
93
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

Automatic Building of a Powerful IDS for The

Cloud Based on Deep Neural Network by Using a

Novel Combination of Simulated Annealing

Algorithm and Improved Self-Adaptive Genetic

Algorithm

Zouhair Chiba1, Moulay Seddiq El Kasmi Alaoui1, Noreddine Abghour1 and Khalid Moussaid1

1LIS Labs, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Morocco

Abstract: Cloud computing (CC) is the fastest-growing data

hosting and computational technology that stands today as a

satisfactory answer to the problem of data storage and computing.

Thereby, most organizations are now migrating their services into

the cloud due to its appealing features and its tangible advantages.

Nevertheless, providing privacy and security to protect cloud assets

and resources still a very challenging issue. To address the above

issues, we propose a smart approach to construct automatically an

efficient and effective anomaly network IDS based on Deep Neural

Network, by using a novel hybrid optimization framework

“ISAGASAA”. ISAGASAA framework combines our new self-

adaptive heuristic search algorithm called “Improved Self-Adaptive

Genetic Algorithm” (ISAGA) and Simulated Annealing Algorithm

(SAA). Our approach consists of using ISAGASAA with the aim of

seeking the optimal or near optimal combination of most pertinent

values of the parameters included in building of DNN based IDS or

impacting its performance, which guarantee high detection rate, high

accuracy and low false alarm rate. The experimental results turn out

the capability of our IDS to uncover intrusions with high detection

accuracy and low false alarm rate, and demonstrate its superiority in

comparison with state-of-the-art methods.

Keywords: Cloud computing, Network intrusion detection

system, Deep neural network, Genetic algorithm, Self-adaptive

heuristic search algorithm, Simulated annealing algorithm.

1. Introduction

At present, cloud computing has become an irreversible

service trend. In fact, most organizations are now migrating

their services into the cloud to offer a more flexible, open,

mobile and ubiquitous service [1]. There are several

definitions of Cloud computing (CC), but the most popular is

that of the NIST organization (National Institute of Standards

and Technology). According to NIST, CC is a model of IT

that delivers convenient, on-demand network access to a

shared pool of configurable computing resources (i.e.,

networks, servers, storage, applications, etc.) “as service”

over the internet, for satisfying computing demand of users,

on pay as use basis. Provision and releasing of resources are

done by service providers with minimal effort [2]. NIST

introduces CC by considering its 5 main features (i.e.,

bandwidth, rapid flexibility, measurable, on-demand service,

and resource pooling), its 3 service delivering models (i.e.,

software as a service (SaaS) such as Microsoft’s Azure,

platform as a service (PaaS) such as Google App Engine, and

infrastructure as a service (IaaS) such as Google apps) [3]

and its 3 deployment models (i.e., public, private and hybrid)

[4]. CC is a distributed model which supplies computing

resources and services availability, quick accessibility and

scalability [4]. Further, CC saves on cost, saves on energy, is

time-effective and is rapidly developing and empowering

customers. These are the main influential factors that are

leading to customers (individuals and corporates) being

increasingly likely to adopt this technology [5]. Today's

businesses are embarking on sweeping digital transformation

(DX) initiatives to fundamentally retool business operations

and rethink entire business models through the strategic use

of digital technologies such as cloud services, mobile

applications and data analytics. The broad adoption of cloud

applications is helping support a surge in remote workers.

The flexibility and scalability of cloud services and

applications make these technologies a prerequisite for all

modem DX strategies. This is forcing businesses around the

world to embrace an essential cultural shift in the relationship

between business and technology, one that empowers

business units to leverage the self-service and on-demand

nature of cloud services to transform the business with new

levels of agility. According to 2020 Oracle and KPMG Cloud

Threat Report [6], the symbiotic relationship between these

DX strategies is directly correlated with cloud adoption, per

the 88% of organizations who have attained a more mature

level of digital transformation by utilizing cloud services-

specifically, infrastructure services, which are seen as critical

enablers of the 2020 economy. Furthermore, Oracle and 2020

KPMG Cloud Threat Report [6] revealed a shift in attitudes

towards cloud security, with 75% of respondents viewing the

public cloud as more secure than their own data centers. This

data was developed through an online survey of 750

cybersecurity and IT professionals working across the United

States, Europe and Asia. In essence, cloud adoption continue

expand; digital transformation, cloud-first initiatives and a

bullish level of confidence in the security of public clouds is

driving an expanded use of cloud services.

In spite of the tangible advantages of cloud computing, but

there are some issues that need to be addressed. Among them,

the security concern is the first and has become a huge

impediment to the development of cloud computing. Further,

it has turned into one of the main brakes that slow down the

rate of adoption of Cloud computing [7]. In actual fact, the

well-known internet security corporate Symantec highlights

in its 2019 Internet Security Threat Report [8] that security

Cloud challenges merge on multiple fronts; from simple

misconfiguration issues to vulnerabilities in hardware chips,

94
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

in 2018 we saw the wide range of security challenges that the

cloud presents. Poorly secured cloud databases continued to

be a flimsy point for organizations. In 2018, S3 buckets

emerged as an Achilles heel for organizations, with more than

70 million records stolen or leaked as a consequence of bad

configuration. This was on the heels of a spate of ransomware

attacks against open databases such as MongoDB in 2017,

which saw assailants erase their contents and demand

payment with a view to restore them. Attackers didn’t stop

there also targeting container deployment systems such

Kubernetes, serverless applications and other publicly

exposed API services. There is a common theme across these

incidents mediocre configuration. A more insidious threat to

the cloud arisen in 2018 with the revelation of plural

vulnerabilities in hardware chips. Meltdown and Spectre

leverage vulnerabilities in a process known as speculative

execution. Successful exploitation gives access to memory

locations that are normally prohibited. This is peculiarly

problematic for cloud services because while cloud instances

have their own virtual processors, they share pools of

memory, this means that a successful attack on a single

physical system could result in data being leaked from

multiple cloud instances. Meltdown and Spectre weren’t

isolated cases—several variants of these attacks were

thereafter released into the public domain across the year.

They were likewise followed up by similar chip-level

vulnerabilities such as Speculative Store Bypass and

Foreshadow, or L1 Terminal Fault. This is probably just the

start, as researchers and attackers home in on vulnerabilities

at the chip level, and point that there are arduous times ahead

for the cloud [8]. Furthermore, 2020 Oracle and KPMG

Cloud Threat Report outlines two major security issues [6]:

• Cyber fraud takes center stage: The threat landscape is

evolving, with tried and true phishing attacks leading to

an increase in cyber business fraud and compromised

privileged cloud credentials.

• Misconfigured cloud services are prevalent, problematic

and the top cloud security priority: A cloud security

visibility gap has made hardening the configuration of

cloud services a systemic challenge.

Finally, on the basis of Netskope Cloud and Threat Report -

July 2021 [9], the risk of data exposure is more apparent than

ever due to the growth of enterprise cloud application

adoption and shadow IT, increased personal app usage, and

third-party app plug-ins. Additionally, departing employees

present disproportionately significant cloud security risks,

meaning that if a “Great Resignation” is happening, it might

make enterprises even more vulnerable to cloud-borne

threats. Highlights included in the Netskope report are:

• Departing employees upload 3X more data to personal

apps in their final month of employment.

• 97% of Google Workspace users have authorized at least

one third-party app.

• Cloud-delivered malware has increased to an all-time high

of 68%.

The security reports cited formerly indicate that providing

privacy and security to protect cloud assets and resources still

a very challenging issue. The hackers intensively target the

cloud systems for exploiting its involved vulnerabilities [10].

Any unauthorized access by an intruder to the cloud is

commonly known as an intrusion, while the intrusion

detection is the process of monitoring and auditing the events

that occur in the systems of the computers or the networks.

Detecting and preventing network intrusions in the cloud

environment are still from the primary security worries

among researchers [4]. In recent years, since the unknown

attacks are continuously increased, the conventional network

protection tools, such as firewalls, access control or

encryption, fail to defend computer networks included cloud

networks against the novel attacks. Consequently, the efforts

presently are dedicated on establishing the more complex

systems or network architectures, e.g., multidimensional

context-aware, quality-aware service access system, cyber

physical systems, emotion-aware cognitive system, social

network architecture and NIDS (network Intrusion Detection

System) etc. Among these security applications, the NIDS

increasingly attracts attentions [11]. NIDS analyses the

network and checks for any malevolent activity. If malevolent

activity turns up, it warns the network administrator at once.

It sometimes even block IP address of the user from

accessing the network who is attempting to intrude [12].

Thereby, NIDS preserve the confidentiality, integrity and

availability (CIA) of the networks and information systems in

the cloud environment, since it plays pivotal roles in the

security provisioning against the intruders [4]. In a traditional

network, the nodes are fixed, whilst in the cloud, the nodes

are likely to shift from one physical machine to others. In the

scene of cloud computing, traditional intrusion detection

methods lack practicality. The intrusion detection systems

deployed in a traditional network cannot be applied to such

systems owing to the dynamic nature of logical resources [7].

Thus, efficient intrusions detection in Cloud environments

requires embracing of new intelligent techniques such as

Machine Learning (ML) techniques [13].

One of the principal ML techniques that has successfully used

in addressing complex practical challenges is DNN. DNNs

have the ability to solve several problems confronted by the

other current techniques used in intrusion detection [14].

There are five advantages of intrusion detection based on

DNN [15, 16]:

• DNN has the ability to process data from a number of

sources in a non-linear fashion. This is very important

especially when coordinated attack by multiple attackers

is conducted against the network.

• DNN provides elasticity in intrusion detection process,

where DNN has the ability to analyze and ensure that data

right or partially right. Likewise, DNN is capable of

performing analysis on data in nonlinear fashion.

• High capability of generalization.

• Remarkable classification performance.

• DNN [17] can automatically reduce the complexity of

network traffic by finding the data correlation without

human intervention. They also contribute to reducing the

rate of type positives and increasing the detection rate in

anomaly detection systems.

In this paper, we focus on the anomaly detection, because

theoretically, it is capable of detecting both known and new

unseen attacks, and under the current complicated Cloud

network environment, the anomaly detection is much more

required and has a better application foreground [18].

In this work, we present a new powerful machine learning

based intrusion detection system for cloud environments,

developed with the purpose to reduce impact of network

attacks (known attacks, and unknown attacks), while ensuring

higher detection rate, lower false positive rate, higher

accuracy and higher precision with an affordable

95
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

computational cost. We suggest a smart approach to construct

automatically a network intrusion detection system (NIDS)

based on Deep Neural Network (DNN), by using a novel

hybrid optimization framework termed “ISAGASAA” that

combines our self-adaptive heuristic search algorithm called

“Improved Self-Adaptive Genetic Algorithm (ISAGA)” and

Simulated Annealing Algorithm (SAA). SAA is incorporated

to ISAGA with the aim to optimize its heuristic search. DNN

has been widely studied in machine learning research field

and amply used for practical applications in image

processing, computer vision and speech recognition, etc. [19].

DNN is adopted in this study due to its appealing features in

terms of intrusion detection mentioned formerly. ISAGA is

our variant of standard Genetic Algorithm (GA), which is

developed based on GA, improved through an Adaptive

Mutation Algorithm (AMA) [20] and optimization strategies.

AMA allows to automatically adjust the mutation rate should

be applied for any given individual from the population of

ISAGA, in order to augment the chance of preserving

individuals that are performing well versus the optimization

problem in hand and reduce the chance of preserving

individuals that don’t perform well. That tuning or adjustment

of mutation rate takes place while ISAGA is running,

hopefully resulting in the best parameters being used at any

specific time during execution. It is this continuous adaptive

adjustment of ISAGA parameters that will often result in its

performance improvement. Further, ISAGA is optimized

through optimization strategies, namely Parallel Processing

and Fitness Value Hashing, which reduce execution time,

convergence time and save processing power. As the fitness

function is typically the most computationally expensive

component, and it is often going to be the bottleneck of GA,

this makes it an ideal candidate for multi-core optimization

(Parallel Processing). By using multiple cores, it is possible to

compute the fitness of numerous individuals simultaneously.

Besides, Fitness Value Hashing is another strategy that can

reduce the amount of time spent computing fitness values by

storing previously calculated fitness values in a hash table.

Thereby, when a previously visited solution (chromosome) is

revisited, its fitness value can be retrieved from the hash

table, avoiding the need to recalculate it. Our approach

consists of using ISAGASAA framework with the goal of

searching the optimal or near-optimal combination of most

relevant values of the parameters included in construction of

DNN based IDS or impacting its performance, like feature

selection, data normalization, architecture of DNN, activation

function, learning rate and momentum term, which ensure

high detection rate, high accuracy and low false alarm rate. In

addition, the ANIDS resulted named “MLANIDS” (Machine

Learning based Anomaly Network Intrusion Detection

System) is designed to be deployed in both front-end and

back-end of the cloud. Consequently, that helps to detect

attacks from external network of the cloud and also internal

attacks either in internal physical network or virtual network

within hypervisors.

The rest of this paper is organized as follows: Section 2 gives

the literature surrounding network intrusion detection systems

(NIDSs). Section 3 explains the background related to this

study, such Simulated Annealing, Adaptive Mutation

Algorithm and optimization strategies of GA as Parallel

processing and Fitness value hashing. Section 4 presents the

proposed system in detail, describes its work, explains the

role of Simulated Annealing Algorithm in this system and

provides the framework of our model. Section 5 introduces

positions of the proposed system in a Cloud Network.

Detailed description of Kyoto version 2015 and CIDDS-001

datasets, experimental results obtained based on those

datasets and analysis are provided in section 6. Finally,

section 7 ends with the conclusions and Future work.

2. Literature Review

Kim and Gofman [21] have compared the efficacies of

shallow network to deep neural network for network intrusion

detection based on the NSL-KDD dataset. The shallow

network used comprises an input layer, a single hidden layer

and an output layer. Further, it uses the scaled conjugate

gradient descent (SCG) backpropagation algorithm as

learning algorithm and tanh function as activation function.

