
43
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

A High-Throughput Hardware Implementation of

NAT Traversal for IPSEC VPN

Tran Sy Nam1, Hoang Van Thuc1 and Nguyen Van Long1

1 Institute of Cryptographic Science and Technology, Vietnam Government Information Security Committee, Vietnam

Abstract: In this paper, we present a high-throughput FPGA

implementation of IPSec core. The core supports both NAT and

non-NAT mode and can be used in high-speed security gateway

devices. Although IPSec ESP is very computing intensive for its

cryptography process, our implementation shows that it can achieve

high throughput and low lantency. The system is realized on the

Zynq XC7Z045 from Xilinx and was verified and tested in practice.

Results show that the design can gives a peak throughput of 5.721

Gbps for the IPSec ESP tunnel mode in NAT mode and 7.753 Gbps

in non-NAT mode using one single AES encrypt core. We also

compare the performance of the core when running in other mode

of encryption.

Keywords: IPSEC, ESP, NAT, Zynq, FPGA, IKE.

1. Introduction

Networking security has become a crucial issue in the

Internet today, since the fast-growing network has suffered

enormous amount of attacks everyday. Attacks on the

commercial Internet can be various from eavesdropping, data

modification, spoofing to repudiation of transactions, which

can cause serious loss. In order to address this security issue

the IPSec protocol [2, 3] was developed.

The IP Security (IPSec) protocol is one of the most popular

protocols used today to provide confidentiality, authenticity

and integrity to internet communications. It supports many

cryptographic algorithms to provide the security needed for

the network users. Once established, IPsec allows

transparently protect all application traffic and network

services that makes use of IP packets.

IPSec protocol consists of two parts, IKE protocol and ESP

protocol [2]. Projects such as Kame [6], Openbsd [7],

Freeswan [8], OpenIKEv2 [9] and strongswan [10] provide

software implementations of IKE protocol, while ESP

protocol is often a part of operating systems. Many operating

systems, such as Windows and Linux support ESP in kernel.

There is also a full software implementation of IPSec in user

space like Strongswan [10], Rockhopper [11]. These

software implementations of IPSec ESP, both in user space

and kernel space, generally can not gain high throughput and

low latency in comparision with hardware implementations.

IPsec software implementations can also be improved by

using hardware accellerators to offload crypto operations or

IPsec operations to hardware [12, 13, 14].

The most well-known application of IPSec is Virtual Private

Network (VPN), which often uses IPSec protocol in tunnel

mode. For many large enterprises and companies, the

internet connection is now more critical than ever. Not just

emails and web browsing are used for business, IoT solutions

[1], cloud computing or cluster computing nowadays impose

heavy demands for higher speed. Since there is a tradeoff

between security levels and the performance requirements in

the networks, network users have to choose relevant

cryptographic algorithms to gain required bandwidth to meet

these demands. To tackle the higher-throughput and better

security problems, specialized hardware VPN appliances are

used. Cisco and Juniper are leading companies in this field,

their network equipments such as firewall or routers are

often integrated with VPN solution. These commercial

devices are capable of handle Gigabits traffic over minimum

delay. To achieve this, a large degree or entire IPSec

processing operation have to be implemented in hardware

(e.g., ASICs).

In recent years, Field Programmable Gate Arrays (FPGAs)

have become a preferable alternative for pure software and

ASIC solutions. The advantages of FPGA such as flexible

architecture and high performance [15] of FPGA make it

suitable for cryptographic algorithms. Many works have

concentrated on improving speed of AES block cipher [16,

17, 18, 19] or SHA hashing algorithm [20, 21, 22] using

FPGA. Taking the benefit of FPGA, System on Chip is a

powerful technology that bring software and hardware

together in one system in order to solve many complex tasks.

The use of SoC is also increasingly demanding as embedded

devices are smaller, more flexible and required high

performance. Zynq is a SoC product from Xilinx that

combine ARM processors with FPGA chip, thus enable

highly differentiated designs for a wide range of applications

including network security.

