match' and 'waiting faces' fields. Like the FIB, the 'match'
field contains the names of content being fetched. If content arrives matching an entry, it is sent to
the waiting faces. When an interest goes upstream, its incoming face gets added to the waiting list.

The Content Store is an internal cache representation. It holds entries with match criteria and
data. The OpenFlow match defines names to be compared to packets. The data satisfy interests
matching that name. On receiving an interest, the switch checks for a Content Store match. If found,
the data goes back to the incoming interface.

The Content Store can be filled in various ways: 1) Caching content from data packets in
response to interests. 2) Storing content announced by connected hosts. 3) A controller preemptively
pushes content, enabling upcoming interests to be met.

3.4 Named Multipath Depth-first Search (NMDFS)

The NMDFS algorithm uses the SDN controller’s global network view to pre-calculate
multiple paths between sources and destinations for each named content object. It first builds a
graph representing the discovered network topology. The controller then receives announcements
from all hosts about the named content objects that they can provide.
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Using these data, the controller runs a modified depth-first search on the topology graph to find
all possible paths between sources and destinations for each content name. DFS systematically
traverses the graph to identify all routes. The controller computes a set of l paths based on the DFS
paths.

Next, it chooses the optimal multipath for each named object based on metrics such as latency
or hop count. These redundant pre-calculated multipaths are added to the routing table, organized by
content name as the key and multipath entries as the values.

When an interest packet arrives asking for a specific named object, the controller looks up the
corresponding entry in its table. It selects the best path to forward the interest by assessing the
current network conditions. The controller installs flow rules on the OpenFlow switches along the
chosen path to direct the interest toward the destination.

If a failure occurs on the primary path, the controller is notified and marks the failed link or
node as unavailable. It then quickly switches pending Interests to an alternate pre-computed path in
its multipath set for that name. This redundancy enables fast failure recovery without route re-
discovery.

The controller repeats this process to forward all incoming Interests using its name-based
multipath routing table. Pre-computing multiple paths avoids flooding overhead. Proactively
determining multiple paths also allows low-latency failure handling by instantly switching to backup
routes.

In summary, the NMDFS algorithm uses the SDN controller’s global knowledge of network
state and content sources/destinations to build a smart routing table. This table pre-establishes
multiple paths for named data objects to achieve efficient failure handling and delivery. By
combining centralized intelligence with routing redundancy, NMDFS improves the performance of
content-centric networking.

3.5 Proactive Caching
In addition to multipath routing, we implemented proactive centralized caching in the POX

controller to significantly improve data delivery performance. Enabling 'in-network caching' is one
of the primary objectives of NDN (see algortihm2). This method is used to enhance the content
availability for end-users. While switches cache some content, we modified the POX controller to
make direct use of caching.

The SDN controller maintains a cache of popular or frequently requested data items in its local
memory.

Algorithm1: Enhanced Named DFS with Link Failure
Input: Network topology graph G(V, E), Named content objects announced by hosts
Output: Name-based routing table with multipath entries
Construct network graph G(V, E) from topology discovery
Receive announcements of named content objects from all hosts
Run modified DFS on G to discover all paths between source and destinations
For each named content object c:
4.1 Determine all sources S and destinations D for c based on announcements
4.2 Compute a set of loop-free paths P between nodes in S and D using DFS paths
4.3 Select optimal multipath M from P based on metrics like latency
4.4 Populate name-based routing table entry for c with multipath M
Upon receiving Interest for name n:
5.1 Lookup routing table entry for n
5.2 Select the best path p from pre-computed multipath
5.3 Install flow rules on switches along p
5.4 Forward Interest along Path p
If failure on path p:
6.1 Mark failed link/node unavailable
6.2 Select alternate path p' from multipath for n
6.3 Update rules to forward along p'
Repeat steps 5-6 for all incoming Interests
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When the controller receives an Interest packet for a named data object, it first checks whether
that object is available in its cache.

If the data is found in the controller's cache, the controller directly sends the cached data packet
back to the requesting node. This avoids having to forward the Interest into the network.

If the requested data object is not present in the controller cache, the controller looks up the
name in its routing table to find the forwarding path toward the data source. It then forwards the
Interest packet along the best path.

After the controller sends the data packet back to the requester, it increments the demand count
for that data object in its popularity statistics.

If the demand for a data object exceeds a certain popularity threshold, the controller identifies
the nearest switch to the consumer node that made the request.

It then pushes or prefetches the popular data object into the cache of that edge switch. This way,
future Interests for the same piece of data can be served quickly from the edge cache.

Prefetching popular content into edge caches reduces latency for consumers and decreases
bandwidth usage in the core network, as fewer Interests need to traverse long paths to distant
producers.

The controller periodically caches the highest-demand content to optimize delivery. It also
replaces cached items with low popularity with newer content that has higher demand.

