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Abstract: Classical spectrum sensing techniques
maximum likelihood (ML) detection for identificatioof spectrum
holes. The approach is sub-optimal for the casene¢qual priors
where the probabilities of channel occupation aadancy are not
the same. Such situations are bound to occur irt cwamercial
bands such as GSM etc and hence are of more intéresloss in
performance has been disregarded as negligiblest of the work
done on spectrum sensing techniques. This papentifies the
effects of changing priors on classical energy a&te and infers
that the loss in spectrum sensing performancetisi@gligible. The
deterioration is especially considerable at low SiRies and at
low probabilities of channel occupation. This pagiens atderiving
an optimum threshold for achieving minimum probiapibf error
for unequal prior case. Detection based on theqgaeg threshold
out-performs classical detectors under the assomftiat priors are
known at the receiver.
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1.

Rapid expansion in communications has caused aareipp

I ntroduction

utilizééecomes aware of its surroundings is termed astrsjpec

sensing and is a key challenge for cognitive radibise
prime objective of spectrum sensing is to identihe
presence or absence of a licensed (primary) usem in
channel. Various spectrum sensing algorithms hasenb
suggested each with its own strengths and weaks§tbe
[3]. Most of these algorithms utilize some sort of
probabilistic modeling to detect the primary usar the
observed spectrum [1]. These decision models amerghy
based on Maximum Likelihood (ML) detection wherdahg
likelihood probabilities of the signal and noiserfothe basis
of detection [4]. The section Il of this paper déses
classical ML detection. The section Il indicatearigus
performance metrics used in literature to judgeabeuracy
of the spectrum sensing algorithms [5], [8]. Settiky
analyzes classical approaches to decide the tHoedwel
used to discriminate the noise from the signal &meir
related performance metrics. We have re-derivedsethe
metrics in terms of SNR and buffer size to make the
comparison more meaningful. An optimal minimum

spectrum scarcity whereby, the available spectruas hprobability of error detector has been suggesteskation V.
already been allocated to potential users by vario@pection VI gives the simulation based results.

governing agencies. Analysis has revealed thatafmrent
scarcity is attributable to the inefficient fixecpextrum
allocation techniques. This implies that althoughe t
spectrum has been licensed to various users bugjarm
portion of this licensed spectrum remains unddizetl. For
example, Federal communication commission (FCCygda
the spectrum usage in USA between the ranges 1586%0
at all times [6]. This has opened a new avenuesearch to
explore more efficient but complex dynamic spectagoess
techniques. Dynamic spectrum access envisions $beofl
licensed spectral bands by smart unlicensed cegnitsers
that can exploit any opportunities that may existhie form
of temporal or spatial holes. A spectrum hole &t thart of
the spectrum where the primary users' transmissti@ngth
falls below a certain regulated level termed asrfetence
cap by FCC [6]. The smart nodes that form the sdaon
users are called cognitive radios [7]. A cognitiaélio is an
evolved software defined radio that in addition
reconfiguration capability also possesses the tabitd
analyze its surrounding radio environment. Thigwad the
cognitive radio to decide how best to reconfiguself in
existing radio conditions. The capability of a citiye radio
to adapt to its surroundings greatly depends uperatmount
and accuracy of information it can acquire abostradio

2. ML Detection

The ML detection is a binary hypothesis test tofiron
the presence or absence of the sigrial) in a buffer size
of Ny samples. Assuming that the received sign@l) is
being tested for the presence or absence(wf in white
Gaussian noisg(n), the hypotheses would be

ho : y(n) = z(n)

hy: y(n) = s(n) + z(n). 1)

If p(D|h;) is the likelihood of receiving test statisficfor
the hypothesish;, then it's probability density function
p(D) would be the weighted sum of two conditional
likelihood probabilitie (D |h;).