While, the deep neural network employed includes the same

aspects of the shallow neural network except the number of

hidden layers. Instead of a single hidden layer, the deep

network has two hidden layers. The experiments performed

using MATLAB version 2016b and NSL-KDD illustrate the

superior performance of shallow network, which achieves a

98.50% detection rate of malicious traffic and a 1.40% false

positive rate. In opposite, according to experiments carried

out deep neural network have classified all observations as

malicious packets, thus true negative and false negative rates

for deep neural network (DNN) were both 0. In our point of

view, the poor outcomes obtained for DNN are due to two

causes. Firstly, the authors have not taken in consideration in

their study important factors that affect the performance of

both shallow and deep neural networks, namely feature

selection and data normalization technique. In fact, Woo et al.

[22] have enhanced the performance of intrusion detection

systems based on DNN through the use of feature selection

and layer configuration, as result, the IDS based DNN built

have reached an average accuracy of 98.5%. Secondly, the

method used to determinate the number of nodes in hidden

layers was not indicated. In effect, the method followed

affects considerably the performing of shallow and deep

neural networks. As stated in the paper [23], the random

selection of a number of hidden neurons might cause either

overfitting or underfitting problems. To overcome these

issues, authors of the work [23] present several solutions and

propose their proper approach.

In order to enhance the performance of intrusion detection

systems based on deep neural network, Woo et al. [22] have

proposed to use feature selection and layer configuration. The

goal of using feature selection is to eliminate features that are

less relevant between features and avoid over-fitting, thereby

reducing learning time and improving accuracy of IDSs. For

feature selection, the authors have adopted Pearson

Correlation method. Concerning layer configuration, three

cases were investigated; case 1, case 2 and case 3 are

composed of 5, 4 and 3 layers respectively. For

experimentation, Python language, Keras API and NSL-KDD

were used. Experimental results obtained demonstrate that

Pearson Correlation method allows removing a feature named

‘num_outbound_cmds’, resulting in reduction of learning

time and increasing accuracy. In addition, it is found that case

2 is the best layer configuration that allow avoiding

overfitting and enhancing the performing. Hence, applying

Pearson Correlation feature selection jointly with architecture

of 4 layers for DNN raise clearly the performance of IDS

based DNN, leading it to reach an average accuracy of

98.5%.

96
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

To classify all the attacks properly and proficiently, IDS is

required for securing the Cloud data. For getting a better

classification accuracy, a proper training of IDS is significant.

The presence of irrelevant features in training data set

increases training time, deteriorate classification accuracy as

well as increases memory representation. To overcome the

aforementioned issues, Ghosh et al. [12] have proposed and

implemented a novel feature selection method CS-PSO

(Cuckoo search (CS) - Particle swarm optimization (PSO))

for producing an efficient IDS that classify attacks accurately

and rapidly in cloud environment. The proposed IDS model is

comprised of two components; the first is CS-PSO algorithm,

which is prepared by combining the CS and PSO meta-

heuristic methods, and it is employed for feature selection.

While the second is Logistic Regression (LR) classifier that

classifies samples extracted from NSL-KDD dataset as

normal or attack. In the experiments conducted by the

authors based on NSL-KDD dataset, the CS-PSO algorithm

proves its efficacy by solving the trade compromisation

between exploitation and exploration. In the proposed model,

the authors have leveraged the efficiency of PSO in finding

the best value in a local area and is a very good example of

exploitation concept. To take care of the exploration process

the CS approach does its job through the use of Levy Flight

technique. It jumps into random positions to get better global

optimized value. The conjunction of these two nature inspired

techniques have brought some fruitful results with high

accuracy (79.32%) reached by Logistic Regression classifier,

and thus producing efficient IDS in Cloud Environment.

However, detection rate of 65.10% yielded by the proposed

system need to be enhanced, and the false positive rate of

2.87% achieved is relatively high.

Zhang et al. [24] have built an intrusion detection model

based mainly on Elman neural network, which is optimized

by using Mind Evolutionary Algorithm (MEA). Further, they

have employed Genetic Algorithm (GA) in order to reduce

the dimension of KDDCUP99_10% dataset used for training

and testing the MEA-Elman network model. The proposed

model goes through two stages. The first stage consists firstly

of construction of an Elman neural network composed of four

layers: input layer that contains 41 nodes corresponding to the

41 features of KDDCUP99_10% dataset, ten hidden layers,

one context layer and one output layer of five nodes (Normal,

Probe, DOS, U2R and R2L). Thereafter, MEA is used to

optimize the initial weights and thresholds of this network.

Evaluation of the MEA-Elman network model built in the

first stage highlights that it has a high accuracy of Normal,

Probe and DOS classification of more than 90%, but the

accuracy of the U2R and R2L classification is too low. To

address this issue, the GA was used in the second stage as a

data processing algorithm with the goal of reducing

dimension of the dataset used by the proposed IDS model

based MEA-Elman network. That may help to improve the

accuracy of U2R and R2L classification. At the end of GA

process, the MEA-Elman model is rebuilt using the subset of

relevant features among the 41 features of KDDCUP99_10%

dataset. Indeed, the experimental results show that the

detection accuracy of U2R and R2L has been greatly

improved by using the GA algorithm. However, detection

accuracy of Normal, Probe and DOS has decreased slightly in

comparison the obtained results following the evaluation of

the system before application of GA, but it still keeps around

90%. The average accuracy of the proposed system is

77.82%. Thus, it need to be improved.

In the paper [4], an anomaly-based network intrusion

detection system (NIDS) have been developed to detect

different types of attacks (R2L, U2R, Dos and Probe) in the

cloud environment. In the proposed model, Support Vector

Machine (SVM) was employed as the classifier of the

network connections. To reinforce the efficiency of intrusion

detection process, decrease its detection time and build a

lightweight IDS, the binary-based Particle Swarm

Optimization (BPSO) was adopted to reduce the

dimensionality of the network connection features by

selecting the most relevant/optimal features subset from the

incoming network data flow. Further, as the values of the

SVM control parameters, namely the penalty parameter (C)

and the RBF kernel parameter (σ) have a great impact on its

performance; SPSO (standard-based binary-based Particle

Swarm Optimization) searching algorithm was chosen to

search the best values of these parameters in order to

optimize the SVM performance. The proposed NIDS was

trained and tested on the benchmark NSL-KDD dataset, and

the evaluation results proved that it outperforms other related

IDSs with a higher classification accuracy of 99.10%,

detection rate of 99.08% and a lower FPR of 0.87%. It is

required to evaluate the proposed IDS based on a recent IDS

dataset that contains novel attacks, in order to prove its

efficacy in recognizing the normal behaviors and detecting

the attacks with high detection accuracy and low rates of false

alarms.

Ghanshala et al. have [25] proposed a light weighted and

adaptable intrusion detection approach named as Behavior-

based Network Intrusion Detection (BNID) to detect attacks

at network-layer in Cloud Environment. A security

framework was developed by the authors for deployment of

BNID at Cloud Network Node (CNN) of the cloud network

to defend the cloud machines against network attacks. BNID

captures the behavior of TVM (Tenant Virtual Machines)

communication, analyzes it and detects the malicious network

pattern at the network-layer. Thus, the need of deploying

security tool at each TVM is eliminated. In addition, it is

adaptable to learn the behavior of newly generated traffic

patterns. For traffic behavior analysis, BNID uses statistical

learning techniques with feature selection. In fact, firstly,

network traffic is captured and important features are

extracted using fusion of two popular feature selection

methods i.e. Recursive Feature Elimination (RFE) and Chi

Square. This removes the less relevant features and accelerate

the processing of data, which improves the classifiers’

performance. Subsequently, the processed traffic resulted

from the former step (capture & feature selection), is

analyzed using Random Forest (RF) classifier for detecting

intrusive activities. Like other supervised learning techniques,

RF works in two stages; learning stage and detection stage.

BNID compromises four detection modules namely (1)

Packet Capture (PacCap()), (2) Packet Pre-processor

(PacPre()), (3) Detection Engine (DetEng()) and (4) Alert and

Log Generator (AltGen()). PacCap() generates the collection

of packet capture information logs, and It also loads the

known attack dataset that serves as training dataset providing

the behavior statistics of different types of attacks. Packet

Pre-Processor (PacPre()) module pre-processes the packets

and selects relevant features to construct feature vectors.

DetEng() is responsible for learning and detecting the attack

behavior. AltGen() generates the alerts once attack signal is

https://synonyms.reverso.net/synonym/en/efficacy
https://synonyms.reverso.net/synonym/en/through+the+use+of
https://synonyms.reverso.net/synonym/en/proficient

97
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

received from DetEng() module. A report is generated by

AltGen() and sent to cloud administrator for further analysis.

Experimental results based on ITOC dataset demonstrates

that BNIDS yields better performance than Naive Bayes (NB)

and Decision Tree C 4.5 (DT) techniques in terms of

intrusion detection. It achieves an accuracy of 99.182% with

1.517% FPR. However, the proposed system can classify

only attacks whose behavior is pre-identified and the variants

of such attacks, hence, it is not able to detect unseen attacks.

Shyla and Sujatha [26] have suggested a novel IDS

established on a combination of a leader-based k-means

clustering algorithm (LKM), fuzzy logic system (FLS) and

grey wolf optimization (GWO). The overall process of the

proposed model is split into two stages, namely, training and

testing. The dataset utilized in that work is NSL- KDD CUP

99 dataset. In training phase, the data extracted from the

training dataset are preprocessed. Then, to reduce the

complexity, the preprocessed data are clustered using LKM.

After the clustering process, each obtained cluster is given to

an optimal fuzzy logic system (OFLS). The number of

clusters and the OFLSs are identical. In this, the FLS rules are

optimally selected using a bio-inspired algorithm, namely,

GWO. GWO is employed to reduce the time complexity and

increase the detection accuracy. In testing stage, at first, the

incoming data are preprocessed. After preprocessing, the

clustering process is applied on the preprocessed data.

Subsequently, the data are afforded to the corresponding

cluster based OFLS. The trained OFLS structure tests the

data. Finally, the score value is obtained. If the obtained score

value is above the threshold Th, it means the data are

intruded; otherwise the data are normal. The experimental

results applying NSL-KDD CUP 1999 dataset and Cloud Sim

tools demonstrate the superiority of the proposed approach in

comparison to several existing methods. In fact, it achieves

precision of 96.54%, recall of 89.26% and F-measure of 91.

83%. Nevertheless, more enhancements are required to

improve achievement of proposed system, especially recall

and F-score performances.

Cloud IDSs often suffer from poor detection accuracy due to

coordinated attacks such as a DDoS. Hence, various research

on distributed IDSs have been proposed to detect DDoS.

However, the limitations of these works the lack of technique

to determine an appropriate period to share attack information

among nodes in the distributed IDS. Therefore, the paper [27]

proposes a Distributed Cloud Intrusion Detection Scheme (D-

CIDS) that uses a Binary Segmentation Change Point

Detection Algorithm to address the appropriate period to send

attack information to nodes in distributed IDS and using

parallel Stochastic Gradient Descent with Support Vector

Machine (SGD-SVM) to achieve the distributed detection. D-

CIDS is comprised of five components namely: the feature

selection component, the distributed classifier training

component, the distributed attack detection component, the

Destination-IP monitoring component and the aggregation

component. The feature selection component uses a hybrid

Ant Colony Optimization (ACO) and Correlation-based

Feature Selection (CFS) for selection of 16 relevant features

among 41 features of NSL-KDD dataset, whilst the

distributed classifier training component trains each node in

the distributed IDS using SGD-SVM to create a local

reference model for anomaly detection. The detection

component detects attacks based on the reference model

created during training and sends the LRM to the aggregating

unit (master node) when a threshold is exceeded, while the

Destination-IP monitoring component utilizes binary

segmentation change point algorithm to monitor the

destination-IP count from same host to determine the

appropriate time to share attack information among the nodes

in the distributed IDS. Whereas, the aggregation component

aggregates the LRM from each node to create a Global

Reference Model (GRM), which allows classifying network

traffic as normal or intrusion. The proposed system was

implemented using MLlib Apache Spark distributed machine

learning framework. The performance of D-CIDS was

evaluated using NSL-KDD intrusion detection dataset, and

performance comparison made with related works shows that

D-CIDS achieved superior performance in terms of accuracy

(99.6%), detection rate (99.7%) and false positive rate

(0.03%). Recent IDS datasets that contain new DDoS attacks

should be used to assess the effectiness of the proposed IDS.

Rabbani et al. [28] have proposed a new hybrid machine

learning approach for malicious behaviour detection and

recognition in Cloud Computing. They applied a Particle

Swarm Optimization-based Probabilistic Neural Network

(PSO-PNN) for the detection and recognition process. The

proposed system includes two main modules, Data

Preprocessing and Recognition. The former is designed for

data preparation and is used to extract informative features

from the UNSW-NB15 dataset for learning and modelling

purposes. The pre-processing involves four steps: feature

creation, reduction with the help of PCA (Principal

Component Analysis), conversion of non-quantitative

features into numeric ones and feature normalization by

means of Min-Max method. The latter module is the core of

the proposed technique for behavioural recognition; it

includes two phases, training and prediction. In training

phase, recognition module models the users’ activities based

on Probabilistic Neural Network (PNN) optimized through

Particle Swarm Optimization (PSO). Statistically, the

performance of a PNN is largely influenced by the spread

parameter (α), which plays an important role in increasing the

classification rate in PNN systems. In this hybrid technique,

the determination of 𝜎 is obtained by PSO. It is initialized

with a swarm value of 𝜎, and the optimization value is

computed for a specific pattern taken from the training

dataset. Subsequently, the same procedure can be applied for

each pattern in the training dataset to finalize a global 𝜎;

therefore, this optimization model makes the structure of

PNN a self-adaptive network. In prediction/detection phase,

the recognition model built in training phase is used to predict

whether a particular user is normal or malicious. Evaluation

results obtained based on UNSW-NB15 dataset demonstrate

the superiority of the PSO-PNN technique in terms of

Recall/Detection Rate (96.4%), Precision (96.4%) and F-

measure (97.5%) when compared with new state-of-the-art

network-based intrusion detection techniques. However, the

proposed method have limited ability to properly distinguish

between Back door and Analysis attacks. Moreover, the False

Positive Rate (FPR) attained (3.6%) is relatively high, it need

to be reduced.