The use of NAT together with IPSec has become popular in

most today IPSec VPN products. However little work has

been done on the hardware implementation of NAT traversal

for IPSec. The novelty of this work is the high-throughput

FPGA implementation of NAT traversal solution for IPSEC

VPN. The maximum NAT traversal throughput the core can

achieve is 5.721 Gbps for IPSec AES-256-GCM-16 tunnel

mode at a clock rate of 185 MHZ.

Our contribution is not just the IPSEC core itself but a

complete system design with hardware and software

components running on a modern System on chip Zynq

XC7Z045 from Xilinx. All softwares run in embedded Linux

ported for ARM including complex IKEv2 protocol. The

IPSec ESP protocol is done in FPGA with the aim to

increase throughput and decrease latency. To achieve this,

the data path of packets has to be realized totally in

hardware. This is a non-trivial task since we have to

implement packet filtering and packet routing in FPGA as

well. In order to implement efficiently in hardware, we

choose GCM and CTR as modes of operation for AES-256

block cipher. The core can run on two different cipher suite

AES-256-GCM-16 and AES-256-CTR-HMAC-SHA256.

The system can act as a high speed IPSec security gateway

and was verified and tested in practice.

44
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

2. Related Work

In [37] (2018), the authors presented a complete IPSec

implementation, both IPSec-AH and IPSec-ESP protocols,

each with transport and tunnel mode operation. They use

AES in CTR mode for IPSec-ESP and SHA-3 for IPSec-AH.

The performance of IPSec-ESP tunnel mode was measured

without packet integrity. Moreover, the fact that they used

manual key configuration instead of IKE protocol can lead to

security problem. One important aspect of CTR mode is that

IV or nonce should never be reused with the same key.

That’s why statically configured keys are not recommended

for this mode. In our design, we use IKEv2 to establish fresh

keys after the lifetime is reached to ensure this never

happens. We also implement a full-feature IPSec-ESP tunnel

mode with packet integrity and NAT traversal.

In [36] (2013), the authors presented a multi-core

architecture to implement IPSec protocol. This multi-core

architecture can be configured with the number of AH/ESP

cores and AES-HMAC-SHA-1 cores to achieve high

throughput. However their results were only the synthesised

results of the design on a Virtex-5 FPGA with the estimated

low frequency of 100 MHz.

In [23] (2005), the authors proposed an IPSec

implementation on Xilinx Virtex-II Pro FPGA. They moved

the key management protocol into the software that runs on

the PowerPC. The IPSec protocol was implemented using a

softcore processor while encryption and authentication

algorithms were performed in hardware. The cryptographic

algorithms AES-CBC and HMAC-MD5/HMAC-SHA1 were

rather obsolete and the performance of their implementation

was quite poor. In [24] (2011), the authors propose an

architecture for implementing IPSec on a Xilinx Virtex-4.

The proposed solution is based on Partial Reconfiguration

technique. They use Round Robin scheduling algorithm to

switch between Encapsulating Security Payload (ESP),

Authentication Header (AH) and Internet Key Exchange

(IKE) in hardware. However, this approach comes with a

time delay for switching the crypto core, thus does not allow

for extremely high throughput in a typical setting.

In [25] (2008), an IPSec implementation on board ML410 is

presented. The design uses AES128 in CBC mode as

encryption algorithm and AES-XCBC-MAC-96 as integrity

algorithm. The IPsec gateway bases on hardware for

timecritical operations like data encryption, network

filtering, and packet routing. It uses a lot of hardmacros

provided by Xilinx Virtex-4 FX-series FPGA like memories,

media access controllers, and the embedded PowerPC CPU.

The performances they provided were only of crypto cores,

not the whole IPSec design.

3. Technical Background

 3.1 IPSec overview

IPSec was designed to secure data at Layer 3 (IP Network

Layer). RFC 4301 [3] lists the following services that IPSec

provides:

• Access control

• Connectionless integrity

• Data origin authentication

• Rejection of replayed packets (a form of partial sequence

integrity)

• Confidentiality (encryption)

• Limited traffic flow confidentiality

IPSec has two security protocols, IP Authentication Header

(IPSec AH) [4] and IP Encapsulating Security Payload

(IPSec ESP) [5]. AH uses mainly for connectionless integrity

and data origin authentication, while ESP supports

confidentiality (encryption), connectionless integrity, data

origin authentication, and anti-replay integrity. ESP is

preferred than AH, since it covers all features of AH. In this

work, we focus on ESP protocol.