to

p(D) = p(D|ho)P(ho) + p(D| hy)P(h1) 2

As we are assuming different variances for the two
likelihood distributions, D = Zﬁilly(n)lz would be a
sufficient test statistics for confirming the hypesis [14].
Assuming that the samples of(n)and z(n)are

environment. The process by which the cognitiveioradindependent and identically distributed Gaussian in
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amplitude s(n)~N (us, 05), z(n) ~N (u,, o,)then Dwould
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are given according to the prior probabilities oégence

be the sum ofVy; squared Gaussian samples and wouldf a hole or primary user in the channel.

therefore be Chi - Square distributed wiNp degrees of
freedomy?,. The Chi-Square distribution can
approximated as asymptotically Gaussiar(D|h;) ~

N (up,, op)in accordance with central limit theorem [12]

for a large buffer sizé;. The meanu,, and variancesj,
of the two likelihood distribution®(D|h;) can easily be
deduced using the definition of variance and thetreg
limiting theorem, however the proof is not givenrde
because of lack of space.

HUp, = Ng(uz +07) (3)
o, = Ngl(u, +u9)* + 07 + 7] (4)
05, = 2NpQ2uio7 +o;) ®)

0B, = 2Ns[2G, +Ks)*(0F +02) + (F +2)?](6)

3. Performance Metrics

The various performance metrics used in literafgtdor
comparing performance of the spectrum
algorithms are summarized below.

3.1 Probability of False Alarm (Pgg)

be

SensiNGresholdt the ML detection model is

P, = P(hy|ho)P(hy) + P(holhy)P(hy)

= P(hy)Q (%) + P(hy)Q (— %) (10)

3.5 Sensing Error Floor (SEF)

The minimum detection error obtained by choosing a
sensing thresholdigzr that may result in equal error
probabilities of false detection and missed detectis
known as sensing error flo&EF).

SEF = P(hy|hy) = P(holhy)
SEF = Q (m) = Q(—ﬂ)

O'DO G'D1

(11)

4. Literature Review

The aim of hypothesis testing is to devise a sensin
threshold 2 that suitably divides the two generally
overlapping distributions inp(D) while optimizing a
certain selected performance metrics. For a sensing

ho
p(Dlhl) § T(A)

Lr(D) = Gy N

(12)

1

The probability false alarm is a measure of missedwherGLR is termed as the likelihood ratio &f versus

opportunities. This is important from a secondaseru
perspective as it indicates the failure to identifgsence
of a spectrum hole, while actually it did exist.

Py = P(hy|hy)
=P(D > 11]hy)

- f p(Dlho)dD
A

-
= o (Gi=) ™
Do
where Q-Function is the tail probability of the redard
normal distribution and is is the sensing threshold.

3.2 Probability of Missed Detection (P,,,4)

The probability of missed detection is a measurfaibdire
to identify an existing primary user in a channel.

Pfa = P(holhy)
=P(D <Alhy)
A

f_wmmhl)dn

— _ A_ﬂDl)
o (-5
3.3 Receiver Operating Curve (ROC)

Receiver operating curve is another conventionahou

of summarizing the performance of a detector. Himsply

a plot of P, versusPr, where P, = 1 — Ppq4 is the

probability of detection.
P, =Q (M)

O'Dl

®

9)

3.4 Probability of Error (P,)

The probability of error is the overall error megsu
obtained by weighted sum &,, andP,. The weights

h, for different values oD. T(4)is the ratio of likelihood
distributions at sensing thresholdd =24; T(1) =

p(41h1)/ p(4lho).
4.1 Neyman - Pearson Theorem

An application of Neyman - Pearson theorem [9],] [24
[16], aims at optimizing probability of detectidtyunder

the assumption that a certain fixed levelRf = a has
been assumed as acceptable. The advantage of this
approach is that the sensing threshgld can be derived
simply from the noise parameters without any knalgke

of primary user transmission. This implies a non-
parametric, blind spectrum sensing. The sensing
thresholdp,P,,q andPpin this case can be deduced as

Anp = 0p,Q (@) + up, (13)
= (- 220 (@) - i) (14)
Py = (2207 (@) + Hets) (15)

SEFin this case cannot be defined in this casePgss
fixed while the consolidated probability of errer i

P, = a P(hy) + P(h)Q (_Z_Z:Q_l(“) - M) (16)