Neha et al. [29] have presented a Salp Swarm Optimization

based Feed Forward Neural Network (SSO-FFNN) to build

an intrusion detection methodology for computer networks.

SSO was introduced to optimize the hyper parameters of

FFNN to achieve the major goals of IDS, which are yielding

high detection rate, less false alarm rate and time complexity.

The experimentations were carried out using WEKA tool and

the standard NSL-KDD cup intrusion dataset and the

98
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

implementation of SSO-FFNN was evaluated with regards to

classification accuracy, detection rate and false alarm rate.

Experimental outcomes indicate that the proposed system

shows better results than several existing machine learning

based Intrusion detection techniques in terms of performance

metrics such as detection rate and false alarm rate, and that it

achieves 98.63% accuracy. However, for the weighted fitness

function adopted for evaluating the performance of the

proposed system, that is composed of Detection Rate (DR)

and False Positive Rate (FPR) metrics, the method followed

for calculation the weights of DR and FPR did not provided

by the authors.

Krishnaveni et al. [30] have proposed an anomaly intrusion

detection system for cloud computing using machine learning

algorithm, namely Support Vector Machine (SVM) classifier

and a filter-based feature selection algorithm such as

Information Gain Ratio (IGR) method. In this approach,

features has been ordered using an impartial measure:

Information Gain Ratio. This is done by calculating the IGR

which requires the initial entropy values. The proposed

algorithm (IGR) is used to pick up the significant feature set

from the NSL-KDD dataset. The condensed feature NSL-

KDD dataset is then utilized for training and testing the

detection model relied on the SVM classifier. During the

experiments carried out by the authors, a comparison of

accuracy of different kernel functions of SVM with feature

selection was performed. The kernel function used was linear,

Gaussian, RBF and polynomial. The results show that the

RBF (Radial Basis Function) kernel function with optimized

features gives the highest accuracy. Moreover, the proposed

system was then checked for its accuracy and its response

time by using the different classifiers, i.e., RBF SVM, logistic

regression and K nearest neighbor. The outcomes obtained

demonstrate that RBF SVM was achieved higher

performances than the other methods; higher accuracy

(96.34%) and lower response time (4.90s). Nevertheless,

others prominent performance evaluation metrics was not

employed to assess the proposed system like False Positive

Rate and Detection Rate. In addition, recent IDS datasets

need to be used to evaluate further efficiency of the proposed

IDS.
Abirami et al. [31] have developed an anomaly and feature

based IDS by means of a feature selection algorithm (FSA)

and an ensemble learning algorithm or stacking classifier.

They have employed Principal Components Analysis (PCA)

as FSA for reducing the dimensionality of feature space;

hence, it identifies the important features and eliminates

irrelevant ones. Moreover, they have combined Random

Forest, Linear Support Vector Machine (SVM) and Naive

Bayes methods by using Logistic Regression as meta-

classifier, as result, building a stacking classifier.

Experimental outcomes obtained based on UNSW-NB15 data

set have proved that the proposed IDS have achieved highest

accuracy of 95%, in comparison with Random Forest, Linear

SVM and Naive Bayes classifiers used individually.

Thilagam and Arunaproposes [32] have proposed a novel IDS

for cloud computing, which is based on an innovative and

optimized custom RC-NN (Recurrent Convolutional Neural

Network). RN-NN network model is created by connecting

the layers of LSTM and CNN, furthermore, it is optimized

with the help of Ant Lion optimization (ALO) algorithm that

is utilized within the proposed network layers to minimize the

error rate thus improving accuracy. Experimental findings

obtained by the authors prove the superiority of the developed

model in terms to intrusion detection, compared to other

existing classifiers like LSTM, CNN and LSTM with CNN.

The accuracy is identified as 0.9401 for DARPA dataset and

0.9428 for CSE-CIC-IDS2018 dataset. Nevertheless, DARPA

dataset is an old dataset, which does not reflect the recent

trend of cyber-attacks. Hence, new intrusion datasets such

as UNSW-NB15 (2015) / CICIDS18/ CIDDS-001 are

required to assess the effectiveness of the suggested model.

In the paper [33], a novel Intrusion detection system (IDS) is

conceived to fix the security concerns that unfavorably affect

sustainable development of cloud and to improve the defence

of cloud from malevolent attacks. The IDS is modeled using

proposed Feedback Deer Hunting Optimization (FDHO)-

based Deep Residual network to uncover network intrusions.

The major processes included in the suggested approach is

pre-processing, feature extraction, binary classification, and

attack detection. The data is pre-processed by exponential

kernel and the preprocessed result is allowed to feature

selection module. In feature selection step, the rough set and

entropy based model is utilized to pick out the optimal and

best features. Based on the selected features, the process of

binary classification is performed using SVM. With SVM

classifier, the data can be classified into normal or attack by

considering the features. When it is identified that the data is

attack, finally the process of attack detection is done using

Deep Residual Network in such a way that the training

procedure of detection approach is carried out using proposed

FDHO algorithm. The developed FDHO algorithm is the

integration of Feedback Artificial Tree (FAT) with Deer

Hunting Optimization (DHOA). The proposed model is

assessed sing BoT-IoT dataset and KDD cup-99 dataset.

However, benchmarking dataset KDD CUP’ 99 is outdated,

and it is not included new type of network attacks, which

make it unsuitable for evaluating Anomaly based Network

Intrusion Detection Systems.

3. Related Background

This section provides the necessary background to understand

the problem in hand. First subsection shed the light on a

novel Improved Self-Adaptive Genetic Algorithm (ISAGA)

that is combined in this work with Simulated Annealing

Algorithm (SAA), to build automatically an innovative IDS

based on Deep Neural Network. As mentioned formerly,

ISAGA is our variant of standard Genetic Algorithm (GA),

which is developed based on a GA, improved through an

Adaptive Mutation Algorithm (AMA) and optimization

strategies incorporated to GA, namely Parallel Processing and

Fitness Value Hashing. Whereas, the second subsection

exhibits briefly Simulated Annealing Algorithm. We did not

offer the fundaments and concepts of Deep neural network

[15, 16, 17, 21, 23, 24] and Genetic Algorithm [20, 26, 34,

35], since they are exhaustively presented in the literature.

 3.1 Improved self-adaptive genetic algorithm

Improved Self-Adaptive Genetic Algorithm (ISAGA) is our

variant of standard Genetic Algorithm (GA), which is created

based on GA, enhanced via an Adaptive Mutation Algorithm

(AMA) and optimization techniques applied to GA, that is to

say Parallel Processing and Fitness Value Hashing.

3.1.1 Adaptive Genetic Algorithms : Adaptive

Mutation Algorithm

Adaptive Genetic Algorithms (AGA) [20] are a popular

subset of genetic algorithms, which can provide significant

performance improvements over standard implementations

99
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

when utilized in the suitable circumstances. A key factor that

determines how well a genetic algorithm (GA) will perform is

the manner in which its parameters are configured. Thus,

finding the right values for the mutation rate and crossover

rate plays in substantial role when building an efficient and

effective GA. Typically, configuring the parameters will

require some trial and error, together with some intuition,

before eventually attaining a satisfactory configuration. AGA

are useful because they can help in the tuning of these

parameters automatically by adjusting them based on the state

of the algorithm. These parameter adjustments take place

while GA is running, hopefully resulting in the best

parameters being used at any specific time during execution.

It is this continuous adaptive adjustment of GA parameters

that will often result in its performance improvement. AGA

used in this work uses information such as the average

population fitness and the population’s current best fitness to

calculate and update its parameters in a way that best suits its

present state. For example, by comparing any specific

individual to the current fittest individual in the population,

it’s possible to gauge how well that individual is performing

in relation to the current best. Typically, we want to augment

the chance of preserving individuals that are performing well

and reduce the chance of preserving individuals that don’t

perform well. One way we can do this is by allowing the

algorithm to adaptively update the mutation rate. We can

determine if the algorithm has started to converge by

calculating the difference between the current best fitness and

the average population fitness. When the average population

fitness is close to the current best fitness, we know the

population has started to converge around a small area of the

search space. When calculating what the mutation rate

should be for any given individual, two of the most important

factors/characteristics to consider are how well the current

individual is performing and how well the entire population is

performing as a whole. The algorithm we had used in this

work to assess these two characteristics and update the

mutation rate is called Adaptive Mutation Algorithm

(AMA), and it is defined by equations (1) and (2).

Fi : Is the fitness value (score) of the current individual

identified by the index i.

Fmax : Is the best fitness from the population.

Favg : Is the average population fitness.

m: Is the mutation rate that was set during initialization of

GA.

Pm: Is the new mutation rate that should be applied for the

current individual.

 = − − max max() / (),m i avg i avgP F F F F F F (1)

 ,m i avgP m FF= £ (2)

As shown by the equation 1, when the individual’s fitness (Fi)

is higher than the population’s average fitness (Favg), firstly,

we calculate the difference between Fmax and Fi. Afterwards,

we compute the difference between Fmax and Favg and perform

the division of the two resulted values. At last, we use the

quotient of previous division to scale the mutation rate (m)

that was set during initialization. Otherwise, as indicated by

equation 2, if the individual’s fitness is the same or less than

the population’s average fitness, we simply use the mutation

rate as set during initialization. Adaptive genetic algorithm

can be employed to adjust more than just the mutation rate

however. Similar technique can be applied to adjust other

parameters of the genetic algorithm like the crossover rate to

get further improvements as needed.

3.1.2 Optimization Strategies for Genetic Algorithm

With the fitness function, typically being the most processing

demanding component of genetic algorithm (GA), it makes

sense to focus on improvement of the fitness function to see

the best return in performance. In this subsection, we will

explore two optimization strategies that are used in this work

to improve performance of GA by optimizing the fitness

function, namely Parallel Processing and Fitness Value

Hashing.

(a) Parallel Processing

One of the easiest approaches to achieve a performance

enhancement of GA is by optimizing the fitness function. The

fitness function is typically the most computationally

expensive component; and it is often going to be the

bottleneck of GA. This makes it an ideal candidate for multi-

core optimization. By using multiple cores, it is possible to

compute the fitness of numerous individuals simultaneously,

which makes a tremendous difference when there are often

hundreds of individuals to evaluate per population. Java 8

provides some very useful libraries that make supporting

parallel processing in our GA much easier. Using Java’s

IntStream, we can implement parallel processing in our

fitness function without worrying about the fine details of

parallel processing (such as the number of cores we need to

support); it will instead create an optimal number of threads

depending on the number of cores available in our multi-core

system. Hence, by using parallel processing, fitness function

will be able to run across multiple cores of the computer,

consequently, it is possible to considerably reduce the

amount of time the GA spends evaluating individuals and, so

reduce the overall time of execution of GA, and accelerate

convergence process [20].

(b) Fitness Value Hashing

Fitness Value Hashing is another strategy that can reduce the

amount of time spent computing fitness values by storing

previously calculated fitness values in a hash table [20].

During running of GA, solutions found previously will

occasionally be revisited due to the random mutations and

recombinations of individuals. This occasional revisiting of

solutions becomes more common as GA converges and

begins to find solutions in an increasingly smaller area of the

search space. Each time a solution is revisited its fitness value

needs to be recalculated, wasting processing power on

recurrent, duplicate computations. Luckily, this can be easily

fixed by storing fitness values in a hash table after they have

been computed. When a previously visited solution is

revisited, its fitness value can be retrieved from the hash

table, avoiding the need to recalculate it.

 3.2 Simulated annealing algorithm

Simulated Annealing is motivated by an analogy to the

statistical mechanics of annealing in solids [36], which

coerces a solid (i.e., in a poor, unordered state) into a low

energy thermodynamic equilibrium (i.e., a highly ordered

defect-free state) such as a crystal lattice. Annealing is

referred to as tempering certain alloys of metal, glass, or

crystal by heating above its melting point, holding its

temperature, and then cooling it very slowly until it solidifies

into a perfect crystalline structure. This physical/chemical

process aims to get the ground state of matter, which is the

minimal energy of the solid state [37], as result, it produces

100
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

high-quality materials [38]. The idea of SA comes from a

paper published by Metropolis et al. in 1953 [39]. The

algorithm in this paper simulated the cooling of material in a

heat bath. This process as mentioned previously is known as

annealing. If you heat a solid past melting point and then cool

it, the structural properties of the solid depend on the rate of

cooling. If the liquid is cooled leisurely enough, large crystals

will be formed and thus an ideal crystalline structure is

obtained. However, if the liquid is cooled rapidly (quenched)

the crystals will contain imperfections. Metropolis algorithm

simulated the material as a system of particles, and the

cooling process by gradually lowering the temperature of the

system until it converges to a steady, frozen state named the

ground state [36]. The simulation in the Metropolis algorithm

computes the new energy of the system in a new state gotten

by a random perturbation. If the energy has decreased then

the system moves to this state. If the energy has increased

then the new state is accepted according to a certain

probability. A certain number of iterations are carried out at

each temperature and then the temperature is lowered. This is

repeated until the system freezes into a steady state named

ground state.

In 1982, Kirkpatrick et al. [40] took the idea of the

Metropolis Algorithm and developed a variant of that

algorithm called Simulated Annealing Algorithm (SAA) to

solve optimisation problems. The idea is to use simulated

annealing to search for feasible solutions and converge to an

optimal solution [36]. Kirkpatrick et al. have successfully

solved Vehicle Routing Optimization, TSP problem,

Workshop Scheduling Optimization problems, etc [41]. Ever

since, SAA has been used in a great number of problems,

including NP-hardy combinatorial problems. In combinatorial

optimization problems, the purpose is developing efficient

techniques for finding minimum (or maximum) values of a

function with many degrees of freedom and many local

minima. States in thermodynamic usage correspond to

solutions in the combinatorial optimization problem. Energy

in thermodynamics is the cost function in simulated

annealing. The ground state, change of state, and temperature

in thermodynamics translate to the optimal solution, a

neighbouring solution, and the control parameter in simulated

annealing, respectively [42]. The table 1 extracted from the

paper [36], shows how physical annealing can be mapped to

simulated annealing. Using these mappings any combinatorial

optimisation problem can be converted into a simulated

annealing algorithm [36, 40].

