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1. Introduction 
 

MANETs are multi-hop wireless networks that may arrange and configure themselves without 

centralization and in which many mobile nodes link wirelessly and interact naturally in a fast-moving 

environment. There have been numerous MN implementations in both the civilian and military 

environments over the previous decades that have focused on MANETs. Two examples of such a 

deployment are an intelligent oil field or networks of wireless sensors utilized in a network of smart 

gadgets carried by soldiers on a battlefield. Additionally, MANETs were able to be quickly deployed 
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Abstract  

  

The MANETs differ from traditional networks in a lot of aspects, such 

as high channel error rates, unusual channel features, frequent link 

breaks, and intense link layer contentions. These characteristics 

significantly reduce network connectivity, which affects overall 

network latency, network overhead, network throughput (i.e. the 

amount of data successfully transferred via a MANETs in a 

predetermined amount of time), and packet delivery ratio (PDR). For 

effective network resources preparation and organization in MANETs, 

the mobility forecast of MN and units is essential. This effectiveness 

would allow for better planning and higher overall quality - of - service, 

including reliable facility availability and efficient management of 

energy. In this research, we suggest to use ELMs, which are renowned 

for their ability to approximate anything, to model and forecast the 

mobility of each node in a MANET. Mobility-aware topology control 

methods and location-assisted routing both leverage mobility prediction 

in MANETs. It is assumed that each MN taking part in these protocols 

is aware of its current mobility data, including location, velocity, and 

movements direction angle. This approach predicts both the locations 

of future nodes and the distances between subsequent nodes. The 

interaction or relationship between the Cartesian longitude and latitude 

of the erratic nodes is better captured by ELMs than by multilayer 

perceptron’s, resulting in mobility prediction that is based on several 

conventional mobility models that is more precise and realistic. 
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in unconventional circumstances like disaster recovery because to their capacity for self-organization 

and self-adaptation without the need for any original infrastructure. In MANETs, every node linked to 

the network is a peer node with the same features and abilities that enable them to function also as 

mobile routers. User nodes are often unaware of their future status and have unfettered movement. 

Although the communication range of nodes in MANETs is limited, they can nevertheless maintain 

routes and forward packets. As a result, packets are sent through several intermediate nodes in a multi-

hop process from source to destination. Because of this distinctive method of message transmission, 

MANETs depend on node cooperation to function [1]. 

 

 
Figure 1. The Generally Recognizable Visual Representations of Manets 

 

1.1. Issues Creation in MANETs due to Node Mobility  

Every MN in a MANET has the freedom to travel independently in any direction, therefore if a protocol 

or previously defined topology changes, the communication link between other nodes may be lost.  

Dynamic routing requires more energy as a result of higher Packet Loss Ratio (PLR) caused by rising 

node mobility. Network traffic overload is a common problem for the intermediary node that serves as 

the network relay. It is preferable to anticipate the next acceptable access point for mobile nodes (MNs) 

before the user nodes depart its present one in order to create more stable and reliable connections [2]. 

 

1.2. Positive Effects of Mobility Management  

Mobility prediction is a technique for dealing with issues brought on by node mobility. It does so by 

anticipating future network topology changes and calculating the trajectory of the MNs' future positions 

in a dynamic environment to guard against link failure owing to mobility. When compared to fixed 

wireless systems, the mobility prediction strategy for MANETs is better because it is easier to 

implement on mobile stations and requires no infrastructure. Our objective in considering these 

implications is to help MANETs accomplish mobility prediction. In order to effectively plan and 

manage the bandwidth resources available in wireless networks, it is important to estimate the mobility 

of wireless users and units. Because of the constant service availability and effective power management 

that result from this efficiency, planning can be done more effectively, and overall quality of service is 

increased [3]. 

 
Figure 2.An Overview of the Benefits of Mobility Management 
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This essay summarizes the advantages of mobility to help readers understand the significance of the 

positive effects. The old connection-based models are rewritten, and protocols that accommodate for 

remote mobility are developed. With the use of mobility, we might be able to enhance network capacity, 

enhance security, and lessen unpredictability. 