O'D1

4.2 Sensing Threshold for Achieving SEF

A more accurate ML classification approach [4] sestg
selection of a sensing thresholt;r that results in
achieving sensing error floor under the assumption
thatP;, = Ppq. Sensing thresholdszr can be deduced in
this case by equating Eqn. (7) and Eqn. (8).
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A'SEF = _ﬂDlzDO:ZDOUDl (17) PE(ANP) = ap(ho) + P(hl)

Do 7Dy _

P¢q,Pma, P, and SEF are all equal in this case and are Q (\/F;H [Q‘l(a) - %SNRD (22)
according to Eqn. (11P,may be found from either noise
or signal parameters. P.lens) = 0 \/T—BSNR 23)

p — ASEF— SEF) =
Pp=0Q (—%) =0 (%Mh) (18) ¢ 1+Jy—_15NR2+25NR +1
Do Dy 2

4.3 Minimum P,Detector wherey = E[|s(n)|4_]/{E[|s(n)|2]2is a measure of
o ) ) randomness of the signal [4] and varies betweea 2.t

The minimum P.detector is a special case of a morg, deducingP,(4p,) in terms of SNRand N we first

general Bayesian detector which aims at optimizimg convert Eqn. (21) in terms SiVRandV

P.assuming that the prior probabilities of hypotheaes ' B

1 2 1 2 \?
known [14]. The likelihood ratio for minimurf,detector Ap, = —2(1 + —) + [—4(1 + —) +
is given as 9z SNR 9z SNR
SNR 1 1/2
T(APe) = % (19) Ngo} {T + (2 + ﬁ) In(BV2SNR + 1)}] (24)
1
and the detection model becomes Ap, Ng
ho Pe(Zp,) = P(ho)Q | == |5 |+ P(h.D)
< 024/2Npg
P(hy)p(D|hy) s P(ho)p(D]hy). (20)
hy -1 Ape Np
The sensing thresholth, can also be deduced in terms of Q (\/m [agm B T(SNR + DD (25)

parameters of likelihood distributionsp(D|h))by  The comparison of the analytical results f@r for the
considering thab (ho) p(4e,|ho) = P(h) p(4p,[h1). This  three classical sensing threshold®éh,) = 0.7 has been
results into a quadratic equation that can be sfieglto  displayed in Figure 1. The figure elaborates tbatigher

get the sensing threshold as SNR and NgztheP,reduces to zero for all three cases. For
1, = HDo T Up, n low SNRandNgtheP,is maximum fordypandisgy.
Pe — 2 2
O-D - O-D - . -
' ’ iy +uny \2 5. Derivation of Optimal Threshold for
[(aplz-anoz) + Unequal Priors Case

ubooby +ith, 9B, b, 9B, 1n(3m+1)]%(21) As implied by Eqn_. (2) t_he_rec_eived test statisticthe
op, -0}, sum of two joint distributiong(D) = p(D, hy) +
wherg3 = P(hy)/P(h,) is the ratio of priors. The p(D, hy). The minimumP,detector described in Eqn. (20)
performance metrics in this case are given by E@fjs- attempts to bifurcate the two distributions by takitheir
(11)witha = 2,,, further simplification not being possible. Point of intersection as the sensing threshgldHowever
, , as the two distributions acquire distinct paran®tehe
4.4 Comparison of the Sensing Thresholds point of intersection is not an optimal threshofd/more.
P.is considered here as the most suitable performangg propose an optimal sensing threshold for theeBimy
metric for comparison. In order to make the comgmari case (with known priors) which aims at minimizinget
more meaningful th&,can be reflected in terms of bufferjoint detection error. Assuming a sensing threshgjgl
size Ny and SNR. Under some reasonable assumptionghe suggested Maximum Aposterior Probability (MAP)
P, for the three sensing thresholds can be deduced usdetection model is:
Eqgns. (3) —(6) as

Peyp)