Some application of SAA are:

Basic Problems:

• Traveling salesman

• Graph partitioning

• Matching problems

• Graph coloring

• Scheduling.

Engineering:

• VLSI design.

1. Placement

2. Routing

3. Array logic minimization

4. Layout

• Facilities layout

• Image processing

• Code design in information theory

Table 1. Relationship between physical annealing and

simulated annealing

Thermodynamic Simulation Combinatorial Optimisation

Metal (System of particles) Problem

System states Feasible solutions

Energy Cost function

Change of state Neighbouting solutions

Temperature Control parameter

Careful annealing Simulated annealing

Frozen state or Ground state (A

completely ordered crystalline

annealing)

Optimal solution for the problem

4. The Proposed System

This section describes in detail our new proposed IDS and

gives the model of that IDS.

4.1 Approach of our proposed system

In this work, we propose a clever approach to build

automatically a network intrusion detection system (NIDS)

based on Deep Neural Network (DNN), by using a novel

hybrid optimization framework termed “ISAGASAA” that

combines our self-adaptive heuristic search algorithm called

“Improved Self-Adaptive Genetic Algorithm (ISAGA)” and

Simulated Annealing Algorithm (SAA). SAA is incorporated

to ISAGA with the purpose to optimize its heuristic search.

ISAGA is our variant of standard Genetic Algorithm (GA),

which is created based on GA, enhanced through an Adaptive

Mutation Algorithm (AMA) (subsection 3.1.1) and

optimization strategies (subsection 3.1.2). Our DNN is a Back

Propagation Neural network (BPNN) with one input layer,

two hidden layers and one output layer. The number of nodes

in the input layer matches to the number of attributes/features

in the vector of connection instance pulled out from IDS

dataset and introduced to DNN, whereas the number of nodes

in each hidden layer will be generated by ISAGA. While, the

output layer comprises one node, which provides a value of 1

in case of classification of input pattern by DNN as

normal/legitimate traffic; or else, it gives a value of 0 to point

out an intrusion. Our approach consists principally of four

phases. In two first phases, we have studied heavily

numerous works related to intrusion detection systems based

on BPNN and DNN.

 The first phase was concentrated on the determination of the

most pertinent parameters used to construct that type of

classifier or that affect its performance. As shown by table 2,

at the end of our study, we have deduced that the most

significant parameters are [18]:

• The number of selected features/attributes that

corresponds to the number of nodes in the input layer.

• Normalization of data.

• Architecture of Neural Network, specifically the number

of nodes in the hidden layer(s).

• Activation function or transfer function.

• Learning rate.

• Momentum term.

The second phase consists of comparison of studied works

with the view to select for each parameter mentioned

101
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

foregoing, between two and four relevant values, which have

yielded the best outcomes in terms of intrusion detection.

Table 2. List of parameters influencing the performance of a

BPNN or a DNN based IDS and their different values

Parameters Different values

Number of

attributes

12 attributes NSL-KDD [20,43]

10 attributes CIDDS-001 [44]

14 attributes Kyoto 2006+ [45,46]

27 attributes ITOS dataset [47]

Normalization
Min-Max normalization or Mean range [0,1] [48]

Statistical normalization or Z-score [49]

Activation

function

Hyperbolic tangent [50]

Sigmoid [51]

In this study, ISAGA will generate randomly the number of

nodes of both hidden layers of DNN and the values of

Learning rate and Momentum term. With the help of genetic

operations such selection, elitism, crossover and self-adaptive

mutation, ISAGA algorithm is capable to found the optimal

values of those parameters.

For training and evaluating of our proposed system, we have

chosen primarily Kyoto 2006+ University Benchmark

Dataset version 2015, which is one of the most recently used

intrusion detection dataset in the IDS domain [46]. This

dataset was developed by [52] to solve the problems of

underperformance of machine learning based IDS model

trained and tested on KDD or NSL-KDD and any other

related old datasets heavily criticized for not reflecting the

current trend of network situation and sophistication of ever

evolving cyber-attacks [53]. Kyoto dataset is a multivariate

attributes dataset that consists of 24 statistical features

extracted from captured data including 14 conventional

features that were derived from KDD Cup 99 benchmark

dataset, and 10 additional features added for analysis and

further investigation. This study uses Kyoto subset of

December 31, 2015 and has used the first 14 features

(conventional features) that are suitable for network-based

IDSs [54], and the label which indicates whether the record is

an attack or normal, and excluded the features that can be

used to investigate what kinds of attacks happened on

computer networks [53]. Thereby, the number of inputs in our

DNN is fixed at 14 inputs, which corresponds to the number

of features selected in [53] from Kyoto 2006+ dataset. In

addition, we have tested our approach on CIDD-001 dataset

as outlined in subsection 6.3. Accordingly, we have also build

another DNN with 10 inputs while using CIDDS-001 dataset.

The third phase: For successful use of ISAGA, two key

elements must be well defined; the representation/encoding

of chromosomes and the Fitness Function.

• Chromosome encoding/representation: In our study, we

have adopted the binary representation for chromosomes.

Each chromosome is a possible combination of values of

the relevant parameters referred beforehand, that will be

utilized to build an instance of IDS based DNN. Each

parameter represents a gene in the chromosome, as shown

by table 3. Thus, each chromosome comes in the form of

a binary string of 58 bits. Binary substrings corresponding

to learning rate and Momentum term genes of a

chromosome are converted into decimal values, then

normalized using the Min-Max normalization method to

obtain values between 0 and 1, which will be serve as

Learning rate and Momentum term of the IDS produced

based on that chromosome.

• Fitness Function or Evaluation Function: We have

opted the AUC metric [55] as a score (fitness function) of

individuals of ISAGA to evaluate their goodness and

suitability to the optimization problem. The AUC is a

performing measuring of IDSs, which represents the

capability to avoid misclassifications of network packets.

In our opinion, it is a good compromise between DR

(Detection Rate) metric and FPR (False Positive Rate)

metric. Indeed, this is due to reason that AUC is the

arithmetic mean of DR and TNR (1-FPR) as displayed by

equation 3 of the AUC. As it is known, a good IDS is one

that reaches a high detection rate (DR) and a low positive

rate (FPR). As demonstrated by equation 3, as the value

of the DR measure rises and that of FPR measure

declines, Accordingly, the value of AUC augments.

Thereby, from our point of view, AUC is the best metric

for assessing an IDS. That is the reason of preference of

AUC as fitness function.

Table 3. Structure of chromosome of ISAGA and some

possible values of its values

Genes

Number of

bits to encode

the gens

Possible/number of

values

Normalization 01 0 (Min-Max normalization)
or 1 (Statistical

normalization)

Activation

function

01 0 (Hyperbolic tangent) or 1

(Sigmoid)

Number of nodes

in hidden layer 01

08 256

Number of nodes

in hidden layer 02
08 256

Learning rate 20 220 values

Momentum rate 20 220 values

() ()()1

2 2

DR FPRDR TNR
AUC

+ -+
= = (3)

The fourth phase: As outlined by figure 3, ISAGA process

commences with an arbitrarily generated population of 1000

individuals (potential solutions) represented by their

chromosomes; each chromosome consists in a binary string

of 58 bits. Afterwards, this population evolves over multiple

generations by way of genetic operations such elitism,

selection, recombination (crossover) and self-adaptive

mutation through adaptive mutation algorithm (AMA) till

stopping or optimization criterion of ISAGA is satisfied. At

each generation, for every chromosome, the Fitness Hash

Table (FHT) is explored to verify if this chromosome is

earlier visited, in this case, its fitness value is retrieved from

FHT. Otherwise, this chromosome is employed to generate an

instance of an IDS based on DNN. Subsequently, this IDS

firstly passes through the learning stage, later shifts to the

102
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

testing stage and returns the values of performance metrics

computed at the close of last phase. Among those

performance metrics, we choose the most relevant of them,

namely AUC metric to serve as “Fitness Function” for

assessment of goodness of chromosomes, and the AUC

(fitness value) is saved in FHT. From one generation to the

next, ISAGA converges towards the global optimum with the

help of genetic operations mentioned formerly. At last, the

best individual (chromosome) is picked out as the ultimate

result once the optimization criterion is satisfied. In our work,

stopping condition opted for ISAGA is creation of 200

generations. Thus, the best chromosome procured

corresponds to the optimal or near-optimal values of

parameters employed to construct an ideal IDS based DNN,

which turns elevated detection rate and lowly false alarm rate.

In our optimization framework based on ISAGASAA

module, ISAGA uses the following algorithms/methods:

• Elitism.

• Roulette Wheel Selection.

• Single point Crossover.

• Adaptive Mutation Algorithm.

• Bit Flip Mutation.

4.2 Role of simulated annealing algorithm in the

 proposed system

The purpose of employment of Simulated Annealing

Algorithm in our framework of optimization is to optimize

Improved Self-Adaptive Genetic Algorithm (ISAGA)

process. Simulated Annealing Algorithm is a hill climbing

algorithm that initially admits worse solutions at a tall rate,

afterwards as the algorithm runs; it progressively lessens the

rate in which worse solutions are accepted. One of the easiest

manners to implement this characteristic into a genetic

algorithm is by updating the crossover rate, to commence

with a high rate then gradually decline the rate of crossover as

the algorithm proceeds. This initial high crossover rate will

push ISAGA to search a wide area of the search space.

Subsequently, as the crossover rate is leisurely decreased,

ISAGA should begin to concentrate its search on regions of

the search space where fitness values are higher.

As shown by figure 3, to vary the crossover rate/probability,

we have utilized a temperature variable named “Temp-

SAA”, which begins high, or “hot”, and slowly diminishes, or

“cools” with the aid of a Cool rate function as the algorithm

advances. This heating and cooling approach is directly

inspired by the process of annealing found in metallurgy. On

completion of each iteration/generation of ISAGA, the

temperature is cooled slightly, which declines the crossover

rate that will be employed in the following generation of

ISAGA [20].

4.3 Framework of our proposed MLANIDS

In this section, with the objective of clarification of

functioning of our system, we utilize Kyoto dataset version

2015 as IDS dataset. Though, experiments has been carried

out with two datasets, namely, Kyoto dataset version 2015

and CIDDS-001 dataset.

Our system “MLANIDS” goes initially through an

optimization stage by the means of ISAGASAA framework,

with the aim to find the ideal or near-ideal values of the

parameters employed to develop an optimal IDS based DNN.

Accordingly, it becomes mature to run in detection mode.

The framework of our system in optimization mode embraces

four modules as displayed in figure 1.

Figure 1. Framework of MLANIDS in optimization stage

• Feature selection module: Feature selection is the most

pivotal step in developing intrusion detection models. Our

intrusion detection model encompasses a feature selection

module principally to pick out fruitful features for

intrusion detection. This module affords selection of a set

of 14 pertinent features among 24 features of Kyoto

dataset version 2015 (subsection 6.2).

• Data preprocessing module: Data Preprocessing

comprise two actions; data conversion (Categorical

encoding) and Normalization. “Categorical encoding”

mentions to the process of assigning numeric values to

nonnumeric features/attributes, thus as to turn the

processing task much easier, as numeric data can be

readily treated upon. While, “Normalization or Scaling”

refers to the procedure of scaling the feature values to a

small range that can assist to get better detection

outcomes and avoid numerical difficulties in the course of

the computation. Our data-preprocessing module employs

Min-Max normalization and Statistical normalization

techniques.

• Detection module based on DNN and optimization

module based on ISAGA & SAA: Detection module

based on DNN interacts with an optimization module

based on ISAGA & SAA as clarified in detail in

subsection 4.1 with the aim to seek optimal or near-

optimal values of parameters used to develop an ideal IDS

based DNN. The phase of optimization is called

“optimization stage”. This phase is accomplished at the

end of ISAGA process. Thus, the optimal values of the

parameters served to build an IDS based DNN are found.

Subsequent to passing through optimization stage and

uncovering the ideal parameters to create an IDS based DNN,

the ideal MLANIDS works in detection mode as shown in

figure 2, to forecast the class of the given records or packets

retrieved from Kyoto dataset. In case of benign or legitimate

sample, it is permitted to access to Cloud infrastructure, else

it is discarded and the alert system module is warned. In the

detection phase, we have added to our system a

supplementary module, namely “Alert System”.

• Alert System: Triggers alarms about intrusions that are

identified by optimized detection module based on DNN,

and transmits them to the security administrator for

notification and further investigation.

Figure 2. Framework of MLANIDS in detection mode

103
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

5. Strategic Positioning of the Proposed System

in a Cloud Network

The purpose of the developed IDS is to uncover intruders and

malevolent actions in and around the cloud computing

environment by surveillance of network traffic, hence

preserving availability, confidentiality, integrity and

performance of cloud assets and afforded services. It allows

detecting and blocking assaults in real time damaging the

security of the Cloud Datacenter.

As shown in figure 4, we suggest implementing our NIDS on

two strategic and critical locations:

• Front-End of Cloud: Positioning NIDS on front end of

Cloud aids to detect network intrusions or assaults

emanate from external network of Cloud, undertaken

from zombie hosts or by attackers connected to the

Internet who try to detour the firewall with the intention

of accessing the internal cloud, which can be a private

one. Thereby, NIDS acts as the second line of protection

behind the firewall to remedy its flaws [56], and

represents an additional preventive layer of security [57].