IPSec also defines Security Association (SA) as a oneway

relationship between a sender and a receiver who apply

IPSec services to their communication. The SAs have

information about a given IPSec communication session,

such as protocols, algorithms, session keys, sequence

numbers and are stored in Security Association Database

(SAD). Another important database in IPSec is the Security

Policy Database (SPD). Each entry in the SPD is a security

policy that decide on traffic protection using IPsec. There are

two ways to establish keys for IPSec, that is manual

configuration or automatically configuration. Automatic key

configuration protocol is called IKE, it authenticates both

peers, sets up a secure channel for key exchange, and

negotiates SAs.

Figure 1 depicts the ESP format. The ESP header consists of

Security Parameter Index and Sequence Number. SPI is used

to determine the keys and parameters in SAD. It helps sender

and receiver to agree on the same keys. The Sequence

Number is a monotonically increasing counter value, which

provides an anti-replay function. The Next Header field

specifies the type of the transport protocol used in the upper

layer. The Pad Length indicates the number of pad bytes

immediately preceding this field. This field is useful for

mode of block cipher which is required multiple of the block

size such as CBC.

Figure 1. ESP packet format

IPsec can be deployed in either transport or tunnel operation

mode. For transport mode, the ESP header is inserted into the

IP packet immediately prior to the transport-layer header

(e.g., TCP, UDP, ICMP), and an ESP trailer (Padding, Pad

Length, and Next Header fields) is placed after the IP packet

as Figure 2.

IP TCP Data

Before ESP in Transport Mode

IP TCP Data

After ESP in Transport Mode

ESP
ESP

Trailer

ESP

ICV

Confidentiality

Integrity
Figure 2. ESP in transport mode

In tunnel mode, entire IP packet is encrypted and

authenticated including IP header. Because original IP

header is encrypted, intermediate routers would be unable to

process such a packet. Therefore, it is necessary to

encapsulate new IP header, that will contain sufficient

45
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

information for routing but not for traffic analysis, to the

encrypted original IP packet. ESP header is inserted into the

encrypted IP packet, and an ESP trailer is placed after the

encrypted IP packet as Figure 3.

IP TCP Data

Before ESP in Tunnel Mode

IP TCP Data

After ESP in Tunnel Mode

ESP
ESP

Trailer

ESP

ICV

Confidentiality

Integrity

IP

Original

Figure 3. ESP in tunnel mode

The ICV (Integrity Check Value) is computed first at the

transmitter by the use of a common authentication algorithm

that is also known to the receiver. Then ICV is recomputed at

receiver and compared to match the received value for

authentication integrity. The ICV computation involves only

ESP packet but not IP header, since the IP header may be

modified by router (decrease TTL, recompute checksum).

In this paper, we choose ESP tunnel mode since it provides

full security services as compared with other modes.

 3.2 NAT Traversal

Due to the limitation of public IPv4 address, the Network

Address Translation (NAT) is used to allow hosts inside

Local Area Networks access the Internet by sharing the

public IP address. Unfortunately, IPSec protocol is

incompatible with NAT as it modify IP header and breaks

the IPsec’s security mechanisms. There are some solutions

for NAT traversal working with IPSec like UDP

Encapsulation [33], Bound End-To-End Tunnel (BEET)

Mode [34], UDP Hole Punching for IKE/IPsec [35].

The UDP Encapsulation is used to implemented NAT

traversal feature for IPSec ESP core in this work. The

process of UDP encapsulation is shown in Figure 4.

IP TCP Data

Before ESP/UDP encapsulation

IP TCP Data

After ESP/UDP encapsulation

ESP
ESP

Trailer

ESP

ICV

Confidentiality

Integrity

IP

Original
UDP

Figure 4. UDP encapsulation

The UDP header is inserted before ESP header in packet

after the encryption and authentication. The outer IP header

has to update total length, protocol and header checksum

fields for new UDP packet. By using UDP packet, the hosts

behind a NAT can be detected with port number in UDP

header, thus making the ESP tunnel working without affect

internal packet headers.

