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Abstract 

 

A lot of interest has been put forth to improve workload scheduling 

in the cloud platform. However, the execution of scientific workflow 

on a cloud platform is time-consuming and expensive. Much 

research has been emphasised, as users are charged based on the 

usage hour, minimising processing time to reduce cost. However, the 

processing cost can be reduced by minimising energy consumption, 

especially when resources are heterogeneous; Minimal work has 

been done considering optimising cost with energy and processing 

time parameters to meet task Quality of Service (QoS) requirements. 

This paper presents cost and performance-aware workload 

scheduling (CPA-WS) techniques under a heterogeneous cloud 

platform. This paper presents a cost optimisation model through the 

minimisation of processing time and energy dissipation for the 

execution of the task. Experiments are conducted using two widely 

used workflows such as Inspiral and CyberShake. The outcome 

shows the CPA-WS significantly reduces energy, time, and cost 

compared to the standard workload scheduling model. 

 

Keywords: Information System (IS), Cloud Computing, Cost-

Performance Optimisation, Workflows, Heterogeneous Server, 

Scheduling 

 

1. Introduction 

Cloud computing platforms are widely used for provisioning high-performance computing as a 

web-services for the execution of workflows [1]. Recently, a wide range of scientific areas such as 

bioinformatics, physics, and astronomy have leveraged cloud environments for modelling scientific 

workflows representing real-world problems [2]; thus, large scientific workflows can be analysed 

through simulation more effectively [3] with minimal time and cost [4], [5]. The scientific workflow 

is represented directed acyclic graph (DAG) where edges represent a set of tasks, and vertices 

represent its dependencies. Thus, the forthcoming task will be initiated once the primary task is 

completed [6]-[9]. These dependencies among tasks make scheduling in the cloud very challenging.  

Recently, workflow scheduling in cloud computing platforms has gained wide attention across 

the research community [10]; a basic architecture of workload scheduling using the cloud is shown in 

Figure 1. However, designing efficient scheduling design adopting currently available heuristic 

models pose several difficulties such as sizeable scientific workflow prerequisite higher execution 

https://ijcnis.org/
mailto:ashabrawy@hotmail.com


Available online at: https://ijcnis.org 84 

 International Journal of Communication Networks and Information Security 

 

 

time, and execution cost. Further, it becomes even more complicated when a task demands a deadline 

prerequisite. Extensive work has been done to establish optimal solutions through heuristic 

algorithms. However, the heuristic strategy depends on job order without considering the job 

scheduling duration. As a result, fails to obtain optimal solutions, affecting the overall Quality of 

services and higher SLA violations. Thus, workflow scheduling is considered an NP-hard (non-

polynomial) problem [11], [12]. Optimising cost and time together becomes extremely difficult [13]. 

For example, if the scheduling design tries to minimise cost, it increases the execution time because a 

relationship exists between them. Many existing models need to consider virtual machine selection 

policy in scheduling design. Thus cost-makespan optimisation problem still exists [14], [15].  
 

 
Figure 1. The Basic Architecture of Workload Scheduling Using the Cloud 

 

In addressing research problems, this paper presents cost and performance-aware workload 

scheduling (CPA-WS) techniques for heterogeneous cloud computing (HCC) environments. The 

model optimises workload execution cost through energy and processing time minimisation 

constraints; Further, the CPA-WS presents an effective queuing model for ideal load balancing 

between already scheduled tasks concerning newly arriving tasks. 

The manuscript's significance is described below: 

This paper presents an effective workload scheduling technique that reduces cost. 

Cost optimisation is done through the minimisation of energy and processing time constraints 

under heterogeneous computing platforms. 

CPA-WS provides an effective load-balancing mechanism, thus, reducing buffer overhead and 

task waiting time. 

CPA-WS achieves much better cost, energy, and processing time efficiency than EMS.  

The manuscript is arranged as follows. Section 2 studies various existing workload scheduling 

models' advantages and limitations. Section 3 provides the mathematical representation of the 

proposed CPA-WS model is given. The result and discussion are given in section 4, and in chapter 5, 

the research is concluded with a future research direction. 