• Back-End of Cloud: Placing NIDS sensors on processing

servers situated at back end of Cloud facilitates

uncovering of intrusions happening on its internal

network. In a virtual environment, we have plenty virtual

machines on the same physical server, and they can inter-

communicate through the medium of the virtual switch

without leaving the physical server. Consequently,

network security appliances on the LAN can’t watch this

network traffic; if the traffic does not need to fit through

those devices mainly a firewall, as a result, a loophole for

all types of security attacks will be opened. Thus, the

departure point of an attacker/hacker is compromising

only one VM, and using it as a springboard to gain control

of the other VMs within the same hypervisor. This is

typically done without being watched or detected,

providing the attacker an enormous hack domain.

Furthermore, the virtual environment is exhibited to

diverse threats and risks, focused primarily on the

hypervisor: VM escape, Hyper jacking, VM migration,

Inter-VM traffic, and VM theft.

Our NIDS is conceived to watch that virtual traffic, and as

well the flow of traffic from or to the processing server on the

physical network. We haven’t opted to implement the NIDS

on every virtual machine since it will be a supplementary

burden; it will weigh down the work of the VM. Moreover,

such configuration necessitates several instances of NIDS,

which makes complex management of NIDS while VMs are

dynamically shifted, provisioned or de-provisioned.

6. Experimentation and Discussion

The experiences have been performed using a Windows 10 –

64 bits PC with 32 GB RAM and Intel(R) Core-i7 2700K

CPU. For simulation, we have utilized CloudSim simulator

4.0. In the first subsection of the present section, we provide

the performing measurings used for appraisal of our system,

followed by introduction in the second subsection of data

preprocessing techniques employed in our study. Thereafter,

the third subsection presents the optimization framework

ISAGASAA used in our work. Next, the fourth subsection

describes in detail the primary dataset used in our work that is

to say Kyoto dataset version 2015 for implementation and

validation of our system, followed by experimental outcomes

attained. Besides, assessment of our model on other IDS

dataset was fulfilled, thus, we provide the results of the

experiments conducted on CIDD-001 dataset in the fifth

subsection. At last, in the six subsection, we give a

benchmarking study between efficiency or performance of

our model and other modern state-of art methods in the light

of experimental outcomes reached.

6.1 Performance measurements

The performance of an intrusion detection system is

evaluated by its ability to give a correct classification of

events to be an attack or a normal behavior. According to the

real nature of a given event and the prediction of an IDS, we

found four possible outcomes that can be understood by the

confusion matrix as given in the table 4 [58].

Table 4. Confusion matrix

Actual class

Predicted class

Attack Normal

Attack True positive (TP) False negative (FN)

Normal False positive (FP) True negative (TN)

• True Positive (TP): Number of instances correctly

predicted as attacks.

• False Positive (FP): Number of instances wrongly

predicted as attacks.

• True Negative (TN): Number of instances correctly

predicted as non-attacks (normal instances).

• False Negative (FN): Number of instances wrongly

predicted as non-attacks [59].

The above four performance metrics in addition to other also

performance measurements illustrated by equations 4 to 11,

which are calculated using the confusion matrix, are used to

evaluate the IDS effectiveness. Generally, a good Intrusion

detection system (IDS) yields high accuracy and detection rate

as well as low false positive rate.

+

=
+ + +

()
TP TN

Accuracy ACC
TP TN FP FN

 (4)

 =
+

TP
Precision

TP FP
 (5)

 (/Re)
TP

Detection Rate DR call
TP FN

=
+

 (6)

 =
+

()
FP

False Alarm Rate FAR
FP TN

 (7)

´ ´

- =
+

2 Re Precision

Re Precision

call
F score

call
 (8)

 = ´ +
+ +

æ ö÷ç ÷ç ÷ç ÷çè ø
0.5

TP TN
AUC

TP FN TN FP
 (9)

 ()
TN

True Negative Rate TNR
TN FP

=
+

 (10)

104
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

 ()
FN

False Negative Rate FNR
FN TN

=
+

 (11)

6.2 Data preprocessing

In our study, training and testing subsets used in our

experiments are retrieved from the two IDS datasets

employed, namely Kyoto dataset and CIDDS-001 dataset.

With the purpose to make the records included in the subsets

mentioned beforehand, ready to be processed by our proposed

model, they must first be handled and prepared with the help

of the subsequent two operations:

• Numericalization or categorical encoding: This action

refers to the process of assigning numeric values to

nonnumeric features/attributes, thus as to turn the

processing task much easier, as numeric data can be

readily treated upon [18].

• Normalization: The attributes with elevated values can

dominate the outcomes than the attributes with lower

values .This dominance can be mitigated by the technique

of normalization, i.e., scaling the values within certain

range. Normalization is defined as is the procedure of

enclosing the values of attributes to a peculiar range to

minimize the complexity involved in processing data

spread over an absolute range and type of values. Diverse

attributes have values spread over large ranges and types.

For that reason, they are to be reduced to a particular

range being helpful to permit correct processing and

analysis of the data [43]. To normalize data, the mean-

range [0, 1] (Min-Max) normalization and Statistical

normalization (Z-score) methods are employed. The basis

of choice of these approaches is that they offer better

outcomes in terms of time and classification rate [18].

1. Mean range [0, 1] (Min-Max normalization):

As indicated by equation 12, the mean range

method normalizes an attribute value by

subtracting minimum value of that attribute from

the present value. This value is then divided by

the gap between maximum and minimum values

of that attribute. X and X' are value to be

normalized and the normalized attribute value

respectively. MinA and MaxA are the minimum

and maximum possible values for attribute A

before normalization.

 '
X MinA

X
MaxA MinA

-
=

-
 (12)

2. Statistical normalization (Z-score

normalization):

The value X of an attribute A is transformed in X'

according to formula (13). µ is the mean and α is

standard deviation of given attribute.

 '
X

X
m

a

-
= (13)

6.3 Optimization framework ISAGASAA

Table 5 exhibits the parameters of our hybrid optimization

framework used in this work with the aim to construct

intelligently and automatically an ideal or near ideal IDS

based on DNN. This framework combines our Improved Self-

Adaptive Genetic Algorithm and Simulated Annealing

Algorithm, and it is used posteriorly throughout the

experiments conducted with the Kyoto version 2015 and

CIDDS-001 datasets.

 Table 5. Parameters of our hybrid optimization framework

based ISAGASAA

Components

of the

framework

ISAGASAA

Parameters Value

Improved Self-

Adaptive

Genetic

Algorithm

Length of chromosomes 58 bits

Elitism number: the number of best
chromosomes which will be copied

without changes to a new population

(next generation)

100

Population size 1000

Maximum number of generations 200

Initial Crossover rate (Dynamic

parameter)

0.95

Initial Mutation rate (Dynamic

parameter)
0.1

Size of Fitness Hash Table (FHT) 10000

Simulated

Annealing

Algorithm

(SAA)

Initial Temperature (Dynamic

parameter)

1.0

Cooling rate 0.001

6.4 Experimentation based on kyoto university

 benchmark dataset

6.4.1 Description of Kyoto Dataset Version 2015

Kyoto 2006+ University Benchmark Dataset [60] is one of

the most freshly used intrusion detection dataset in the IDS

arena [46]. It consists of real network traffic data originally

gathered between November 2006 to December 2015 in

Kyoto University. The Kyoto dataset is captured using

honeypots, darknet sensors, email server and web crawler.

Song et al. in [45] provided a detailed analysis of honeypots

(i.e. computer network security mechanisms that detect

attempts of unauthorized use of information) and darknets

data collected on many real and virtual machines as

honeypots. They have deployed various types of honeypots,

darknets and other systems on the five networks inside and

outside of the Kyoto University, and collected all traffic data

to and from 348 honeypots (Windows XP, Windows Server,

Solaris…). All traffic was thoroughly inspected using three

security software SNS7160 IDS, Clam AntiVirus, Ashula and

since Apr. 2010, snort was added. This dataset was

established to surmount the issues of underperformance of

machine learning based IDS model trained and tested on

KDD or NSL-KDD and any other related old datasets

considerably criticized for not reflecting the present trend of

network situation and sophistication of ever evolving cyber-

attacks [53].

Kyoto dataset is a multivariate attributes dataset that
comports 24 statistical features pulled out from captured
data, comprising 14 conventional features that were
derived from KDD Cup 99 benchmark dataset, and 10
supplementary features added for analysis and further
investigation. This work employs subset of December 31,
2015 and has used the first 14 features (conventional
features) that are convenient for network-based IDSs
[54], and the label that points out whether the record is
an attack or normal, and excluded the features that can be

105
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

used to investigate what types of attacks arisen on
computer networks. Table 14 shows selected features
used in our experiments. Label feature indicates whether
the session was attack or not; ‘1’ means normal. ‘-1’
means attack was observed in the session. The data
pertaining to date December 31, 2015 of Kyoto dataset
is used for this study and this dataset has 309068 records,
out of which 23062 are normal and the 286006 are
attack data records.

6.4.2 Experimental Results

As highlighted beforehand in subsection 6.4.1, the data

pertaining to date December 31, 2015 of Kyoto dataset was

used in this work. This dataset contains two classes of

network connections; 23062 normal records and 286006

attack records. Each class is splited randomly to two sets

using a configuration of 60% for training and 40% for testing

in order to build training dataset and testing dataset used in

our experiences as shown by table 6.

Table 6. Distribution and size of training and testing datasets

Kyoto dataset version 2015

Datasets Description
Intrusive

Records

Normal

Records

Total

Records

Dataset

20151231

Full Kyoto

dataset of

2015-12-31

286006 23062 309068

Training

dataset

60% of Kyoto

dataset of

2015-12-31

171604 13838 185442

Testing

dataset

40% of Kyoto

dataset of

2015-12-31

114402 9224 123626

The experiments carried out on our model reveal that at the

end of running of our framework ISAGASAA, that is to say

after 200 generations, the best individual (chromosome)

found leads to construction of the best MLANIDS called

“MLANIDS_ KYOTO2015”. Tables 7 and 8 illustrate

respectively configuration and performances attained by that

ANIDS.

Table 7. Configuration of best MLANIDS_ KYOTO2015

Configuration Parameter Value

Number of nodes in Input layer 14

Number of nodes in Hidden

layer 01

10

Number of nodes in Hidden

layer 02

7

Number of nodes in Output

layer

1

Activation function Sigmoid

Normalization of data Min-Max

Learning rate 8.347698102564871E-7

Momentum term 1.143019854621969E-4

Table 8. Performance of best MLANIDS_ KYOTO2015

Performance Metric Value

Accuracy 99.95%

Precision 99.99%

Detection Rate (DR) 99.95%

False Negative Rate (FNR) 0.05%

False Positive Rate (FPR) 0.02%

True Negative Rate (TNR) 99.98%

F-score 0.99

AUC (Ability to avoid

misclassifications)
99.96%

6.5 Experimentation based on CIDDS-001 dataset

6.5.1 Description of CIDDS-001 Dataset

CIDDS-001 (Coburg Network Intrusion Detection Dataset)

[61] is a labelled flow based dataset created by M. Ring et al.

[62] in a Cloud environment based on OpenStack platform.

This dataset holds unidirectional NetFlow data. It consists of

traffic data from two server’s i.e. OpenStack and External

server.

Table 9. Attributes within the CIDDS-001 data set

Nr. Feature Description

1 Src IP Source IP Address

2 Src Port Source Port

3 Dest IP Destination IP Address

4 Dest Port Destination Port

5 Proto Transport Protocol (e.g. ICMP,

TCP, or UDP)

6 Date first seen Start time flow first seen

7 Duration Duration of the flow

8 Bytes Number of transmitted bytes

9 Packets Number of transmitted packets

10 Flags OR concatenation of all TCP Flags

11 Class Class label (normal, attacker,

victim, suspicious or unknown)

12 AttackType Type of Attack (PortScan, DoS,

Bruteforce, PingScan)

13
AttackID

Unique attack id. All flows which
belong to the same attack carry the

same attack id.

14 AttackDescription Provides additional information

about the set attack parameters
(e.g. the number of attempted

password guesses for SSH-Brute-

Force attacks)

CIDDS-001 dataset is produced by emulating small business

environment which consist of OpenStack environment having

internal servers (web, file, backup and mail) and an External

Server (file synchronization and web server) which is

106
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

deployed on the internet to capture real and up-to-date traffic

from the internet. It includes three logs files (attack logs,

client configurations and client logs) and traffic data from

two servers where each server traffic comprises of 4 four

week captured traffic data [35]. CIDDS-001 embraces

realistic normal and attack traffic allowing substantial

benchmarking of network intrusion detection systems in a

Cloud environment. It contains 14 attribute, the first 10

attributes are the default NetFlow attributes and the last four

attributes are additional attributes, names and descriptions of

features are tabulated in table 9. A total of 32 million of

normal and attack flows are captured in the dataset within

four weeks. Ring et al. [62] have exploited 92 types of attacks

to create this dataset. This makes it a significant benchmark

for intrusion detection systems. The reasons above motivated

us to use this dataset in this article. As outlined antecedently,

the CIDDS-001 has 14 attributes out of which the first 11

features have been used in this study.

6.5.2 Experimental Results

The original version of CIDDS-001 comprises five classes,

i.e. normal, suspicious, unknown, attacker, and victim, and

since our goal is to appraise anomaly based IDS, we only

incorporated normal and attacker classes in our experimental

dataset. Thereby, as displayed by table 10, the reduced

version of CIDDS-001 dataset employed in this work holds

953298 normal instances and 65652 attacker instances,

retrieved from both week 1 and week 2 of OpenStack and

ExternalServer traffic folders respectively.

Table 10. Construction of a reduced version of CIDDS-001

dataset

Traffic

folder
File source

Normal

Records

Attack

Record

s

OpenStack CIDDS-001-

internal-

week1.csv

924862 63263

ExternalServ

er

CIDDS-001-

external-

week2.csv

28436 2389

Reduced CIDDS-001 dataset 953298 65652

This reduced version of CIDDS-001 dataset is subsequently

splited into train and test subsets using a configuration of

60% for training and 40% for testing. Table 11 exhibits

distribution and size of those subsets.