 3.3 Zynq architecture

The Zynq®-7000 family is a System on Chip developed by

Xilinx. Each Zynq-7000 device has integrates a dualcore or

single-core ARM® Cortex™-A9 based processing system

(PS) and 28 nm Xilinx programmable logic (PL). The FPGA

families such as Virtex-7, Kintex-7, and Artix-7 has to make

use of a soft core processor like Xilinx’s Microblaze for

handling software. By replacing a soft core processor with a

hard processor, the flexibility of the processor remains while

the performance increases significantly. ARM processor can

operate at a higher clock frequency as compared to soft

cores, thus enable processing multitasks. Also, the overall

cost and physical size of the device can be reduced by

integrating FPGA and processor in a single chip.

The FPGAs in PL can be programmed using hardware

description language (HDL), making them ideal for

performing high-speed logic, arithmetic and data flow

subsystems, while the processor in PS supports software

routines and/or operating systems. These two components

can interconnect with each other using industry standard

Advanced eXtensible Interface (AXI) connections.

The Zynq processing system consists of not just the ARM

processor, but much more resources such as Application

Processing Unit (APU), peripheral interfaces, cache memory,

memory interfaces, interconnect, and clock generation

circuitry [29]. A block diagram showing the architecture of

the PS is shown in Figure 5.

Figure 5. The Zynq Processing System

The programmable logic of Zynq is based on Artix®-7 and

Kintex®-7 FPGA fabric. These FPGA often composed of

slices and Configurable Logic Blocks (CLBs) and

Input/Output Blocks (IOBs) for interfacing, which are the

main logic resources for the target circuit.

Figure 6. Arrangement of Slices within the CLB

These CLBs are used to implementing sequential as well as

46
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

combinatorial circuits. Each CLB element consists of two

slices and is connected to a switch matrix for access to the

general routing matrix. Four 6-input LUTs and their eight

flip-flops as well as multiplexers and arithmetic carry logic

form a slice, and two slices form a CLB as Figure 5 [30].

4. Proposed Implementation

The proposed IPSec ESP implementation is shown in Figure

7. The IPSec core composed of 5 components:

- Policy controller

- SA controller

- ESP encapsulation processing

- Cryptographic algorithms

- NAT/non-NAT processing

The processing detail of each component is given separately

below.

 4.1 Policy controller

The Policy controller is implemented as packet filter or

access controller list (ACL). It controls the flow of packets

based on the fields in packets like IP address, ports. In our

design, filtering packets is carried out by checking the

matching of source IP address, destination IP address,

Protocol in IP header, source UDP/TCP Port, destination

UDP/TCP Port.

Policy controller will search in SPD (Security Policy

Database) for a policy that match packet. One of three

decision will be applied for the packet: BYPASS,

DISCARD, or PROTECT. If no policy found in SPD, IPSEC

Core will drop the packet and process next packet. If packet

match with BYPASS policy, it will be passing out without

further processing. Finally, if PROTECT policy is found, the

packet will be protected by using IPSec ESP tunnel mode.

The default policy of SPD is to drop packets. This policy is

considered more secure and easier to maintain than default

accept policy. SPD will block any undesired packets, thus

prevent denial-of-service attacks.

To search for matching entry in SPD, TCAM (Ternary-

Content Addressable Memory) is used. TCAM is a fully

associative memory that allows a “don’t care” state to be

stored in each memory cell in addition to 0s and 1s [26, 27,

28], that is totally suitable for searching IP address or port.

 4.2 SA controller

The main purpose of SA controller is to find the keys,

parameters from SAD (Security Association Database) for

the packet to perform encryption, decryption and packet

integrity. It is also used to update the values in SAD when

require. For example when increasing sequence number or

updating bitmap window for protecting replay attack.

When a packet match policy PROTECT from Policy

controller, a link to the SAD will be supplied to SA

controller by SAD_ID. This is an index to SAD (Security

Association Database) and is used by SA controller to fetch

the keys, parameters for the packets.