2. Literature Survey 

In the research, the survey is conducted to understand the benefits and limitations of using 

standard workload scheduling. In [16], it focused on designing and optimising energy and cost 

together to design workflow scheduling for heterogeneous computing platforms. Here a Min function 

is modelled for reducing the energy cost and meeting task deadlines considering task information is 

geographically distributed. Here they divided the task considering different deadlines and sorted them 

according to deadlines, small to high. Finally, an adaptive searching method is designed for effective 

optioning schedules for workflow execution. In [17] showed how energy consumption significantly 

increases the computing cost of service provisioning. Reliability and timeliness are a few key metrics 

in service provisioning. They designed a scheduling design that reduces energy dissipation and meets 

the reliability and timeliness requirements of workflow executions. Here a heuristic solution is 

obtained through a Non-linear Mixed Integer Programming problem. First, a scheduling length 

minimisation strategy is modelled for meeting reliability. Second, we designed a processor merging 
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strategy to reduce energy dissipation by leveraging Dynamic Voltage Frequency Scaling (DVFS) 

technique. Here inefficient machines are switched off, scaling is done at both task and processor levels.  

In [18], the modelled tradeoff to handle the unpredictable resource availability nature of cloud 

computing by adopting an evolutionary computing algorithm. Here a multi-objective parameter 

optimisation model of cost and makespan is considered together. Performance is studied considering 

various levels of interruption, and the outcome shows better performance than existing models [19]. 

In [20], we modelled an evolutionary computing model, namely Nested Particle Swarm Optimisation 

(NPSO), and a faster version of NPSO, namely FNPSO optimising execution of composite workflows. 

The FNPSO significantly reduces in comparison with the NPSO model. In [21], combined Q-Learning 

(QL) and Heterogeneous Earliest Finish Time (HEFT) to design an effective scheduling technique, 

namely QL-HEFT. The QL-HEFT is intended to reduce computation time. The reward function in QL 

is updated using the upward rank outcome of HEFT. This aid in improving the learning efficiency of 

the Q-Learning algorithm. The QL first obtain an optimal order of task and then finds the suitable 

machine for the execution of the task utilising the earliest finishing time. [22] designed a scheduling 

design considering contention awareness for workflow execution. A list scheduling heuristic with 

endpoint contention awareness is modelled to minimise makespan. A ranking mechanism is 

introduced to schedule a task to computational machines and modelled a rescheduling design to 

improve scheduling efficiency.        

In [23], designed a workflow scheduling design adopted an evolutionary computing model to 

meet task deadlines by optimising cost, namely DCOH. Further, improved DCOH by incorporating 

multi-objective parameters by optimising makespan and cost together under a hybrid cloud platform. 

In [24], workflow application scheduling is designed to meet the application deadline and cost 

together. Here they improved the priority selection design for establishing the order of tasks. During 

the allocation of computational resources, budget and cost ratios are used to correlate between budget 

and deadline constraints. In improving success rate (i.e. reliability), certain decisions are discarded 

through the discarding mechanism. 

In [25], showed scheduling model in the cloud must meet user deadline prerequisites and SLAs. 

They adopted a multi-cloud platform to meet stream workflow application performance requirements 

and reduce cost. In [26], design a fault-tolerant scheduling design for workflow execution leveraging 

a multi-cloud platform. Further, the model assures meeting reliability requirements and with reduced 

cost. Here they employed continuous probability distribution for analysing failure rate and reliability. 

Then, a mathematical model to measure the cost of executing using a multi-cloud platform is given, 

followed by defining fault-tolerant workflow scheduling design by assuring reliability and reducing 

cost and execution time. However, it could not guarantee meeting the cost constraints of application 

requirements because of the poor load-balancing mechanism. In addressing the issues above, in next 

section presents cost and performance-aware scheduling techniques under heterogeneous cloud 

environments. 