 

1.3. Prediction Of Mobility Using Deep Learning  

Deep learning is a method that has been put out to predict movements of nodes based on past movements 

to determine the present mobility of mobile stations depending on pause time, speed, and movement 

direction. Deep learning uses a deep structure made up of numerous processing layers to create 

extremely abstract representations of incoming data. Multi-layer neural networks (MNNs), also known 

as deep learning algorithms, are suggested for this purpose. Since there is still room for improvement, 

it is necessary to utilize NN to solve problems involving mobility prediction using deep learning. 

 

2. Literature Survey 
 

The challenges with MANETs node mobility are addressed in this research with a neural learning-based 

approach that effectively predicts future changes in the network structure [4]. The suggested predictor 

outperforms commonly employed mobility prediction algorithms and achieves accuracy scores that are 

orders of magnitude higher when applied to both simulated and real mobility traces [4]. The described 

mobility predictor can enhance the overall QoS in MANETs due to the reached accuracy [4]. 

The authors of this work recommend using universal approximation ELMs to evaluate and anticipate 

any node's mobility in a MANET [5]. In MANETs, mobility-aware topology control protocols and 

location-assisted routing both make use of mobility prediction [5]. Each MN in these protocols is 

considered to be aware of its current mobility information [5]. In this manner, both future node 

placements and future node-to-node lengths are predicted [5]. The proposed deep learning technique 

predicts the current mobility of mobile stations (MSs) based on their halt duration, velocity, and 

direction of motion. It does this by using the node movement history [6]. 

From a broad perspective, this chapter examines the effects of MANETs [7]. So avoid being too specific 

about movement and instead try to paint a bigger picture [7]. This chapter's objective is to support new 

strategies for utilizing mobility in MANETs based on the present environment and demonstrate how 

mobility may be beneficial in a variety of ways [7]. 

Ad hoc networking's service-oriented and application-oriented features may both benefit from mobility 

prediction [8]. For network-level tasks like call admission control, network resource reserve, service 

pre-configuration, and QoS provisioning, correct node movement forecast may be necessary [8]. When 

user movement forecast is integrated with the user's profile, the user may obtain enhanced location-

based wireless services at the application level, such as direction suggestions, local traffic flow reports, 

and online adverts [8]. The most important node motion forecast algorithms for MANETs in the 

literature are highlighted in this chapter along with their essential design principles and characteristics 

[8]. 

The amount of unreliability of the link between the nodes in a MANET rises as a result of node mobility 

[9]. A link failure can also result in a total route failure, which will impact MANET speed [9]. Therefore, 

it is necessary to research how node mobility affects the likelihood that a link will break or a route 

would fail [9]. This study provides a theoretical framework for examining how velocity impacts 

MANET performance in terms of typical network delay and direction-finding complexity [9]. 

Researchers in this work thoroughly assess the performance of various mobility handling techniques 

using single and multiple metric alternatives in an industrial WSN scenario [10]. The results show that 

in a variety of circumstances, the multiple-metric technique based on fuzzy logic adopted by the 

researchers outperforms any single metric-based strategy [10]. 

Using group user trajectory prediction as the foundation, the authors of this study suggested a proactive 

mobility management strategy [11]. Researchers discuss about a movable user trajectory forecast 

system that automates the LSTM network and reinforcement learning model training procedure [11]. 

Researchers are creating a group user trajectory predictor to lessen the computational burden of making 

predictions for users with similar movement patterns [11]. 

The authors describe a framework for secure mobility planning for extremely dense edge computing in 

light of the blockchains reduction in the need for redundant authentication across edge servers [12]. The 
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mobile handover and service relocation decisions made between base stations are jointly optimized 

using the Lyapunov optimization, which is then transformed into a multi-objective dynamic 

optimization process [12]. 

Here, researchers provide a paradigm for 5G mobile systems mobility prediction. Our research is based 

on the hypothesis that mobility in vehicular networks has strong correlation, which can be captured by 

cutting-edge neural network designs to predict the users' point of attachment [13]. Researchers use a 

combination of Markov chains, recurrent neural networks, and conventional neural networks to 

demonstrate this, training the networks on mobility trajectories determined by the radio signal received 

from mobile millimeter-wave devices [13]. 

The success and spread of the Internet of Mobile Things are still dependent on the management of 

resources efficiently and mobility [14]. The IoT's overall architecture includes routing as a key 

component [14]. The current routing protocol RPL is ineffective and susceptible to future research 

enhancements due to its extremely low sensitivity to mobility. In this study, the RPL protocol has been 

enhanced to accommodate network mobility [14]. Using the hop count statistic, researchers decreased 

the amount of hand offs to establish a continuous connection [14]. Due to this, network overhead was 

decreased and the rate of data delivery was raised [14]. 