For inbound packet, if ESP packet is detected, SA controller

will search for entry in SAD based on the SPI (Security

Parameter Index) in ESP header. Then, packet will go

through algorithms for anti-replay and packet integrity

checks. The IPCore uses 64 bit Extended Sequence Number

(ESN) as default and can be configured to change to 32 bit

Sequence Number. When using ESN the receiver has to

determine 32 bit higher-order bits of the Sequence Number

from 32 bit low-order bits, which is transmitted in ESP

header. The process of detecting higher-order bits is carried

out together with anti-replay and packet integrity checks

according to [5].

 4.3 ESP encapsulation processing

Packet after ESP encapsulation process will has the format as

Figure 3. The process of ESP encapsulation can be viewed

more concretely in Figure 8. It first create new IP header

with the source tunnel, destination tunnel IP address and

inserted this new header to the packet. Then the ESP header

and ESP trailer is created and prepend to the packet. The

ESP header size can be different depending on the

cryptographic algorithms used in IPSec. In this work, the

ESP header, ESP trailer and ICV has the format as Table 1

below.

Table 1. Size of ESP header, ESP trailer and ICV

Fields Size

Security parameter index (SPI) 32-bit

Sequence number 32-bit

IV 64-bit

Payload Variable

Padding 0-255 bytes

Padding length 8-bit

Next header 8-bit

ICV 128-bit

 4.4 Cryptographic algorithms

The AES block cipher with key length 256 bit is selected for

encryption algorithm. Two modes of operation for AES we

implement in our core are GCM and CTR. The advantage of

these modes is only using encryption algorithm for both

encryption and decryption. So the AES hardware resources

may be reduced by half since we do not need decryption

hardware. The AES core itself is designed based on pipelined

architecture as Figure 9.

E1 E2 E3 E13 E14

Round keys

data_in data_out

[127:0] [127:0]

k1 k2 k3 k13 k14

Control block

k0

xor

Figure 9. AES pipeline implementation

The pipelined AES generates 128 bit output on each clock

cycle. The synthesized results of pipelined AES core using

ISE 14.7 is given in Table 2.

To encrypt packet, each 128-bit keystream will be generated

by encrypting 128-bit block counter. The format of 128-bit

block counter for CTR mode and GCM mode can be found

in [31, 32]. Each 128 bit block counter is a combination of

32-bit nonce (CTR) or 32-bit salt (GCM), 64-bit IV, and 32-

bit

47
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

IP Packet
Policy

controller

Security Policy

Database

Security

Association

Database

SA

controller
ESP encapsulation

AES-256-

GCM/CTR

encryption

GHASH/HMAC-

SHA256
Secure Packet

IP Packet

Drop

BYPASS

PROTECT

DISCARD

NAT/non-NAT

IPSEC Core

Figure 7. Proposed IPSec Core implementation

IP Packet

DROP BYPASS

SPD TablePacket filter

SAD Table

NAT mode?

Fetch keys, parameters

from SAD

SAD_ID

Insert new IP Header

Insert ESP Header,

ESP Trailer

Perform encryption

Perform packet integrity

Insert ICV

Update new IP Header

No

Yes

Output Packet

Insert UDP Header

ESP packet IP packet

UDP packet

Figure 8. FPGA data flow diagram

48
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

counter. The counter is increased by one until the keystream

is sufficient to encrypt the whole packet. This process is

almost the same for CTR and GCM modes, except that GCM

use salt notion instead of nonce.

The nonce/salt is a 32 bit value that is assigned at the

beginning of the security association. This value is often

generated randomly by IKEv2 when establishing SA. The IV

is chosen by the encryptor in a manner that ensures that the

same IV value is used only once for a given key. In our

implementation, the IV is chosen randomly at the beginning

of SA and is XORed with sequence number for each packet.

Since sequence number is unique for each packet, so the IV

is also unique as well.

We use HMAC-SHA256 as our authentication function for

CTR. The SHA-256 core is implemented using the design in

[38]. The core can process 512-bit block in 32 clock cycles.

The synthesized results of SHA-256 core using ISE 14.7 is

shown in Table 2.

GCM use GHASH for authentication mechanism. This

algorithm is implemented in our design by using parallel

approach of multiplication in)2(128GF to keep up with

pipelined AES. It take 2 clock cycles to process 128-bit

block. The synthesized results is shown in Table 2.