3. Cost and Performance Aware Scheduling Technique for Cloud Computing 

Environment 

This section presents cost and performance-aware workload scheduling (CPA-WS) techniques 

for executing scientific workflow in an HCC environment. The workload scheduling architecture of 

CPA-WS is shown in Figure 2. The CPA-WS technique is modelled to schedule tasks with minimal 

cost by optimising energy consumption and meeting task deadlines and performance prerequisites 

without causing a congested HCC environment. Here an effective task queueing methodology is 

modelled for load balancing. The task queuing methodology comprises o HCC server T1,  T2, … ,  To 

with capacity n1, n2, … ,  no, and its computational capability is t1, t2, … ,  to. Let the HCC server 

Tj comprise nj identical servers with computational capability tj. The arrival load α is exponentially 

distributed with randomness (s)  and mean average (s̅ ) 1/α  considering the Poisson process with 

M/M/m queuing model. The CPA-WS technique segment the task set into o sub-set where the jth 

sub-set with arrival load αj is communicated to HCC server Tj, where 1 ≤ j ≤ o, α =α1 +α2 +

⋯+αo. An HCC server Tj retains a queue with boundless capacity for tasks in the queue, waiting to 

be executed when the whole server nj is busy. The scheduling is done according to first come, first 

serve with exponential randomness s  and mean s̅ . The  servers of HCC server Tj  have similar 
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computation capacity tj. Therefore, the computation time with exponential randomness is measured 

using the following equation 

yj =
s

tj
 (1) 

with mean 
 

 
Figure 2. Workload Scheduling Architecture of CPA-WS 

 

The mean task (i.e., the mean success rate), which is possible to be finished by the HCC server 

within \mathbit{T}_\mathbit{j}, is measured as follows. 

βj =
1

y̅j
 

(

(3

) 

In the meantime, the server will be busy, i.e., the resource utilisation is measured as follows. 

γj =
αj

njβj

=
αjy̅j

nj
=
αjs̅

njtj
 

(4) 

Let pj,l defines the probability that l task resides in a queue or can be handled in HCC server Tj 

is measured as follows. 

pj,l =

{
 
 

 
 
pj,0

(njγj)
l

l!
,   l < nj;

pj,0
n
j

njγj
l

l!
,   l ≥ nj;

 

 

 

(5) 

where 

pj,0 = (∑
(njγj)

l

l!
+
(njγj)

nj

nj!
∙

1

1 −γj

nj−1

l=0

)

−1

 

 

(6) 

y̅j =
s̅

tj
 

(2) 
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The probability of a newly arriving workflow task that will reside in HCC server Tj when the 

whole server in Tj is busy is measured as follows 

Pr,j =
qj, nj

1 −γj

= pj,0
n
j

nj

nj!
∙
γ

j

nj

1 −γj

 

 

(7) 

The average workflow task currently executed/waiting in HCC server Tj is measured as follows.  

O̅j =∑lpj,l = njγj +
γj

1 −γj

Pr,j

∞

l=0

 
 

(8) 

Similarly to Equation (8), the average workflow task completion time of HCC server Tj  is 

measured as follows 

Uj =
O̅j

αj
= y̅j +

Pr,j

nj(1 −γj)
y̅j = y̅j (1 +

Pr,j

nj(1 −γj)
) 

 

(9) 

The mean workflow task computation time of HCC server Tj is measured for ease. 

Uj =
s̅

tj
(1 + pj,0

n
j

nj−1

nj!
∙

γ
j

nj

(1 −γj)
2) 

 

(10) 

The energy needed for completing task execution is measured as follows 

Q = 𝒶𝒞𝒱2ℱ =δtμ (11) 

A represents the task characteristics, 𝒶𝓃𝒹 𝒱, 𝒞, ℱ, and t, depict voltage, load capacitance, clock 

frequency, and processor speed, respectively. In Equation (11), the δ is measured as follows 

δ =
𝒶𝒷2𝒞

𝒸2ρ+1
 

(12) 

In above Equation (12), the parameter 𝒷 and ρ defines a constant higher than zero. The μ is 

measured as follows 

μ = 2ρ+ 1 (13) 

The existing method considers both δ and μ across servers; However, in this work, it is not the 

case because of the HCC environment adopted; thus, I have a different value of δ and μ. Here I 

consider two different energy types such as static energy and dynamic energy type. The computational 

machine will not perform any task in the static energy type, and the energy consumed is measured as 

follows. 