The fundamental network of the fifth generation (5G) is service-oriented [15]. The control plane 

operations are connected using service-based interfaces, which enhance modularity and are more 

compatible with cloud networking [15] [16]. In this study, designers present a method for service-

oriented radio access networks in which the functionality of next generation application protocol are 

defined as lightweight services that are simple to test and debug [15]. The handover process is the main 

topic, and the handover control is presented as a service [15]. S. L. Bangare et al. [17-18] worked in the 

fields of machine learning and Internet of Things.  G. Awate et al. [19] employed CNN techniques. Xu 

Wu et al. [20] proposed the network security effort. A. S. Ladkat et al. [21] used deep neural networks 

well for brain tumor research. and colleagues. LMI Leo Joseph et al. [22] have worked real time. The 

research in [23-25] focuses on newest CNN architecture referred as capsule network. It has dynamic 

routing process that gives unique output signal to the upper layer regarding output class of the test input. 

The LSTM variant of this architecture plays vital role in several MANEts. 

  

3. Mobile Node Movement And Prediction Models 

 
3.1.  Mobility Models 

The usage of the node movement model is essential since it shows how the location, speed, and 

accelerating of mobile users change over time while also outlining their movement patterns. Utilizing 

mobility models is essential for accurately replicating the movement patterns of the desired real-world 

applications. Every mobility model has unique qualities. The initial step in managing mobility is to 

portray node movement using a realistic mobility model. There are several application situations and 

varied focuses for various mobility models. The mobility model that has been employed most frequently 

in recent research papers is summarized in Figure 3 below. 

 
Figure 3. Sorting the Current Mobility Models into Categories 
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The node movement models in modern research studies can be divided into two categories: I. Controlled 

Models or Proactive Models. II. Uncontrolled Models or Reactive Models. In controlled models, nodes 

adjust their trajectories proactively for communication. In addition to models of randomized or 

uncontrollable mobility, an approach to control the movement of a small proportion of chosen nodes 

and use this movement to enhance the performance of the network as a whole has been added in recent 

mobility study works. In the uncontrolled random movement model, researchers have proposed a wide 

range of ways to represent the natural mobility of nodes. The following are some examples of 

uncontrolled random mobility models. 

 

3.1.1 Mobility Model for a Random Walk 

Each node moves by selecting a random direction and speed from a set range to get from where it is to 

where it needs to be. Such a move is performed for either a constant time or a constant distance traveled. 

Then a new speed and direction are chosen.  

       In this mobility model, MN moves from its current location to a new location by randomly choosing 

both the direction and speed. The new speed and direction are both chosen from ranges defined in 

advance [speedmin, speedmax] and [0, 2∏], respectively. The movement can be calculated in two ways:  

I. either with a constant time interval t.  II. With a constant distance traveled d. The mobility model has 

a memory-less mobility pattern, meaning that each subsequent move is entirely independent of the one 

before it. 

 

3.1.2 Model for Random Waypoint Mobility 

This model incorporates a delay between changes in speed and destination.  Firstly, the MN chooses a 

random location and considers it as its destination and then it moves towards its destination with 

constant velocity, which is uniformly distributed between [minvelocity, maxvelocity]. After arriving at 

the destination, the MN pauses for a specific time before choosing another random destination. The 

pause time can have the value zero “0”, which means that it will continue its movement without any 

pause. This mobility model also is memory less.  

 

3.1.3 Model for Random Directional Mobility 

A constant speed and direction must be maintained by the node as it moves toward the simulation area's 

edge (or until another requirement is satisfied). Then, the node pause and a new direction and velocity 

are chosen randomly. Then the process repeats. 

 

3.1.4 A Model of Area Mobility in Boundless Simulation 

With this model, a limitless torus replaces the planar rectangular simulation field. 