300

300

300 250

Figure 1. P, for changing SNR and\at P(l)=0.7 and P({) = 0.3
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Figure 2. P, for changing SNR andd\at P(f)=0.7 and P({) = 0.3 usingi,,

h'() op,0 2
_ P(h)pDlhy) —D\/ Up, — tp. ) +In(B?) (up .02 — up. o2
Pe(D) = Loptoing) = P (Ront) @6) o, op N Uion T Ho0) (kous, = to.5,)
hy (28)
where the posterior ratio threshold would®@,,.) = The same equation can be represented in teri&y Band

P(hy|2A0pe)/P(ho|A0p). It may be noted that Eqn. (26)buffer size. For simplicity we represent the repeaterm
reduces to Eqn. (20) forP(4s)=1in which case 2SNR + 0.5SNR*(y —1) asfr. Pfor this case is
P(hy|2p,) = P(ho|2p,) as used in deduction of Eqn. (21).9iven as Eqn. (30) and has been plotted in Figure 3
In order to achieve simultaneous reduction in therein ~ Clearly the selected threshold results in extensive
detecting joint distributiong(D,h;), we devise the improvement i, reducing the error ceiling considerably.

sensing threshold,,,.by equating the error induced in Agye ~ G2 [NB (1 _SNR) n
both cases. ’ snr
© Aopt 1 2 (NgSNR)?2
f P(hy)p(D|hy)dD = f P(h)p(D|hy)dD \/ L+ o (2 Np In(p2) + 2T )] (29)
lolpt 5 e The threshold can be prevented from becoming cample
BQ (OW—_“DO) = Q (_0“—_’”’1) (27) by keeping a reasonably large buffer size. For eptama
ODg 0D

fbuf‘fer size of 400 samples is sufficient to keep timder
root terms as positive for SNR ranging from -25 t0B5
dB andP (h,)between 0.1 to 0.9.

)lOpt \/N_B

AS up, > Aoy > up, We can achieve an approximation o
Aope by utilizing the Chernoff bound for Q-function and
finding the roots of resulting quadratic equaticfhe

arguments of the Q-function in this case are the

i . o P.(2 =P(h e +P(h
Mahlanobi's distances of the distributions from the e(Aope) = P(ho)Q o2 2N 2 (h1)
. . . z B
threshold. The Q-function and its Chernoff approiion
-1 Aopt _ NB
0s Chernoff Approximation for Q Function Q <m [ng 2 (SNR + 1)]) (30)
\\ I I I ' I ' :ghFl::“fifoA"ppmximati n
o\ ﬁ 6. Simulation Results
ol ] The simulations have been carried out for simpl&SRP
oz 1 case considering zero mean AWGN and varying
| ] conditions ofNR = u} /o5 . In order to elaborate the
oosf S ] effect of priors three different prior ratios8 =
L I 2.;\; I T R S T P(hy)/P(hy)have been simulated assuming(h,) =
0.3,0.5 and0.7. In classical ML case the priors would be
Figure 3. Accuracy of Chernoff Approximation equal and g would be unity. However as the prior

probability of channel occupatioP(h,;) changes in
are plotted in Figure 2. The approximation is hyghl comparison to the probability of channel vacaB¢¥,),
accurate at very low and very high SNRs and quiteffects of changing priors become prominent. Tha sd

reasonable otherwise. P(h,) and P(hy) remains one in all cases. In Figure4—7
3 ~#DOGLZ>1—HD1050 we plot the effects of changingNR on P.for three
opt ~ 0% — g2 + different values ofswhile using the four different sensing
1 0

thresholdsAyp, Asgr, Ape @nd Aq,, for signal detection.
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Thep is simulated as 1 (classical ML case with equarhere is improvement for high channel occupancy in
priors), 2.33(P(hy) > P(hy)) and 0.48P(h,) > P(hy)). The comparison to the previous two thresholds. For the
buffer size is fixed at 400. As evident from theults, the low P(h,) the P,increases.

changingg has significant bearing on the accuracy of the Paliy,,) for Plh =07

spectrum sensing algorithm. ;

0.
Po(dp) for P(hy)=0.7 using A, M F\\\\‘
T T T T 0
E E [}

) for P(h)=0.5

ik
0.5 T Polhge]