Table 2. Synthesized results of AES-256, SHA-256,

GHASH

Algorithm Max Frequency Slice Throughput

AES-256 234 MHz 5526 29 Gbps

SHA-256 154 MHz 1039 2.464 Gbps

GHASH 306 MHz 397 19 Gbps

 4.5 NAT/non-NAT processing

If NAT is not presented, the ESP packet is simply send to

output without processing. If NAT is detected, the ESP

packet will go through UDP Encapsulation as Figure 4. The

UDP header is 8 byte length and has the following format.

Source Port Destination Port

Length Checksum

Figure 10. UDP header

The source port and destination port in UDP header are given

by SA controller from SAD. The new IP header has to update

total length, protocol and header checksum fields for new

UDP packet. After this process, the ESP packet with UDP

header can send to endpoint behind NAT without breaking

packet integrity.

5. The Complete System Design

As state in [3], a complete IPsec architecture comprises from

two part: IKE protocol and ESP protocol. IKE protocol is

used to exchange keys securely, while ESP protocol take

charge of protecting the main traffic. Our implementation

follow the same principal with two components IKE and

IPSEC ESP as shown in Figure 11. The IKEv2 protocol

automatically negotiate keys for ESP tunnel and must

supports two types of Security Associations, IKE SAs and

Child Sas. The first type determines how keys are generated,

specifying parameters for Diffie-Hellman key exchange,

cryptographic, integrity transforms, and pseudo-random

functions that generate random numbers for the

communication sessions. Child SAs define the sets of

encryption and integrity transforms (cipher suite) that are

used to protect traffic in IPsec protocols.

Because of the complexity as well as low running frequence,

IKE protocol often run in software. Keys created the first

time by IKE will be used by ESP protocol utill timeout, then

IKE will be invoke again to negotiate new keys.

The IPSEC ESP core is written in Verilog and connect with

others core by AXI Stream bus. In order to access the

registers in IPSEC Core, AXI interconnect was used to read

and write data through memory map. This help IKEv2

software to send keys to IPSEC ESP core after new keys is

established.

ARM

ARM-FPGA

Zynq interconnect

FPGA

Network

Interface

Module

(Ethernet)

IPSEC ESP

CORE

Data-in

processing

Data-out

processing

Network

Interface

Module

(Ethernet)

Zynq Processing

System AXI interconnect

AXI

Stream

AXI

Stream

IKE v2 Software User Space Softwares
Embedded Linux

Kernel modules and Libraries

Figure 11. Complete system design

6. Results And Discussion

The IPSec Core was synthesized and implemented using

Xilinx Vivado 15.4. The target device is the XC7Z030 and

XC7Z045 of Xilinx Zynq-7000 SoC. The implementation

results are summarized in Table 3. Moreover, to ensure the

compatibility of IPSec core with other implementations, we

use Kit ZC706 running embedded Linux with FPGA

bitstream loaded from IPSec ESP project. The Kit ZC706 has

software and hardware parts as in Figure 11 and can connect

to other software implementations of IPSec.

Table 3. Resource summary for IPSec Core

Device utilization Used XC7Z030 XC7Z045

LUT 41455 53 % 19 %

The core take 19% of available LUT resources when

synthesis for zynq XC7Z045 and 53 % LUT when synthesis

for zynq XC7Z030.

For the real maximum operating frequency of the design, we

found that the frequency of IPSec Core when using two

cipher suites is different.

Table 4. Real maximum operating frequency

IPSec with cipher suite Maximum Freq

AES-256-CTR-HMAC-SHA256 150 MHz

AES-256-GCM-16 185 MHz

49
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

The maximum throughput of the design can be calculated

using equation (1):

)1(
max

)(

cycleclockofNumber

fsizePacket

TP



=

Using this equation, we can measure the maximum

throughput for IPSec core for different configurations. The

packet size of 576 bytes and 1500 bytes are used for the

performance results.

Table 5, Table 6 shows the maximum throughput of IPSec

core when process packet size of 522 bytes and 1446 bytes in

non-NAT mode. The IPSec core adds 54 bytes overhead to

the original packet so the ESP packet size is 576 bytes and

1500 bytes.