 

3.1.5 The Gauss-Markov Mobility Model 

In this approach, the initial velocity and trajectory of each MN are predetermined. The direction and 

speed of each MN are updated at predetermined intervals of time n to create movement. The velocity 

and trajectory at the nth instance are determined using the velocity and trajectory at the (n-1)th instance 

plus a random variable, and are then calculated using the following equations: 

𝑆𝑛 = 𝑎𝑆𝑛 − 1 + (1 − 𝑎) 𝜇 + √ (1 − 𝑎2) 𝑆𝑋𝑛 − 1 

𝛼𝑛 =  𝑎𝛼𝑛 − 1 + (1 − 𝑎) 𝜇 + √ (1 − 𝑎2) 𝛼𝑋𝑛 − 1                            (1) 

Where Sn & αn = MN's new velocity and trajectory at interval n respectively, a= tuning parameter is 

used to change the unpredictability, 0<=a<=1, Random variables SXn-1 & αXn-1 = Gaussian distribution 

(GD) with a mean of 0 and a standard deviation of 1 respectively. μ has a stable value of 1. The equation 

yields values that are entirely random when a=0, or Brownian motion. The equation produces fixed 

values, which are identical to linear motion, for a=0.  In order to achieve different degrees of random 

movement, the value of a can be varied between these two extremes. Using its present location, speed, 

and trajectory of movement, the MN calculates its future destination at each time interval. The position 

of an MN at time intermission n is given by the following equations: 

𝑋𝑛 = 𝑋𝑛 − 1 +  𝑆𝑛 − 1 𝐶𝑜𝑠 𝛼𝑛 − 1  
𝑌𝑛 = 𝑌𝑛 − 1 +  𝑆𝑛 − 1 𝑆𝑖𝑛 𝛼𝑛 − 1                                                           (2) 
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The X & Y = MN's location at the nth and (n-1)th time intermission are (Xn, Yn) and (Xn-1, Yn-1) 

respectively. The MN's velocity and trajectory at the (n-1)th time interval are Sn-1 and αn-1 

respectively. 

 

3.1.6 A Probabilistic Iteration of the Mobility Model for Random Walks 

The random walk's previous action in this model affects its subsequent action. When a node moves to 

the right, there is a greater chance that it will keep moving in that direction than that it will stop. In 

comparison to the initial random walk model, this causes the walk to depart from the beginning position 

faster. 

 

3.1.7 Model for City Section Mobility 

 In this case, a virtual city's street map is merged with the random waypoint movement. These field 

streets are the only ones that the mobile nodes can travel through.  In a comparable concept, voronoi 

graphs stand in for the streets. Additionally, objects that block radio transmissions are used. 

 

3.1.8 Models of Group Mobility 

Group mobility is often added to the models previously discussed, where the behavior of the group is 

either specified by a function or the nodes are somehow connected to a group target or leader. There is 

a list of the many group mobility models here. 

1.  Model for Exponentially Correlated Random Mobility: A motion function produces a 

collective behavior in this instance. 

2. Model for Column Mobility: The line-shaped set of MNs advances in a specific manner. 

3. Model for Nomadic Community Mobility: A group mobility model where many mobile 

nodes move from one location to another simultaneously. 

4. Follow the Mobility Model: A target node is followed by members of each group as it moves 

across the simulated area. 

5.  Model for Reference Point Group Mobility: A logical center's path is used as the foundation 

for the group movement. Once more, the logical centre follows a model of personal mobility. 

 

3.1.9  Mobility Prediction Techniques (MPTs)     

In order to effectively deploy agent’s node throughout mission time and to fully utilize connectivity, 

MPTs are used to anticipate the positions of user nodes. The mobility prediction methods are 

categorized in Figure 4 below depending on the fundamental data used throughout the prediction 

process. The mobility prediction is performed using a standard position and velocity computation to aid 

the routing protocol. Ad hoc networks have mobility as one of its intrinsic characteristics. MANETs 

have no fixed infrastructure and nodes that can move around.  

Node migrations often don't affect the application in any way. However, the mobility patterns are 

frequently necessary for networks to function. Even though each node moves at random, their mobility 

model nevertheless has some fundamental principles. The first stage in managing mobility is to create 

and choose a realistic mobility model that accurately represents and forecasts node movement in 

MANETs.  

 
Figure 4. Sorting the mobility prediction Methods into Categories 
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We divide the mobility prediction techniques for MANETs into the three groups shown in Figure 4: 

1. Using Movement History: This mobility prediction method predicts a mobile user's future 

position based on the user's prior movement history or patterns. 