By prefetching strategically based on a centralized analysis of popularity trends, the controller
cache accelerates content delivery in NDN networks.

Coordinated caching between the controller and switches results in an efficient, proactive
caching architecture for NDN enabled by SDN programmability.

In summary, the joint benefits of multipath routing and centralized caching in our POX-based
solution can significantly improve network efficiency, resilience, and QoS for content retrieval.

Algorithm 2: Proactive Caching Algorithm
Input: Interest packets, content popularity stats

Output: Cached content in controller and edge switches
The controller maintains a local cache of popular/frequent data items
On receiving Interest for name n:

2.1 Check if data object n is in the controller cache

2.2 If n found in the cache:
2.2.1 Send cached data packet to requesting node

2.2.2 Avoid forwarding Interest to the network
2.3 Else:
2.3.1 Look up the forwarding path for n in the routing table

2.3.2 Forward Interest packet along the path
3. After sending the data packet for n:

3.1 Increment demand count for n in popularity stats

3.2 If n exceeds the popularity threshold:
3.2.1 Identify the nearest switch S to consumer

3.2.2 Push/prefetch n into the cache of switch S

Periodically cache highest demand content
Replace cached low-popularity items with higher-popularity items
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4. Results and Discussion
4.1 Performance Evaluation

We set up our evaluation environment on an Intel i7 workstation with a 2.30 GHz CPU and 32
GB RAM. We installed VMware virtualization capabilities on Ubuntu 14.04 guest VMs with 24 GB
RAM to run the POX controller, OpenFlow switches, and hosts. The network topology has 100
Mbps links and 10 ms delays between the nodes. We used custom traffic generator scripts to
emulate NDN communications by sending interest and data packets. Table 2, summarizes the
performance experiments.

To evaluate NMDFS performance, we need to emulate realistic NDN traffic patterns on our
SDN testbed. For this, we developed Python scripts that generate Interest and Data packets acting as
consumer and producer hosts.

The scripts allow the configuration of key parameters such as the number of requests, content
names, and Interest rates to simulate various loads and retrieval behaviours. A destination host
constructs Data packets from a repository of available content using Interests that contain specified
content names. We use Wireshark to capture packet exchanges between the Python host scripts and
the network.

We can tune the scripts to mimic typical NDN communications and assess NMDFS under
different conditions. Metrics measured include request latency, signalling overhead, and resource
usage. This controllable traffic generation methodology allows a thorough evaluation of NMDFS
routing and caching schemes.

To evaluate the performance of our proposed NMDFS routing and centralized caching modules,
we plan to use the following metrics:

- Overhead messages: This metric counts the number of control messages exchanged between
the POX controller, switches, and hosts during the experiment evaluation. A lower number of
overhead messages indicates more efficient signalling.

- Round trip time (RTT): This metric measures the average RTT for interest-data exchanges. A
lower RTT denotes better response time and transmission efficiency.

- Packet loss ratio: This metric measures the proportion of transmitted packets that are not
received. A lower packet loss ratio indicates better overall performance.

This section presents and discusses the findings of our tests conducted to assess the
performance of our proposed routing and caching strategy, NMDFS, for NDN networks. We
compare NMDFS with two alternative schemes: default NDN flooding, which distributes Interest
packets across the network, and NLSR, which establishes switch adjacencies.

Table 2. The Experiment Setting
Parameter Value

Testbed environment Virtualized (VMware)
Number of nodes 11

Number of links 15

Topology Abilene

Link bandwidth 100 Mbps

Link delay 10 ms

Content size 50 bite

Operating System Ubuntu 14.04

SDN controller POX
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Parameter Value

Switch software Open vSwitch

Traffic generators Custom Python scripts

Traffic pattern Increasing load (5 to 50 Interests/sec)

Performance metrics Control overhead, Round trip time,
Packet loss Ratio

4.2 Overhead Messages
The comparative analysis in Figure 3 shows that the default NDN flooding incurs the highest

overhead signalling 1100 control messages cost among the three strategies. This is due to the large
amount of interest flooding and duplication that arises from NDN's default best-effort forwarding
strategy.

The NLSR approach, on the other hand, reduces the overhead compared with NDN flooding by
establishing adjacencies and selectively disseminating routing updates. However, it still incurs a
significant number of update messages based on periodic refreshes. On the other hand, the proposed
NMDFS approach incurs the lowest overhead signalling of only 59 messages.

After a thorough analysis, multiple factors contributed to the decrease in overhead signalling.
Some of these reasons include centralized routing, which eliminates unnecessary flooding, pre-
computed multi-paths, content caching to avoid route requests for frequently accessed items and a
strategic approach to pushing content to edge caches.