Table 7, Table 8 shows the maximum throughput of IPSec

core when process packet size of 514 bytes and 1438 bytes in

NAT mode. The IPSec core adds 62 byte overhead to the

original packet so the UDP/ESP packet size is 576 bytes and

1500 bytes.

Table 5. non-NAT mode with 522 byte packet

IPSec with cipher suite Maximum

Frequency

Number of

clock cycles

Maximum

Throughput

AES-256-CTR-

HMAC-SHA256

150 MHz 429 1.460 Gbps

AES-256-GCM-16 185 MHz 160 4.828 Gbps

Table 6. non-NAT mode with 1446 byte packet

IPSec with cipher suite Maximum

Frequency

Number of

clock cycles

Maximum

Throughput

AES-256-CTR-

HMAC-SHA256
150 MHz 926 1.873 Gbps

AES-256-GCM-16 185 MHz 276 7.753 Gbps

Table 7. NAT mode with 514 byte packet

IPSec with cipher suite Maximum

Frequency

Number of

clock cycles

Maximum

Throughput

AES-256-CTR-

HMAC-SHA256

150 MHz 467 1.320 Gbps

AES-256-GCM-16 185 MHz 160 4.754 Gbps

Table 8. NAT mode with 1438 byte packet

IPSec with cipher suite Maximum

Frequency

Number of

clock cycles

Maximum

Throughput

AES-256-CTR-

HMAC-SHA256
150 MHz 1022 1.688 Gbps

AES-256-GCM-16 185 MHz 372 5.721 Gbps

The results show that in NAT mode the maximum

throughput of IPSec Core could drop to 26% using AES-

256-GCM-16 or 10% using AES-256-CTR-HMAC-

SHA256. The UDP encapsulation add 8 bytes UDP header

overhead and some processing delay to ESP packets and this

leads to decrease performance. This is the first work

proposed a complete hardware implementation of NAT

traversal for IPSec.

7. Conclusions

In this work, a high throughput IPSec implementation is

presented. The IPSec core supports different cryptographic

algorithms and is capable of NAT traversal. The system uses

IKEv2 running on ARM to negotiate keys for traffic. All

ESP process and cryptographic algorithms are performed in

hardware, so that they can achieve high performance with

little overhead. The results show that our IPSec core can

protect the network with high throughput and low latency.

The core is compatible with other IPSec system and far more

efficient than traditional software implementation.

References

[1] P.R. Kumar, A. T. Wan, and W. S. H. Suhaili “Exploring data

security and privacy issues in internet of things based on five-

layer architecture,” International Journal of Communication

Networks and Information Security, Vol. 12, No. 1, pp. 108-

121, 2020.

[2] S. Kent, and R. Atkinson, “Security architecture for the internet

protocol,” IETF network working group, RFC2401, 1998.

[3] S. Kent, and K. Seo “Security architecture for the internet

protocol,” IETF network working group, RFC4301, 2005.

[4] Stephen Kent, “IP Authentication Header,” RFC 4302, 2005.

[5] Stephen Kent “IP Encapsulating Security Payload,” RFC 4303,

2005.

[6] FreeSwan. [Online]. Available: http://www.freeswan.org.

[7] KAME. [Online]. Available: http://www.kame.net.

[8] OpenBSD. [Online]. Available: http://www.openbsd.org.

[9] Mendez, Alejandro & Fernandez, Pedro & López, Rafael &

Martinez Perez, Gregorio & Skarmeta, Antonio & Taniuchi,

Kenichi “OpenIKEv2: Design and implementation of an

IKEv2 solution,” IEICE Transactions on Information and

Systems, Vol. E91.D, Issue 5, pp. 1319-1329, 2008.

[10] Strongswan.[Online].Available: https://www.strongswan.org/.

[11] Rockhopper. [Online]. Available:

http://rockhoppervpn.sourceforge.net/.

[12] Intel AES-NI. [Online]. Available:

https://www.intel.de/content/www/de/de/architecture-and-

technology/advanced-encryption-standard-aes/data-

protection-aes-general-technology.html.

[13] Algotronix AES IP-Cores. [Online]. Available:

http://www.algotronix-store.com/AES_IP_Cores_s/20.htm.