2. Using Physical Topology: Which make their predictions based on the characteristics of the 

physical topology of the MANET and which rely on a GPS to establish the specific node position 

and mobility data? 

3. Using Logical Topology: This mobility prediction technique selects a logical topology of the 

MANET to carry out their prediction process (such as a clustering structure). They don't utilize a 

GPS since, in contrast to the previous category; they don't need precise position and mobility 

information.  Other methods may be employed to acquire estimated values for node location and 

mobility information (e.g., Inferring the mobility of each node from how the neighborhoods of 

the node changes over time can be used to estimate internode distances, as can measuring signal 

attenuation vs. travelled distance). 

For each of the aforementioned categories, we offer well-recognized forecast methods, 

classifying them into groups based on the applications they are used for or the particular forecast 

process they are based on. 

 

4. Extreme Learning Machine Improves Node Movement Prediction 
 

A SLFN training algorithm called ELM converges significantly more quickly than traditional methods 

and yields encouraging results [16]. ELM operates with greater consistency, potency, and accuracy. 

Regression, clustering, regression, and classification are just a few of the real-time learning issues that 

ELM has successfully been used to due to its exceptional performance. Mobility prediction systems 

must be used in wireless networks for effective planning and better QoS. Accurate wireless user and 

device mobility prediction is made possible by these technologies, allowing for proper coordination and 

usage of the network communication channel capacity and energy properties. In this paper, the 

movement patterns of any number of nodes inside a MANET are modeled and predicted using ELMs. 

 

4.1. Theoretical Foundations 

This section will demonstrate the theoretical study of fundamental ELM. The most popular artificial 

neural network structure, SLFNs, was the inspiration for the development of ELM.  

 
Figure 5. Framework of SLFN 

 

Figure 5 illustrates the three levels of a typical SLFN: I. Input Layer, II. Single Hidden Layer, and III. 

Output layer. Table 1 contains the notations. Input and output vectors are represented by x and o.  The 

hidden layer's bias and the weight from the input are represented by w and b, respectively.  β refers to 

the output weight. The goal of network training is to select the parameters that lead to the best outcome. 
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4.1.1  SLFN training 

The training problem for SLFN will be briefly introduced in this section. Assumed a training set S= 

{(xi, ti)| xi = (xi1, xi2,…, xin)
T ∈ Rn, ti = (ti1, ti2,…, tim)T ∈ Rm}, where the input value is represented by xi 

and target denotes ti, the ELM's output o with Ñ hidden neurons can be expressed as: 

Ñ𝛴𝑖 = 1 β𝑖𝑔(𝑊𝐼 +  𝑏𝑖)  =  𝑂𝑗, 𝑗 = 1, … . . , 𝑁                              (3) 

Where, g(x) stands for the hidden layer's activation function. ELM provides the system with nonlinear 

mapping by using nonlinear activation functions. Several frequently used activation functions are 

shown in Table 2. 

Table 1. Number of Activation Functions in ELM 

 
 

The purpose of training is to decrease the error between the output of the ELMs and the target. Mean 

squared error (MSE) is the object function that is most frequently used: 

𝑀𝑆𝐸 =  Ñ𝛴𝑖 = 1(𝑡𝑖𝑗 − 𝑂𝑖𝑗)2, 𝑗 = 1, … … . , 𝑚                           (4) 

Table 2: Nations 

 
 

Where, N represents the number of training samples, i symbolize the training sample nodes and j denote 

output layer. It can be shown that when N approaches infinity, SLFN can approximate all training 

samples. 

𝑁𝛴𝑗 = 1 𝑙𝑙 𝑂𝑗 −  𝑡𝑗 𝑙𝑙 = 0                                                (5) 

The universal approximation capacity is satisfied by a set of wi, bi, and βi that is known as: 

Ñ𝛴𝑖 = 1 𝛽𝑖𝑔 (𝑤𝑖𝑥𝑖 +  𝑏𝑖)  = 𝑡,      𝑗 = 1, … … . . , 𝑚                             (6) 

 

The previous equation can be condensed to 

𝑯𝜷 =  𝐓                                                                     (7) 

𝑯 (𝑤1, . . . . . . . . , 𝑤Ñ, 𝑏1, … … . , 𝑏Ñ, 𝑥1, … … . . , 𝑥𝑁)  = 

𝑔(𝑤1𝑥1 +  𝑏1) … … … … … . . 𝑔(𝑤Ñ𝑥1 +  𝑏Ñ) 

. 