Qj = nj (γjδjtj
μj + Qj

∗) =αjt̅δjtj
μj−1 + njQj

∗         (14) 

Similarly, in the dynamic energy type, the computational machine will execute the task/wait for 

the task's arrival, and the energy consumed is measured as follows. 

Qj = nj (δjtj
μj +Qj

∗)         (15) 

This work aimed at allocating ideal resources with minimal execution cost by optimising energy 

and processing time for executing workload tasks under an HCC environment with varying processing 

speed and power consumption.  

Let's consider an o HCC server with the size of n1, n2, … ,  no, with dynamic energy dissipation 

and computation capacity for execution of workflow with prerequisite s̅ with task arrival rate α, and 

have load distribution α1,α2, … ,αo in achieving high-performance efficiency is obtained through 

following minimisation function 

minU(α1,α2, … ,αo) (16) 

Equation (16) is subjected to the constraint described below 

G(α1,α2, … ,αo) =α (17) 
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where 

G(α1,α2, … ,αo) =α1 +α2 +⋯+αo (18) 

and γj < 1, ∀ 1 ≤ j ≤ o.  

Let's consider an o HCC server with the size of n1, n2, … ,  no, with dynamic energy dissipation 

and computation capacity for execution of workflow with prerequisite s̅ with task arrival rate α, and 

have load distribution α1,α2, … ,αo in reducing energy consumption is obtained through following 

minimisation function 

minQ(α1,α2, … ,αo) (19) 

Equation (19) is subjected to the constraint described below 

G(α1,α2, … ,αo) =α (20) 

where 

G(α1,α2, … ,αo) =α1 +α2 +⋯+αo (21) 

and γj < 1, ∀ 1 ≤ j ≤ o.  

Let's consider a heterogeneous computing platform  Tj; the cost outcome can be measured 

through the inverse proportion of execution time using the following equation. 

C =
1

Uj
 

(22) 

However, the proposed design considers the energy factor Qjinto for measuring cost as defined 

below. 

Sj = QjUj (23) 

The mean cost-performance S considering o heterogeneous computing platform T1,  T2, … ,  To is 

measured through the following equation   

S(α1,α2, … ,αo) =
α1

α
S1 +

α2

α
S2 +⋯+

αo

α
So  

(24) 

For simplicity, the above equation is rewritten as follows 

=
α1

α
Q1U1 +

α2

α
Q2U2 +⋯+

αo

α
QoUo (25) 

Here the workload tasks are scheduled by minimising Equation (16) and Equation (19) and 

meeting constraints defined in Equation (17), (18), (20), and (21) to bring tradeoffs between 

performance and cost. 

4. Simulation Results 

The experiment evaluates cost and performance-aware workload scheduling CPA-WS and 

energy-minimised scheduling (EMS) [17]. CloudSim3 [27] is used in modelling workload scheduling 

algorithms [28]. The complex workload Inspiral and CyberShake is used [29], [30] because it is widely 

used in validating various scheduling models [31], [32], where Inspiral requires more CPU and 

memory; however, the CyberShake requires CPU and I/O resources [29], [30]. Time efficiency, 

energy consumption, and cost efficiency are metrics used to measure the performance of CPA-WS 

and EMS. 

4.1 Time Efficiency vs Workload Size 

Here the time efficiency of CPA-WS and EMS is measured by varying the Inspiral and 

CyberShake workload task size from 30 to 1000. Time efficiency is measured as the time taken to 

complete the task; lesser time indicates better performance. Figure 3 shows the time taken to complete 

the tasks using CPA-WS and EMS for varied Inspiral workload sizes. Similarly, Figure 4 shows the 

time taken to complete the tasks using CPA-WS and EMS for varied CyberShake workload sizes. 