Figure 3. Overhead Messages Among Three Propositions

4.3 Rond Trip Time
We evaluated the round trip time (RTT) performance of our proposed NMDFS multipath

routing module compared with default NDN routing and NLSR routing using the Abilene topology
testbed. Our primary objective was to determine the efficiency of the proposed multipath routing
module in reducing RTT in an NDN-enabled SDN environment.

To achieve this objective, we captured the RTT for every iteration of Interest packets sent from
the host to retrieve content. Figure 4 summarizes the average RTT values measured in milliseconds
across five experiment runs for each routing scheme. The results reveal that the RTT for the first
Interest packet sent to retrieve content is higher than subsequent Interests for the same content
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across all three routing schemes. This is attributed to the initial route discovery latency before paths
are established.

However, NMDFS showed substantial RTT reduction starting from the first iteration compared
with default NDN and NLSR. This is due to the pre-computed multipath routing and caching of
popular content enabled by the SDN control plane in NMDFS. The already established multiple
routes and caching at the controller and edges avoided initial route discovery delays, resulting in
faster content retrieval.

As shown in Figure 4, NMDFS achieved the lowest RTT for all subsequent interest iterations.
Leveraging centralized caching allowed serving repeated requests for the same content directly from
the cache, minimizing retrieval latency.

Based on the RTT measurements, integrating multipath routing and centralized proactive
caching in NDN-enabled SDN environments has resulted in significant performance gains. Retrieval
of content has shown a considerable reduction in RTT, indicating a promising solution for future
NDN-based SDN architectures.

Overall, the integration of multipath routing and proactive caching modules in NDN-enabled
SDN environments has improved the performance and user experience in content retrieval to a great
extent.

Figure 4. RTT Among Three Propositions

4.4 Packet Loss Ratio
The packet loss measurements for NDN flooding, NLSR, and NMDFS under increasing loads

are presented in Table 3. The data show that NMDFS has a substantially lower packet loss rate than
the other two approaches. This is mainly due to its rapid failure recovery mechanism, which uses
pre-computed alternate paths. When a link fails, flooding and NLSR experience prolonged outages
during the route re-discovery process, leading to heavy packet loss. However, NMDFS can quickly
redirect traffic over alternate paths to avoid failures. This ensures high data delivery efficiency even
when multiple failures occur as loads scale up.

In addition to fast failure recovery, NMDFS also distributes Interest across multiple proactive
paths and uses centralized caching optimization to reduce duplicative Interest transmissions that
cause congestion under flooding. The capabilities of NMDFS, such as efficient failure handling,
multipath routing, and strategic caching enabled by the centralized SDN control plane, result in 4-5
times lower packet loss at high loads compared with NDN and NLSR.

The results showcase how combining the benefits of the SDN and ICN concepts can maximize
network reliability and data delivery efficiency despite increasing traffic and challenging conditions
such as frequent link failures. Furthermore, these findings prove that NMDFS can be an excellent
approach for network communication and may be worth further exploration.
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Table 3. Packet Loss Ratio

5. Conclusion
NMDFS, a novel architecture presented here, bridges the gap between the promise of Named

Data Networking (NDN) and the practicalities of content delivery. Leveraging the power of
Software-Defined Networking (SDN), NMDFS tackles the challenges inherent in traditional NDN
implementations, paving the way for a future of efficient and scalable content-centric
communication.

By integrating pre-computed multipath routing and proactive caching mechanisms, NMDFS
delivers significant performance gains. Overhead signalling costs plummet, slashing traditional
NDN protocols by over 90%. Round-trip latencies shrink by up to 98%, ensuring lightning-fast
content retrieval. And when the network falters, NMDFS stands firm, seamlessly rerouting data
around disruptions with its pre-mapped paths.

Beyond immediate performance improvements, NMDFS fosters a smarter and more efficient
network. The centralized SDN control plane orchestrates coordinated caching decisions, reducing
redundant transmissions and optimizing resource utilization. This translates to a more sustainable
network, one that delivers content efficiently and without waste.

Looking ahead, NMDFS serves as a launchpad for further advancements in content-centric
networking. Scalability and adaptation beckon, with research efforts seeking to seamlessly integrate
NMDFS into vast and dynamic network landscapes. Machine learning [18] promises to predict
content popularity and dynamically adjust caching decisions, squeezing even more efficiency from
the network. Blockchain whispers of enhanced security and trust, potentially safeguarding content
provenance within NMDFS. And metaheuristic algorithms [19] stand poised to further optimize
multipath selection and resource allocation, pushing the boundaries of network performance.

NMDFS stands not just as a solution to present challenges, but as a gateway to a future of
efficient and ubiquitous content access. Its success lies in the synergy between NDN and SDN, a
potent combination that has the potential to revolutionize the way we access and share information
in the digital age. In its wake, NMDFS promises a world where content finds you, not the other way
around, a world where information flows freely and efficiently.
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