.                                                                      (8) 

. 

. 

𝑔(𝑤1𝑥𝑁 +  𝑏1) … … … … 𝑔(𝑤Ñ𝑥𝑁 +  𝑏Ñ). 
                                     βT 

1                                        t
T 

1 

                                                                           .                                   . 

                                                                Β=       .             ,           T=     .                               (9)                                         
                                                                           .                                   .                                   

                                                                          βT 
Ñ   Ñxm                                 t

T 
N     Nxm 
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Finding the best wi, bi and βi is hence the goal of training the SLFN. 

 

4.2. Fundamentals of ELM 

A linear parameter solution and random initialization are the first two steps in an ELM's basic training. 

Training first stabilizes the random parameters wi and bi that ELM uses in its hidden layer. 

 

Table 3. Training of ELM 

 
The input vector is transformed into an unpredictably determined feature space with nonlinear 

activation functions and randomly chosen parameters, which is more efficient than learned parameters. 

ELM offers the capacity to approximate any function with a nonlinear piecewise continuous activation 

function. Given that Hβ=T is a linear issue, the Moore-Penrose inverse can be used to find βi in the 

second step. Table 3 provides an overview of the ELM training. Without continuously fine-tuning 

hidden parameters, ELM can produce higher generalization performance. 

 

5. Two Dimensional Long Short Term Memory (LSTM) 
 

Deep learning is now widely employed across many industries, including data processing, speech 

recognition, semantic comprehension, and picture processing. Deep learning has gained popularity 

recently in the realm of inertial navigation as well. Deep learning technologies, such as recurrent neural 

networks and LSTM networks, have a number of advantages over forward networks when simulating 

nonlinear systems. 

The system's capacity for error prediction is enhanced by the usage of 2D LSTM. In this paper, a 

technique is put forth that makes use of 2D LSTM to estimate positional data based on GPS location 

data. Through simulation, the value range of the 2D LSTM hyper parameters is investigated with an 

eye toward the structure of the 2D LSTM. 

 
Figure 6. The Future Position Is Predicted Using the 2D LSTM Net Structure 

 

The rounded rectangle in the 2D LSTM cell in Figure 6 represents the neural network layer of the 2D 

LSTM. The output of an operation is multiplied by a rounded rectangle to produce a gate. Gates are 

used to regulate the state of the 2D LSTM cell. The repeating module of a 2D LSTM cell is composed 
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of four interconnected layers: a forgetting gate layer, an input gate layer, a new candidate layer, and an 

output gate layer.  A sigmoid function is used in the 2D LSTM net construction to actualize the gate: 

𝜎(𝑥) = 1/1 + 𝑒−𝑥                                                (10) 

A sigmoid layer creates the forgetting gate layer: 

𝑓(𝑡) = 𝜎(𝑊𝑓[ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑓)                                    (11) 

The input gate layer decides what new information will be added to the cell state. There are two steps. 

A sigmoid layer first selects the values that need to be updated. The state is then expanded upon by a 

layer of the hyperbolic tangent function (tanh), which generates a vector of additional potential values, 

𝐶̃(𝑡). 
𝑖(𝑡) = 𝜎(𝑊𝑖[ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑖)

𝐶̃(𝑡) = 𝑡𝑎𝑛 ℎ(𝑊𝐶[ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝐶).
                                 (12) 

The new candidate layer is used to update the old cell state, C (t-1), into the new cell state, C (t), as 

illustrated in the equation below: 

𝐶(𝑡) = 𝑓(𝑡) × 𝐶(𝑡 − 1) + 𝑖𝑖 × 𝐶̃(𝑡)                                           (13) 

The location where the output is decided is the output gate layer. First, the decision of the internet to 

forget earlier will be forgotten.  After that, the new candidate values are scaled. We choose the output 

last. The results are determined by the cell states. The following equations represent the output 

computation: 

𝑂(𝑡) = 𝜎(𝑊𝑂[ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑂) 

ℎ(𝑡) = 𝑂(𝑡) × 𝑡𝑎𝑛ℎ (𝐶(𝑡))                                                      (14) 

The 2D LSTM structure can make use of i(t) to decide when to keep or override information in memory 

cell C(t), and O(t) to decide when to access memory cell C(t) and when to stop other units from being 

disturbed by C(t). The information is output as O(t), and the LSTM structure information is output as 

h(t). 