0.8 .
& i i ! ! ! s ED) 5 0 H 10 15
Pe(ASEF) for P(hn)=°'3
1 -
* 4. » —4— Theoretical Pe(___)

- SEF

L - - . ; i T4 . —w—Actual Pel(rge) |-
Pei, o) for P(hy}=0.3 using &, M
s J ? ) " [ Tneoretical Petiy,) s K # SNR ’ K "
—w--Actual Pe(A ) 7
KN : 1 L Figure 5. Effect of Changing SNR o, for different g
usingAggr

Lo

Figure 4. Effect of Changing SNR o, for differentp
usingAyp As the point of intersection of the two posterior
distributions has been considered as the threshbk,
The effects of changing for Aypare indicated in Figure4. asymmetric distributions imply a drop Ry, while on the
For the typical ML case where the priors are equapther hand a sharp increase,jp. HighP,,,scaled by a
theP,, sandPyfollow the calculated theoretical results.high p(h,)results in overall increase Bn This justifies
However as the ratio of priors becomes un-symmeéfiéc our assumption that the point of intersection af two
results greatly vary from theoretical values beeatl® posterior distributions is not an optimum threshfadthe
effects of changing priors have not been considereite  unequal prior case.

selecting the threshold. There is deterioratiadffior high Pelh,) for Pl =07

P(hy) because the high prior value for signal distribnti ; : e

and low prior value for noise distribution pushdset °% . . . . . . e

distributions closer thus increasing the overlaphisT % ) s 0 EEESS i

Pel,,) for P(n)=0.5

increased overlap results in increaBedAs the two
likelihood distributions have been scaled by ddéfar
factors, thé,pis not accurate anymore and cannot ensur

a fixed Pr, as desired. The situation is especially poo * ' T pethy for Ping=0.3

whereSNR andP(h,) are both very low. This is because 0:_ : g ' ' Theoretica Pe(i )
the noise distribution which already has a larggavee . J \\,_r , ' .
(low SNR) is further shifted to the right overlapgithe s 0 s i ) i s

signal distribution due to multiplication with ar¢ge prior ) ) )

value. This results irP,,, and Py, both approaching to Figure 6. Effect of Changing SNR o for different
unity. This amply elaborates thaty, would perform USINdZee

extremely poor in case of low channel occupanc¥ )
conditions. For highP(k,) the distributions are pushed ' "€ results for our proposed approach of selectigas
further apart than the perceived ML case while waling the sensing threshold have been displayed in Figdree
the threshold. This results in reduced overlaphef two theoretical values of,do not tally with the simulated
distributions and improvement B. results except for_ eqqal prior case, as these asedoon
Fordgr, the theoretical and simulated results matcfrhernoff approximation. At higR(h,), Aopcbehaves
exactly for equal priors case as reflected in Fegur similar to thelgzzbut as thep approaches to unity, the
However, the change in priors results in variationg, as benefit of using this threshold become obvious.gA
the priors were not incorporated while selecting thlthe Ag,.gives exactly the same resultsigs. This
threshold.P,deteriorates for high?(h,) and improves for validates our analysis that instead of considetivegpoint
low P(hy)for similar reasons as discussed in the lastf intersection as threshold, we are aiming to cedthe
paragraph. However the in this case drops to zero whileoverall error by simultaneously reducing tiR, and
for theiyp, it could level off toa P(hy)at best. Thus P,4in the overlapping posterior distributions (as used
Asgroutperforms Aypbut does not cater for changingEqn. 27) by equating them. As the probability of
priors. occupation further reduces, the proposed threstuedtly
Simulation results reveal that thig.is the most robust reduces the overalP, and outperforms the classical
classical detection technique against changing patues approaches with significant margin (13.56 dB, 9dR
(Figure6). The simulated results are quite simitathe and 15.44 dB improvement ovVieNP,Agzr and Ap,
theoretical values for maximum SNR range. respectively aP(hy) = 0.3 and SNR=-15dB).
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