Experiments show that the CPA-WS is very efficient for smaller and larger workloads; however, EMS 

achieves inferior results for larger workloads considering both Inspiral and CyberShake workloads. 
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The CPA-WS improves time efficiency by 83.32% over EMS for Inspiral Workload. Similarly, The 

CPA-WS improves time efficiency by 79.16% over EMS for CyberShake Workload. 
 

 
Figure 3. Time Efficiency with Different Inspiral Workload Sizes 

 

 
Figure 4. Time Efficiency with Different CyberShake Workload Sizes 

 

4.2 Energy Consumption vs Workload Size 

Here the energy consumption of CPA-WS is measured, and EMS is measured by varying the 

Inspiral and CyberShake workload task size from 30 to 1000. The energy consumption is measured 

as the amount of power consumed in a watt to complete the task; a lesser watt indicates better 

performance. Figure 5 shows the energy consumed to complete the tasks using CPA-WS and EMS 

for varied Inspiral workload sizes. Similarly, Figure 6 shows the energy consumed to complete the 

tasks using CPA-WS and EMS for varied CyberShake workload sizes. Experiments show that the 

CPA-WS is very energy efficient for smaller and larger workloads; however, EMS achieves 

significantly higher energy for smaller and larger workloads, considering both Inspiral and 

CyberShake workloads. The CPA-WS improves energy efficiency by 44.85% over EMS for Inspiral 

Workload. Similarly, The CPA-WS improves energy efficiency by 24.35% over EMS for CyberShake 

Workload. 
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Figure 5. Energy Efficiency with Different Inspiral Workload Sizes 

 

 
Figure 6. Energy Efficiency with Different CyberShake Workload Sizes 

 

4.3 Cost Efficiency vs Workload Size 

 
Figure 7. Cost Efficiency with Different Inspiral Workload Sizes 

 

Here the cost efficiency of CPA-WS and EMS is measured by varying the Inspiral and 

CyberShake workload task size from 30 to 1000. Cost efficiency is measured as energy consumed and 

time taken to complete the task; a lesser value indicates better performance. Figure 7 shows the cost 

incurred to complete the tasks using CPA-WS and EMS for varied Inspiral workload sizes. Similarly, 

Figure 8 shows the cost incurred to complete tasks using CPA-WS and EMS for varied CyberShake 

workload sizes. Experiments show that the CPA-WS is very efficient for smaller and larger workloads; 

however, EMS achieves inferior results for larger workloads considering both Inspiral and 

CyberShake workloads. The CPA-WS reduces computation cost by 83.13% over EMS for Inspiral 
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Workload. Similarly, The CPA-WS reduces computation cost by 78.851% over EMS for CyberShake 

Workload. 
 

 
Figure 8. Cost Efficiency with Different CyberShake Workload Sizes 

 

5. Conclusions 

After studting different workload scheduling techniques for the execution of real-time workloads 

employing cloud computing platforms. The study identified that most existing workload scheduling 

focused on reducing cost by minimising processing time, energy, and delay; however, very few have 

focused on addressing cost minimisation considering both energy and processing time together under 

a heterogeneous cloud platform. This paper designed a workload scheduling technique by presenting 

energy and processing time optimisation constraint for reducing computation costs. Further, an 

effective load-balancing technique is presented for reducing the waiting time; adopting such a strategy 

significantly aid in utilising resource more efficiently. Experiment outcome shows the CPA-WS 

significantly improves time, energy, and cost efficiency by 83.32%, 44.85%, and 83.13% over EMS 

for executing Inspiral workload, respectively. 

Similarly, CPA-WS significantly improves time, energy, and cost efficiency by 79.16%, 24.35%, 

and 78.851% over EMS for executing CyberShake workload. From the result, it can be stated that 

CPA-WS computation cost performance gets profitable with increasing workload size compared to 

EMS. Thus, they are suitable for provisioning smaller and larger workloads with high profitability. 

Future work would consider improving resource usage efficiency and provisioning security for 

workload execution for performing different kinds of tasks. 
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