The forgetting gate in the structure allows the 2D LSTM net to achieve conditional predictions that 

depend on time. In other words, the 2D LSTM learns the properties of location information connected 

to time while learning a huge amount of GPS position data. The GPS determines the details of the 

current inertial position based on the previous step. The GPS integrated navigation system, which uses 

KF to estimate position information, is currently built on the final step estimation. The processed ones 

can be compared to a time-based conditional prediction. In light of this, we may estimate location data 

using LSTM and GPS position data. 

 

6. Results And Performance Analysis 

 
The training rate is 0.8, as seen in Figure 7. This shows that 80% of the input dataset is made up of the 

training set, and the remaining 20% is made up of the test set. The 2D LSTM is used in practice to 

determine input and output size. 

 

Figure 7.The 2D LSTM Is Trained And Tested To Estimate Positional Information. 
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Figure 8. Gauss-Markov Mobility Prediction Using an ELM Model (Training Phases) 

 

The input set includes GPS data, which includes positional data in two dimensions, as seen in Figures 

6 and 7. The training target data are the GPS data and the 2D LSTM input. The output dataset contains 

both the two-dimensionally projected inertial location and the output of the two-dimensionally LSTM, 

with the number of dimensions based on the two-dimensional LSTM structure. 

 

 
 

Figure 9. Gauss-Markov Mobility Prediction Using an ELM Model (Testing Phases) 

 

 
Figure 10. Using MLP, Predict Two Mixed Mobility Modes (Training Phases) 
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Figure 11. Two Mixed Mobility Modes Are Predicted Using MLP (Testing Phases) 

 

Table 4. The Statistical Analysis between 2D LSTM, Random Forest and Geometric Progression 

 

 Datasets  Parameter Matrix 
Proposed 2D-

LSTM 

Random 

Forest 

Geometric 

Progression 

Dataset 1 

Mean Absolute Error (MAE) 5.5 16.57 13.715 

Root Mean Squared Error 

(RMSE) 
5.5227 13.94 13.23 

Dataset 2 

Mean Absolute Error (MAE) 2.5 7.53 6.234 

Root Mean Squared Error 

(RMSE) 
2.5495 6.44 6.11 

Dataset 3 

Mean Absolute Error (MAE) 3.5 10.54 8.728 

Root Mean Squared Error 

(RMSE) 
3.5355 8.93 8.47 

Dataset 4 

Mean Absolute Error (MAE) 4.5 13.56 11.222 

Root Mean Squared Error 

(RMSE) 
4.7434 11.98 11.36 

Dataset 5 

Mean Absolute Error (MAE) 4.5 13.56 11.222 

Root Mean Squared Error 

(RMSE) 
5.1478 13 12.33 

Dataset 6 

Mean Absolute Error (MAE) 1.5 4.52 3.741 

Root Mean Squared Error 

(RMSE) 
1.5811 3.99 3.79 

Dataset 7 

Mean Absolute Error (MAE) 3.5 10.54 8.728 

Root Mean Squared Error 

(RMSE) 
4.3012 10.86 10.3 

Dataset 8 

Mean Absolute Error (MAE) 1.5 4.52 3.741 

Root Mean Squared Error 

(RMSE) 
1.5811 3.99 3.79 
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Figure 12. The Performance Analysis (2D LSTM VS Random Forest VS Geometric Progression) 

 

7. Conclusion  
We suggest an innovative approach for predicting node mobility in a MANET in this paper. The 

cornerstone of the suggested solution is the ELM, which is architecture with a single feedforward layer. 

In contrast to MLPs, ELMs don't need any parameter tuning, and the performance of the predictions is 

unaffected by the initial weights. Additionally, ELMs better capture the interaction and correlation 

between the arbitrary nodes' Cartesian coordinates, resulting in more precise and realistic mobility 

predictions based on a variety of conventional mobility models. The simulation results are utilized to 

demonstrate how the recommended prediction method can significantly outperform conventional 

methods based on MLPs.  In a further study, the recommended prediction method will be developed to 

predict routing tables, which will reduce the volume of data transferred in MANETs and lengthen the 

battery life of the node. 
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