Table 11. dataset Distribution and size of testing and training

CIDDS-001 subsets

Datasets
Normal

Records

Intrusiv

e

Records

Total

Records

Training

subset
381319

924862 63263

Testing subset 571979 28436 2389

The experiments conducted on our model point that on

completion of executing of our framework ISAGASAA, that

is to say after 200 generations, the best individual

(chromosome) found allows building the best MLANIDS,

called “MLANIDS_ CIDDS-001”. Tables 12 and 13 display

respectively configuration and performances achieved by that

IDS.

Table 12. Configuration of best MLANIDS_ CIDDS-001

Configuration Parameter Value

Number of nodes in Input layer 10

Number of nodes in Hidden layer 01 7

Number of nodes in Hidden layer 02 5

Number of nodes in Output layer 1

Activation function Sigmoid

Normalization of data Min-Max

Learning rate 8.358769540214567E-7

Momentum term 1.158746562046783E-4

Table 13. Performance of best MLANIDS_ CIDDS-001

Performance Metric Value

Accuracy 99.96%

Precision 99.47%

Detection Rate (DR) 99.95%

False Negative Rate (FNR) 0.05%

False Positive Rate (FPR) 0.04%

True Negative Rate (TNR) 99.96%

F-score 0.99

AUC (Ability to avoid

misclassifications)

99.95%

6.6 Comparison with related works and discussion

The subsections 6.4 and 6.5 give the results of

implementation and assessment of our model, which consists

of building automatically an ANIDS based DNN through our

hybrid optimization framework ISAGASAA (combination of

improved Self-Adaptive Genetic Algorithm (ISAGA) and

Simulated Annealing Algorithm (SAA)), with the help of

two different IDS datasets namely Kyoto version 2015 and

CIDDS-001 2017 respectively. As result, we have obtained

the two best Machine Learning ANIDSs (MLANID)

according to the datasets utilized, which are

MLANIDS_KYOTO2015 and MLANIDS_CIDDS-001

described by tables 8 and 13 respectively. Afterwards, we

have compared those ANIDS between them, and with varied

state-of-art approaches.

Analysis of the tables 8, 13 and 15 together with figures 5-8

leads to the following conclusions:

• Our ANIDSs obtained; MLANIDS_KYOTO2015 and

MLANIDS_CIDDS-001 attain approximately similar

performances, and all of them yield high detection rate,

high accuracy, great precision, elevated AUC and low

false positive rate.

• Both MLANIDS_KYOTO2015 and MLANIDS_CIDDS-

001 attain higher detection rate (99.95%), higher AUC

(99.96% and 99.95%), higher accuracy (99.95% and

107
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

99.96%) and lower false positive rate (0.02% and 0.04%).

Whereas the second rank is occupied by the work of

Zhang et al. [63], thanks to values of DR, accuracy and F-

score that are 99.92%, 99.91% and 0.99 respectively.

• The performance comparison demonstrates that our model

outperforms all the 11 approaches based DNN involved in

the comparison, and proves that it is the most suitable for

detecting miscellaneous attacks with elevated detection

rate and lowly false alarm rate.

• Using of an improved Self-Adaptive Genetic Algorithm

(ISAGA), further optimized by Simulated Annealing

Algorithm (SAA) enables to explore smartly and

efficaciously the search space in order to found the best

set of values of parameters, which are involved in creation

of ANIDS based on Deep Neural Network. Hence,

avoiding us to regulating or tuning those parameters

manually by way of the technique "trial and error".

Further, table 16 that is earmarked to comparison of

performing of our model to 20 state-of- the-art research based

on other approaches different to ANN, proves clearly that our

model also surpasses those 20 works in terms of intrusion

detection effectiveness. We highlight that the IDSs developed

by Ibrahim & Zainal [29] and Hatef et al. [64] achieve well

performances closer to our model. In fact, they reached high

values of (Detection rate, Accuracy), namely (99.70% ,

99.60%) and (99.38% , 99.38%) respectively.

We noticed also that implementation and incorporation of

optimization strategies to the fitness function of ISAGA,

namely Parallel Processing and Fitness Value Hashing have

brought multiple benefits. These advantages are: an average

of 90% diminution of execution time compared to a standard

GA, acceleration of the ISAGA convergence process and

save of processing power.

With the aim to render our proposed IDS model reactive,

autonomous and able to protect in real-time the cloud

resources against attacks, we have integrated to it a reactive

functionality. It is the capacity to discard the malicious

records or packets automatically and in real-time. As

explained in subsection 4.3, during detection mode, after

classifying a packet by the detection module and in case of

intrusion, the malicious packet is deleted and the "Alert

System" module is notified. This later module afterwards

send an alert to the security administrator for warning and

further investigation.

Our work offers the following novel contributions:

• Our proposed model enables comparing implicitly

shallow and deep neural networks. Given that the model

of chromosomes used by our ISAGA contains the gene

termed “Nb of nodes in hidden layer 02” encoded in 8

bits, therefore, a possible solution (chromosome) may be

shallow neural network (SNN) or deep neural network

(DNN). If the value of this gene is equal to 0 the resulted

neural network (NN) is an instance of SNN, otherwise we

get DNN. Certainly, during running of ISAGASAA, it

had explored the search space and generated several

instances of both SNN and DNN through its generic

operations mainly crossover and mutation. Consequently,

at the end of its execution, it found the fittest chromosome

according to the dataset used, allowing building the best

ANIDSs based on DNN as shown by the tables 8 and 13.

Owing of the obtained outcomes, we conclude that DNN

can yield better performance than SNN. As confirmed by

the works [24, 65, 66, 67], a good tuning of DNN

parameters lead to reach high performances. In our

proposed system, that tuning is automatically performed

by ISAGASAA thanks to two characteristics, namely

exploration of the search space and exploitation of genetic

patrimony transferred from generation to the next. The

two mentioned features are insured by genetic operations

of ISAGA. Moreover, our conclusion is supported by the

two books entitled "Deep learning" [68] and "Neural

Network Design" [69], which state that the trend today is

to design artificial NN with more hidden layers, therefore

deep neural networks.

• In our literature review carried out with the aim to

determinate uses of Genetic Algorithm (GA) with

Artificial Neural networks (ANN), either shallow or deep

neural networks in the field of Network IDSs (NIDS), we

have found mainly two main categories of uses. The first

one is use of GA for generation of rules of intrusion

detection (Rule Generation) for IDS based ANN, whereas

the second use is selection of the best/relevant attributes

(Feature Selection) for detection of anomalies/attacks. As

far as we know, our work is the first research project that

employs a variant of GA, namely ISAGA, in such manner

that consists of seeking the optimal or near optimal values

of parameters involved in construction of IDS based DNN

or affecting its performance with the help of ISAGA,

optimized by using SAA.

• To the best of our knowledge and according to our survey,

to build an IDS based on DNN, in general, researchers

choose randomly the values of the parameters implicated

in building of DNN or follow trial and error method to

determine those values. However, in our work, we use a

machine-learning optimization framework that combines

our variant of standard GA called ISAGA "Improved Self

Adaptive Genetic Algorithm", described previously in

detail and “Simulated Annealing Algorithm” (SAA), to

explore automatically and intelligently the search space of

those values in order to find their optimal values. Those

ideal values allow to construct a perfect or near perfect

ANIDS based DNN. In fact, the two MLANIDS built

with the aid of the two IDS datasets used, yield higher

performances in comparison to 34 IDS spread over the

tables 15 and 16.

7. Conclusions and Future Work

With the purpose to preserve the confidentiality, integrity and

availability (CIA) of the networks and information systems in

the cloud environment, it is inevitable to develop a powerful

Network IDS (NIDS), which will act as a security guard and

protect cloud resources and services against inside and

outside assaults. In fact, such NIDS should attain higher

performance in terms of intrusion detection; it must ensure

higher detection rate, higher accuracy, higher precision and

lower false positive rate with an affordable computational

cost. Hence, to create a NIDS that overcomes the above

issues and satisfies the requirements brought up earlier, we

have adopted a clever approach to build automatically the

expected and hoped NIDS based on Deep Neural Network

(DNN). Our methodology relies on using a novel hybrid

optimization framework termed “ISAGASAA” that combines

our developed self-adaptive heuristic search algorithm called

“Improved Self-Adaptive Genetic Algorithm (ISAGA)”, and

108
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

Simulated Annealing Algorithm (SAA) with the view of

seeking for the ideal values of the parameters involved in

building of IDS based DNN (IDSDNN) or influencing its

performance. Thereafter, leveraging the found values to build

a perfect or near-perfect NIDS based DNN. ISAGA is our

variant of standard Genetic Algorithm (GA), which is

developed based on GA, improved through an Adaptive

Mutation Algorithm (AMA) and optimization strategies,

namely Parallel Processing and Fitness Value Hashing.

Further, SAA is incorporated to ISAGA with the aim to

optimize its heuristic search. In ISAGA process, we have

employed binary encoding for chromosomes, while AUC

metric was adopted as a fitness function (score) for appraisal

of the goodness or adaptability of the chromosomes produced

versus the optimization problem in hand. In every generation

of ISAGA, each chromosome generated is utilized to develop

an instance of IDSDNN, which subsequently goes through

learning stage and a test stage. At the close of the former

stage, AUC measure is calculated. ISAGA process

commences with an arbitrarily generated population, which

evolves by means of elitism, selection, recombination

(crossover) and self-adaptive mutation. Lastly, the best

individual (chromosome) is choose as the ultimate result once

the optimization criterion is fulfilled. In our work,

termination condition adopted for ISAGA is creation of 200

generations. Thereby, at the conclusion of ISAGA process,

the ideal or near-ideal values of parameters used to construct

an optimal IDSDNN are found, which enables building an

efficient and effective machine learning anomaly NIDS called

“MLANIDS” achieving elevated detection rate and lowly

false positive rate.

Experimental outcomes obtained by using CloudSim 4.0 and

two IDS datasets, that is to say Kyoto version 2015 and

CIDDS-001 2017 prove that our two generated MLANIDSs,

outperform numerous state-of-the-art approaches. Besides,

performance enhancement strategies integrated to ISAGA

have diminished execution time, convergence time and saved

computational power.

We have chosen to position our proposed IDS on Front-End

and Back-End of the Cloud, to uncover and stop intrusions in

real time damaging the security of the Cloud Datacenter.

We project in our forthcoming work to utilize other meta-

heuristic algorithms (such artificial bee colony (ABC)

algorithm, particle swarm optimization, whale optimization

algorithm, crow search algorithm or ant colony optimization

(ACO) to compare them with ISAGA Algorithm developed

in this study.

8. Acknowledgement

We would like to thank all members of Computer Science and

Systems Laboratory within Department of Mathematics and

Computer in Faculty of Sciences Ain Chock, Hassan II

University for precious help and permanent support.

References

[1] S. Ravji, M. Ali, “Integrated Intrusion Detection and

Prevention System with Honeypot in Cloud Computing,”

IEEE 2018 International Conference on Computing,

Electronics & Communications Engineering (ICCECE),

Southend, UK, pp. 95-100, 2018.

[2] The NIST definition of cloud computing, 2011.

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-

145.pdf.

[3] G. Brunette, R. Mogull, “Security guidance for critical areas of

focus in cloud computing v2. 1,” Cloud Security Alliance, pp.

1-76, 2009.

[4] M. M. Sakr, M. A. Tawfeeq, A. B. El-Sisi, “Network Intrusion

Detection System based PSO-SVM for Cloud

Computing,” International Journal of Computer Network and

Information Security, Vol. 10, No. 3, pp. 22-29, 2019.

[5] T. Nathiya, G. Suseendran. “An Effective Hybrid Intrusion

Detection System for Use in Security Monitoring in the

Virtual Network Layer of Cloud Computing Technology,” In:

V. Balas, N. Sharma, A. Chakrabarti (Eds.), Data

Management, Analytics and Innovation. Advances in

Intelligent Systems and Computing, Vol. 839, Springer,

Singapore, Singapore, pp. 483-497, 2019.

[6] ORACLE and KPMG Enterprises, “2020 ORACLE and KPMG

Cloud Threat Report,” 2020.

https://www.oracle.com/a/ocom/docs/cloud/oracle-cloud-

threat-report-2020.pdf.

[7] L. Khatibzadeh, Z. Bornaee, A. Ghaemi Bafghi, “Applying

Catastrophe Theory for Network Anomaly Detection in Cloud

Computing Traffic,” Security and Communication

Networks, Vol. 2019, pp. 1-11, 2019.

[8] Symantec Enterprise, “2019 Internet Security Threat Report,”

Mountain View, CA, USA, 2019.

https://www.symantec.com/content/dam/symantec/docs/report

s/istr-24-2019-en.pdf.

[9] Netskope Enterprise, “2020 Netskope Cloud and Threat

Report,” Santa Clara, CA, USA, 2021.

https://resources.netskope.com/cloud-reports/cloud-and-threat-

report-july-2021.

[10] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, M.

Rajarajan, “A survey of intrusion detection techniques in

cloud,” Journal of Network and Computer Applications, Vol.

36, No. 1, pp. 42-57, 2013.

[11] Y. Gao, Y. Liu, Y. Jin, J. Chen, H. Wu, “A Novel Semi-

Supervised Learning Approach for Network Intrusion

Detection on Cloud-Based Robotic System,” IEEE

Access, Vol. 6, pp. 50927-50938, 2018.

[12] P. Ghosh, A. Karmakar, J. Sharma, S. Phadikar, “CS-PSO

based Intrusion Detection System in Cloud Environment,” In:

A. Abraham, P. Dutta, J. Mandal, A. Bhattacharya, S. Dutta

(Eds.), Emerging Technologies in Data Mining and

Information Security, Advances in Intelligent Systems and

Computing, Vol. 755, Springer, Singapore, Singapore, pp.

261-269, 2019.

[13] M. Idhammad, K. Afdel, M. Belouch, “Distributed Intrusion

Detection System for Cloud Environments based on Data

Mining techniques,” Procedia Computer Science, Vol. 127,

pp. 35-41, 2018.

[14] S. M. Mehibs, S. H. Hashim, “Proposed Network Intrusion

Detection System In Cloud Environment Based on Back

Propagation Neural Network,” Journal of University of

Babylon for Pure and Applied Sciences, Vol. 26, No. 1, pp.

29-40, 2018.

[15] W. Yassin, N. I. Udzir, Z. Muda, A. Abdullah, M. T.

Abdullah, “A cloud-based intrusion detection service

framework,” 2012 International Conference on Cyber

Security, Cyber Warfare and Digital Forensic (CyberSec),

Kuala Lumpur, Malaysia, pp. 213-218, 2012.

[16] S. X. Wu, W. Banzhaf, “The use of computational intelligence

in intrusion detection systems: A review,” Applied soft

computing, Vol. 10, No. 1, pp. 1-35, 2010.

[17] M. AL-Shabi, “Design of a Network Intrusion Detection

System using Complex Deep Neuronal Networks,”

International Journal of Communciation Networks and

Information Security (IJCNIS), Vol. 13, No. 3, pp. 409-415,

2021.

https://www.oracle.com/a/ocom/docs/cloud/oracle-cloud-threat-report-2020.pdf
https://www.oracle.com/a/ocom/docs/cloud/oracle-cloud-threat-report-2020.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6238218
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6238218

109
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

[18] Z. Chiba, N. Abghour, K. Moussaid, M. Rida, “A novel

architecture combined with optimal parameters for back

propagation neural networks applied to anomaly network

intrusion detection,” Computers & Security, Vol. 75, pp. 36-

58, 2018.

[19] G. Hinton, L. Deng, D. Yu, G.E. Dahl, A. R. Mohamed, N.

Jaitly,, ... & B. Kingsbury, “Deep neural networks for acoustic

modeling in speech recognition,” IEEE Signal processing

magazine, Vol. 29, No. 6, pp. 82-97, 2012.

[20] L. Jacobson, B. Kanbe, “Genetic algorithms in Java basics,”

Apress, New York, USA, 2015.

[21] D. E. Kim, M. Gofman, “Comparison of shallow and deep

neural networks for network intrusion detection,” 2018 IEEE

8th Annual Computing and Communication Workshop and

Conference (CCWC), Las Vegas, NV, USA, pp. 204-208,

2018.

[22] J. H. Woo, J. Y. Song, Y. J. Choi, “Performance Enhancement

of Deep Neural Network Using Feature Selection and

Preprocessing for Intrusion Detection,” 2019 International

Conference on Artificial Intelligence in Information and

Communication (ICAIIC), Okinawa, Japan, pp. 415-417,

2019.

[23] K. G. Sheela, S. N. Deepa, “Review on methods to fix number

of hidden neurons in neural networks,” Mathematical

Problems in Engineering, Vol. 2013, pp. 1-11, 2013.

[24] Z. Zhang, G. Zhang, Y. Shen, Y. Zhu, “Intrusion Detection

Model Based on GA Dimension Reduction and MEA-Elman

Neural Network,” In: L. Barolli, F. Xhafa, N. Javaid, T.

Enokido (Eds.), Innovative Mobile and Internet Services in

Ubiquitous Computing (IMIS 2018), Advances in Intelligent

Systems and Computing, Vol. 773, Springer, Cham,

Switzerland, pp. 354-365, 2019.

[25] K. K. Ghanshala, P. Mishra, R. C. Joshi, S. Sharma, “BNID: A

Behavior-based Network Intrusion Detection at Network-

Layer in Cloud Environment,” 2018 First International

Conference on Secure Cyber Computing and Communication

(ICSCCC), Jalandhar, India, pp. 100-105, 2018.

[26] S. I. Shyla, S. S. Sujatha, “Cloud Security: LKM and Optimal

Fuzzy System for Intrusion Detection in Cloud

Environment,” Journal of Intelligent Systems, Vol. 29, No. 1,

pp. 1626-1642, 2019.

[27] N. M. Ibrahim, A. Zainal, “A Distributed Intrusion Detection

Scheme for Cloud Computing,” International Journal of

Distributed Systems and Technologies (IJDST), Vol. 11, No.

1, pp. 68-82, 2020.

[28] M. Rabbani, Y. L. Wang, R. Khoshkangini, H. Jelodar, R.

Zhao, P. Hu, “A hybrid machine learning approach for

malicious behaviour detection and recognition in cloud

computing,” Journal of Network and Computer Applications,

Vol. 151, pp. 1-13, 2020.

[29] N. Neha, M.G. Raman, N. Somu, R. Senthilnathan, V.S.

Sriram, “An Improved Feedforward Neural Network Using

Salp Swarm Optimization Technique for the Design of

Intrusion Detection System for Computer Network,” In: A.

Das, J. Nayak, B. Naik, S. Pati, D. Pelusi (Eds.),

Computational Intelligence in Pattern Recognition, Advances

in Intelligent Systems and Computing, Vol. 999, Springer,

Singapore, Singapore, pp. 867-875, 2020.

[30] S. Krishnaveni, P. Vigneshwar, S. Kishore, B. Jothi, S.

Sivamohan, “Anomaly-Based Intrusion Detection System

Using Support Vector Machine,” In: S. Dash, C. Lakshmi, S.

Das, B. Panigrahi (Eds.), Artificial Intelligence and

Evolutionary Computations in Engineering Systems,

Advances in Intelligent Systems and Computing, Vol. 1056,

Springer, Singapore, Singapore, pp. 723-731, 2020.

[31] M.S. Abirami, U. Yash, S. Singh, “Building an Ensemble

Learning Based Algorithm for Improving Intrusion Detection

System,” In: S. Dash, C. Lakshmi, S. Das, B. Panigrahi (Eds.),

Artificial Intelligence and Evolutionary Computations in

Engineering Systems, Advances in Intelligent Systems and

Computing, Vol. 1056, Springer, Singapore, Singapore, pp.

635-649, 2020.

[32] T. Thilagam, R. Aruna, “Intrusion detection for network based

cloud computing by custom RC-NN and optimization,” ICT

Express, Vol. 7, No. 4, pp. 512-520, 2021.

[33] S. Sobin Soniya, S. Maria Celestin Vigila, “Feedback deer

hunting optimization algorithm for intrusion detection in cloud

based deep residual network,” International Journal of

Modeling, Simulation, and Scientific Computing, Vol. 12, No.

6, pp. 2150047-2150057, 2021.

[34] S. Sayed, M. Nassef, A. Badr, I. Farag, “A nested genetic

algorithm for feature selection in high-dimensional cancer

microarray datasets,” Expert Systems with Applications, Vol.

121, pp. 233-243, 2019.

[35] R. Pereira, L. Aelenei, “Optimization assessment of the energy

performance of a BIPV/T-PCM system using Genetic

Algorithms,” Renewable Energy, Vol. 137, pp. 157-166, 2019.

[36] J. Thompson, K.A. Dowsland, “General cooling schedules for a

simulated annealing based timetabling system,” In: E. Burke,

P. Ross (Eds.), Practice and Theory of Automated Timetabling

(PATAT 1995), Lecture Notes in Computer Science, Vol.

1153, Springer, Berlin, Heidelberg, Germany, pp. 345-363,

1996.

[37] L. R. Rere, M. I. Fanany, A. M. Arymurthy, “Simulated

annealing algorithm for deep learning,” Procedia Computer

Science, Vol. 72, pp. 137-144, 2015.

[38] K. L. Du, M. N. S. Swamy, “Search and optimization by

metaheuristics,” Birkhauser, Cham, Switzerland, 2016.

[39] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.

Teller, E. Teller, “Equation of state calculations by fast

computing machines,” The journal of chemical physics, Vol.

21, No. 6, pp. 1087-1092, 1953.

[40] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by

simulated annealing,” Science, Vol. 220, No. 4598, pp. 671-

680, 1983.

[41] B. Suman, P. Kumar, “A survey of simulated annealing as a

tool for single and multiobjective optimization,” Journal of the

operational research society, Vol. 57, No. 10, pp. 1143-1160,

2006.

[42] Y. Nourani, B. Andresen, “A comparison of simulated

annealing cooling strategies,” Journal of Physics A:

Mathematical and General, Vol. 31, No. 41, pp. 8373-8385,

1998.

[43] N. Lokeswari, B. C. Rao, “Artificial Neural Network Classifier

for Intrusion Detection System in Computer Network,”

Second International Conference on Computer and

Communication Technologies. Hyderabad, India, pp. 581-591,

2016.

[44] B.A. Tama, K. H. Rhee, “Attack Classification Analysis of IoT

Network via Deep Learning Approach,” Research Briefs on

Information & Communication Technology Evolution

(ReBICTE), Vol. 3, pp. 1-9, 2017.

[45] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, K. Nakao,

“Statistical analysis of honeypot data and building of Kyoto

2006+ dataset for NIDS evaluation,” First Workshop on

Building Analysis Datasets and Gathering Experience Returns

for Security, Salzburg, Austria, pp. 29-36, 2011.

[46] D.A. Musbau, J.K. Alhassan, “Ensemble Learning Approach

for the Enhancement of Performance of Intrusion Detection

System,” International Conference on Information and

Communication Technology and its Applications (ICTA

2018), Minna, Nigeria, pp. 1-8, 2018.

[47] D. Singh, D. Patel, B. Borisaniya, C. Modi, “Collaborative ids

framework for cloud,” Journal of Network Security, Vol. 18,

No. 4, pp. 699-709, 2016.

[48] W. Wang, X. Zhang, S. Gombault, S. J. Knapskog, “Attribute

normalization in network intrusion detection,” IEEE 2009 10th

International Symposium on Pervasive Systems, Algorithms,

and Networks (ISPAN), Kaohsiung, Taiwan, pp. 448-453,

2009.

https://www.google.fr/search?q=New+York&stick=H4sIAAAAAAAAAOPgE-LUz9U3ME9LKy5SAjON4o0szLQ0Msqt9JPzc3JSk0sy8_P084vSE_MyqxJBnGKr9MSiosxioHBGIQCw0W5LQgAAAA&sa=X&ved=0ahUKEwiGz6Cag6nbAhWTKCwKHR1ICYQQmxMIlwEoATAR
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5379703
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5379703
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5379703

110
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

[49] S. Kumar, A. Yadav, “Increasing performance Of intrusion

detection system using neural network,” 2014 IEEE

International Conference on Advanced Communication

Control and Computing Technologies (ICACCCT),

Ramanathapuram, India, pp. 546-550, 2014.

[50] N. Sen, R. Sen, M. Chattopadhyay, “An effective back

propagation neural network architecture for the development

of an efficient anomaly based intrusion detection system,”

2014 International Conference on Computational Intelligence

and Communication Networks, Bhopal, India, pp. 1052-1056,

2014.

[51] R. Gaidhane, C. Vaidya, M. Raghuwanshi, “Intrusion Detection

and Attack Classification using Back-propagation Neural

Network,” International Journal of Engineering Research and

Technology (IJERT), Vol. 3, No. 3, pp. 1112-1115, 2014.

[52] Description of Kyoto university benchmark data, 2006.

http://www. takakura.com/Kyoto_data/BenchmarkData-

Description-v5. Pdf.

[53] M. A. Jabbar, R. Aluvalu, “RFAODE: A Novel Ensemble

Intrusion Detection System,” Procedia computer science, Vol.

115, pp. 226-234, 2017.

[54] D. D. Protić, “Review of KDD Cup'99, NSL-KDD and Kyoto

2006+ datasets,” Vojnotehnički glasnik, Vol. 66, No. 3, pp.

580-596, 2018.

[55] M. Sokolova, G. Lapalme, “A systematic analysis of

performance measures for classification tasks,” Information

Processing & Management, Vol. 45, No. 4, pp. 427-437, 2009.

[56] Z. Chiba, N. Abghour, K. Moussaid, M. Rida, “A cooperative

and hybrid network intrusion detection framework in cloud

computing based on snort and optimized back propagation

neural network,” Procedia Computer Science, Vol. 83, pp.

1200-1206, 2016.

[57] C. N. Modi, D. R. Patel, A. Patel, R. Muttukrishnan, “Bayesian

Classifier and Snort based network intrusion detection system

in cloud computing,” 2012 Third International Conference on

Computing, Communication and Networking Technologies

(ICCCNT'12), Coimbatore, India, pp. 1-7, 2012.

[58] O. Abouabdalla, H. El-Taj, A. Manasrah, S. Ramadass, “False

positive reduction in intrusion detection system: A

survey,” 2009 2nd IEEE International Conference on

Broadband Network & Multimedia Technology, Beijing,

China, pp. 463-466, 2009.

[59] U. Ali, K.K. Dewangan, D.K. Dewangan, “Distributed Denial

of Service Attack Detection Using Ant Bee Colony and

Artificial Neural Network in Cloud Computing,” In: B.

Panigrahi, M. Hoda, V. Sharma, S. Goel (Eds.), Nature

Inspired Computing, Advances in Intelligent Systems and

Computing, Vol 652, Springer, Singapore, Singapore, pp. 165-

175, 2018.

[60] Kyoto 2006+ dataset. http://www.takakura.com/Kyoto_data.

[61] CIDDS-001 dataset. https://www.hs-

coburg.de/fileadmin/hscoburg/WISENT-CIDDS-001.zip.

[62] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, A. Hotho,

“Flow-based benchmark data sets for intrusion detection,”

16th European Conference on Cyber Warfare and Security,

Dublin, Ireland, pp. 361-369, 2017.

[63] Y. Zhang, X. Chen, L. Jin, X. Wang, D. Guo, “Network

intrusion detection: Based on deep hierarchical network and

original flow data,” IEEE Access, Vol. 7, pp. 37004-37016,

2019.

[64] M. A. Hatef, V. Shaker, M. R. Jabbarpour, J. Jung, H. Zarrabi,

“HIDCC: A hybrid intrusion detection approach in cloud

computing,” Concurrency and Computation: Practice and

Experience, Vol. 30, No. 3, 2018.

[65] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran,

A. Al-Nemrat, S. Venkatraman, “Deep learning approach for

intelligent intrusion detection system,” IEEE Access, Vol. 7,

pp. 41525-41550, 2019.

[66] A. Javaid, Q. Niyaz, W. Sun, M. Alam, “A deep learning

approach for network intrusion detection system,” Eai

Endorsed Transactions on Security and Safety, Vol. 3, No. 9,

p. e2, 2016.

[67] S. Gurung, M. K. Ghose, A. Subedi, “Deep learning approach

on network intrusion detection system using NSL-KDD

dataset,” International Journal of Computer Network and

Information Security, Vol. 11, No. 3, pp. 8-14, 2019.

[68] I. Goodfellow, Y. Bengio, A. Courville, “Deep learning,” MIT

press, Cambridge, Massachusetts, 2016.

[69] H. B. Demuth, M. H. Beale, O. De Jess, M. T. Hagan, “Neural

network design,” Martin Hagan, Oklahoma State University,

Stillwater, Ok, USA, 2014.

[70] C. Yin, Y. Zhu, J. Fei, X. He, “A deep learning approach for

intrusion detection using recurrent neural networks,” IEEE

Access, Vol. 5, pp. 21954-21961, 2017.

[71] N. Shone, T. N. Ngoc, V. D. Phai, Q. Shi, “A deep learning

approach to network intrusion detection,” IEEE transactions

on emerging topics in computational intelligence, Vol. 2, No.

1, pp. 41-50, 2018.

[72] M. Al-Qatf, Y. Lasheng, M. Al-Habib, K. Al-Sabahi, “Deep

learning approach combining sparse autoencoder with SVM

for network intrusion detection,” IEEE Access, Vol. 6, pp.

52843-52856, 2018.

[73] T. Ma, Y. Yu, F. Wang, Q. Zhang, X. Chen, “A Hybrid

Methodologies for Intrusion Detection Based Deep Neural

Network with Support Vector Machine and Clustering

Technique,” In: N. Yen, J. Hung (Eds.), Frontier Computing

(FC 2016), Lecture Notes in Electrical Engineering, Vol. 422,

Springer, Singapore, Singapore, pp. 123-134, 2018.

[74] Y. Yang, K. Zheng, C. Wu, Y. Yang, “Improving the

classification effectiveness of intrusion detection by using

improved conditional variational autoencoder and deep neural

network,” Sensors, Vol. 19, No. 11, pp. 1-20, 2019.

[75] Y. Mehmood, M. A. Shibli, A. Kanwal, R. Masood,

“Distributed intrusion detection system using mobile agents in

cloud computing environment,” 2015 Conference on

Information Assurance and Cyber Security (CIACS),

Rawalpindi, Pakistan, pp. 1-8, 2015.

[76] R. Singh, H. Kumar, R. K. Singla, “An intrusion detection

system using network traffic profiling and online sequential

extreme learning machine,” Expert Systems with

Applications, Vol. 42, No. 22, pp. 8609-8624, 2015.

[77] P. Ghosh, S. Jha, R. Dutta, S. Phadikar, “Intrusion Detection

System Based on BCS-GA in Cloud Environment,” in: N.

Shetty, L. Patnaik, N. Prasad, N. Nalini (Eds.), Emerging

Research in Computing, Information, Communication and

Applications (ERCICA 2016), Springer, Singapore, Singapore,

pp. 393-403, 2018.

[78] M. E. Aminanto, K. I. M. HakJu, K. I. M. Kyung-Min, K. I. M.

Kwangjo, “Another Fuzzy Anomaly Detection System Based

on Ant Clustering Algorithm,” IEICE TRANSACTIONS on

Fundamentals of Electronics, Communications and Computer

Sciences, Vol. E100-A, No. 1, pp. 176-183, 2017.

[79] H. H. Pajouh, G. Dastghaibyfard, S. Hashemi, “Two-tier

network anomaly detection model: a machine learning

approach.” Journal of Intelligent Information Systems, Vol.

48, No.1, pp. 1-14, 2015.

[80] S. M. Mehibs, S. H. Hashim, “Proposed Network Intrusion

Detection System Based on Fuzzy c Mean Algorithm in Cloud

Computing Environment,” Journal of University of

Babylon, Vol. 26, No. 2, pp. 27-35, 2018.

[81] A. H. Hamamoto, L. F. Carvalho, L. D. H. Sampaio, T. Abrão,

M. L. Proença Jr, “Network anomaly detection system using

genetic algorithm and fuzzy logic, ” Expert Systems with

Applications, Vol. 92, pp. 390-402, 2018.

[82] R. Sharma, S. Chaurasia, “An Enhanced Approach to Fuzzy C-

means Clustering for Anomaly Detection,” In: A. Somani, S.

Srivastava, A. Mundra, S. Rawat, (Eds.), Proceedings of First

International Conference on Smart System, Innovations and

Computing, Smart Innovation, Systems and Technologies,

Vol. 79. Springer, Singapore, Singapore, pp. 623-636, 2018.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7058462
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7058462
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6383183
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6383183
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6383183
http://www.takakura.com/Kyoto_data
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7382893
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7382893

111
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

[83] S. Borah, R. Panigrahi, A. Chakraborty, “An Enhanced

Intrusion Detection System Based on Clustering,” in: K.

Saeed, N. Chaki, B. Pati, S. Bakshi, D. Mohapatra (Eds.),

Progress in Advanced Computing and Intelligent Engineering,

Advances in Intelligent Systems and Computing, Vol. 564,

Springer, Singapore, Singapore, pp. 37-45, 2018.

[84] O. Achbarou, M. A. El Kiram, O. Bourkoukou, S. Elbouanani,

“A New Distributed Intrusion Detection System Based on

Multi-Agent System for Cloud Environment,” International

Journal of Communication Networks and Information Security

(IJCNIS), Vol. 10, No. 3, pp.526-533, 2018.

Figure 3. Workflow of proposed system

112
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

Figure 4. Locations of proposed MLANIDS in a cloud network

113
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

Table 14. Description of features used in our study related to Kyoto 2006+ version 2015 dataset [45]

Index feature

in Kyoto

2006+

dataset

Name Description

1 Duration The length (number of seconds) of the connection

2 Service The connection’s service type, e.g., http, telnet

3 Source bytes The number of data bytes sent by the source IP

address

4 Destination bytes The number of data bytes sent by the destination IP

address

5 Count The number of connections whose source IP

address and destination IP address are the same to

those of the current connection in the past two

seconds

6 Same_srv_rate % of connections to the same service in Count

feature

7 Serror_rate % of connections that have “SYN” errors in Count

feature

8 Srv_serror_rate % of connections that have “SYN” errors in
Srv_count (the number of connections whose

service type is the same to that of the current

connection in the past two seconds) feature

9 Dst_host_count Among the past 100 connections whose
destination IP address is the same to that of the

current connection, the number of connections
whose source IP address is also the same to that of

the current connection

10 Dst_host_srv_count
Among the past 100 connections whose destination

IP address is the same to that of the current
connection, the number of connections whose

service type is also the same to that of the current

connection

11 Dst_host_same_src_port_rate % of connections whose source port is the same to
that of current connection in Dst_host_count

feature

12 Dst_host_serror_rate % of connections that “SYN” errors in

Dst_host_count feature

13 Dst_host_srv_serror_rate % of connections that “SYN” errors in

Dst_host_srv_count feature

14 Flag The state of the connection at the time the

connection was written

18 Label Indicates whether the session was attack or not; ‘1’

means the session was normal, ‘-1’ means known
attack or unknown attack was observed in the

session

114
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

Table 15. Comparison of performances of our MLANIDS to other works based on shallow or deep neural networks

Research Work Year
Precision

(%)

FPR

(%)

Accuracy

(%)

DR (%) F-score AUC

(%)

A deep learning approach for network

intrusion detection system [66]
2016 85.44 N/A 88.39 95.95 0.904 N/A

A deep learning approach for intrusion

detection using recurrent neural networks

[70]

2017 N/A 1.2725 81.29 50.77 N/A 74.74

Comparison of shallow and deep neural

networks for network intrusion detection

[23]

2018 N/A 1.40 98.50 N/A N/A N/A

A deep learning approach to network

intrusion detection [71]
2018 99.99 2.15 97.85 97.85 0.9815 97.85

Deep Learning Approach Combining

Sparse Autoencoder With SVM for

Network Intrusion Detection [72]

2018 96.23 N/A 84.96 76.57 0.8528 N/A

A Hybrid Methodologies for Intrusion
Detection Based Deep Neural Network

with Support Vector Machine and

Clustering Technique [73]

2018 N/A N/A 92.03 91.35 N/A N/A

Network Intrusion Detection: Based on
Deep Hierarchical Network and Original

Flow Data [63]
2019 99.84 N/A 99.91 99.92 0.99 N/A

Deep Learning Approach on Network
Intrusion Detection System using NSL-

KDD Dataset [67]
2019 84.65 19.32 87.17 92.83 0.8855 86.75

Performance Enhancement of Deep Neural

Network Using Feature Selection and

Preprocessing for Intrusion Detection [24]

2019 N/A N/A 98.50 N/A N/A N/A

Improving the Classification Effectiveness

of Intrusion Detection by Using Improved

Conditional Variational AutoEncoder and

Deep Neural Network [74]

2019 N/A 2.74 85.97 77.43 N/A 87.34

A hybrid machine learning approach for

malicious behaviour detection and

recognition in cloud computing [30]

2020 96.4 3.6 N/A 96.4 97.5 96.4

An Improved Feedforward Neural
Network Using Salp Swarm Optimization

Technique for the Design of Intrusion

Detection System for Computer Network

[31]

2020 N/A N/A 98.63 N/A N/A N/A

Intrusion detection for network based

cloud computing by custom RC-NN and

optimization [32]

2021 100 0 94.28 80.53 0.8923 90.26

Feedback deer hunting optimization
algorithm for intrusion detection in cloud

based deep residual network [33]
2021 N/A 0.0544 93.56 93.98 N/A 94.27

Proposed MLANIDS_KYOTO2015 2021 99.99 0.02 99.95 99.95 0.99 99.96

Proposed MLANIDS_CIDDS-001 2021 99.47 0.04 99.96 99.95 0.99 99.95

115
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

Figure 5. Comparison of False Positive Rate (FPR) of proposed system MLANIDS and other works based ANN

Figure 6. Comparison of Detection rate (DR) of proposed system MLANIDS and other works based ANN

116
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

Figure 7. Comparison of AUC (ability to avoid misclassifications) of proposed system MLANIDS and other works based

ANN

Figure 8. Comparison of Accuracy of proposed system MLANIDS and other works based ANN

117
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

Table 16. Comparison of performances of our MLANIDS to other works based on other approaches different to ANN

Research Work Year
Precision

(%)

FPR

(%)

Accuracy

(%)

DR

(%)

F-

score

AUC

(%)

Distributed intrusion detection system using

mobile agents in cloud computing environment

[75]

2015 N/A 93 N/A 7 N/A 50

An intrusion detection system using network
traffic profiling and online sequential extreme

learning machine [76]
2015 N/A 1.74 98.66 99.01 N/A 98.63

Collaborative ids framework for cloud [47] 2016 N/A 1.69 98.92 99.40 N/A 98.85

Intrusion Detection System Based on BCS-GA in

Cloud Environment [77]
2016 96.50 3.07 78.23 64.08 77.02 80.50

Another fuzzy anomaly detection system based on

ant clustering algorithm [78]
2017 N/A 10.03 N/A 92.11 N/A 91.04

Two-tier network anomaly detection model- a

machine learning approach [79]
2017 N/A 4.83 N/A 72.19 N/A 83.68

HIDCC: A hybrid intrusion detection approach in

cloud computing [64]
2018 99.12 0.7 99.38 99.38 0.99 99.34

Proposed Network Intrusion Detection System
Based on Fuzzy c Mean Algorithm in Cloud

Computing Environment [80]
2018 N/A 1.9 99 99 N/A 98.55

Distributed Intrusion Detection System for Cloud

Environments based on Data Mining techniques

[13]

2018 N/A N/A 97.05 0.21% N/A N/A

Network Anomaly Detection System using

Genetic Algorithm and Fuzzy Logic [81]
2018 95.23 0.56 96.53 76.50 0.8484 87.97

An Enhanced Approach to Fuzzy C-means

Clustering for Anomaly Detection [82]
2018 99.4567 N/A 95.2992 95.764 N/A N/A

An Enhanced Intrusion Detection System Based

on Clustering [83]
2018 N/A 25 N/A 90 N/A 82.50

A New Distributed Intrusion Detection System

Based on Multi-Agent System for Cloud

Environment [84]

2018 N/A 12.43 N/A 72.03 N/A 79.80

CS-PSO based Intrusion Detection System in

Cloud Environment [12]
2019 96.46 2.87 75.51 59.16 0.73 78.14

Network Intrusion Detection System based PSO-

SVM for Cloud Computing [4]
2019 99.50 0.87 99.10 99.08 0.99 99.10

BNID: A Behavior-based Network Intrusion

Detection at Network-Layer in Cloud Environment

[25]

2019 N/A 1.517 98.888 99.182 N/A 98.84

Cloud Security: LKM and Optimal Fuzzy System

for Intrusion Detection in Cloud Environment [26]
2019 96.54 N/A N/A 89.26 91. 83 N/A

A Distributed Intrusion Detection Scheme for

Cloud Computing [27]
2020 N/A 0.03 99.6 99.7 N/A N/A

Anomaly-Based Intrusion Detection System Using

Support Vector Machine [30]
2020 N/A N/A 96.34 N/A N/A N/A

Building an Ensemble Learning Based Algorithm

for Improving Intrusion Detection System [31]
2020 N/A N/A 95 N/A N/A N/A

Proposed MLANIDS_KYOTO2015 2021 99.99 0.02 99.95 99.95 0.99 99.96

Proposed MLANIDS_CIDDS-001 2021 99.47 0.04 99.96 99.95 0.99 99.95