[14] Chang-Soo Ha, Jong Hyoung Lee, Duck Soo Leem, Myoung-

Soo Park, and Byeong-Yoon Choi “ASIC Design of IPsec

Hardware Accelerator for Network Security,” In IEEE Asia-

Pacific Conference on Advanced System Integrated Circuits

(APASIC), pp. 168-171, 2004.

[15] W. Vander, K. Benkrid “High-Performance Computing Using

FPGAs,” Springer book, ISBN: 978-1-4614-1790-3.

[16] François-Xavier Standaert, Gael Rouvroy, Jean-Jacques

Quisquater, Jean-Didier Legat “A Methodology to Implement

Block Ciphers in Reconfigurable Hardware and its

Application to Fast and Compact AES RIJNDAEL
Proceedings of the 2003 ACM/SIGDA eleventh international

symposium on Field programmable gate arrays, pp. 216-224,

2003.

[17] Disha Yadav, Arvind Rajawat “Area and Throughput

Analysis of Different AES Architectures for FPGA

Implementations,” IEEE International Symposium on

Nanoelectronic and Information Systems (iNIS), 2016.

[18] K. Rahimunnisa1 , P. Karthigaikumar1 , Soumiya Rasheed, J.

Jayakumar, S. SureshKumar “FPGA implementation of AES

algorithm for high throughput using folded parallel

architecture,” Security and Communication networks, pp.

2225–2236, 2014.

[19] Soufiane Oukili, Seddik Bri “High throughput FPGA

Implementation of Advanced Encryption Standard

Algorithm,” TELKOMNIKA, Vol.15, No.1, pp. 494-503,

2017.

[20] C. Xiao-hui and D. Jian-zhi “Design of SHA-1 Algorithm

Based on FPGA,” Second International Conference on

50
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

Networks Security, Wireless Communications and Trusted

Computing, Wuhan, China, pp. 532-534, 2010.

[21] Michail, Harris & Athanasiou, George & Kelefouras, Vasilios

& Theodoridis, George & Stouraitis, Thanos & Goutis, Costas

“Area-Throughput Trade-Offs for SHA-1 and SHA-256 Hash

Functions’ Pipelined Designs,” Journal of Circuits, Systems

and Computers, Vol. 25, No. 4, pp. 1-27, 2016.

[22] H. Michail, G. Athanasiou, A. Kritikakou, C. Goutis, A.

Gregoriades and V. Papadopoulou “Ultra high speed SHA-

256 hashing cryptographic module for IPSec

hardware/software codesign,” International Conference on

Security and Cryptography (SECRYPT), Athens, Greece, pp.

1-5, 2010.

[23] Jing Lu and John Lockwood “IPSec Implementation on Xilinx

Virtex-II Pro FPGA and Its Application,” Parallel and

Distributed Processing Symposium & 19th IEEE International

Proceedings, pp. 158b, 2005.

[24] A. Salman, M. Rogawski, and J.-P. Kaps “Efficient Hardware

Accelerator for IPSec Based on Partial Reconfiguration on

Xilinx FPGAs,” in Proceedings of the 2011 International

Conference on Reconfigurable Computing and FPGAs, ser.

RECONFIG ’11. Washington, DC, USA: IEEE Computer

Society, pp. 242-248, 2011.

[25] Wolkerstorfer, Johannes & Szekely, Alexander & Lorünser,

Thomas “IPsec Security Gateway for Gigabit Ethernet,”

Austrochip, 2008.

[26] J. Brelet and L. Gopalakrishnan “Using Virtex-II Block RAM

for High Performance Read/Write CAMs,” Xilinx XAPP204,

2012.

[27] Zheng, Kai & Hu, Chengchen & Lu, Hongbin & Liu, Bin “A

TCAM-based distributed parallel IP lookup scheme and

performance analysis,” IEEE/ACM Transactions on

Networking, pp. 863-875, 2006.

[28] Prithwiraj Das, Ria Pathak, P. Augusta Sophy Beulet “Low

Power Implementation Of Ternary Content Addressable

Memory (TCAM),” International Journal of Engineering and

Advanced Technology, Vol. 9, No. 1, pp. 455-460, 2019.

[29] L. H. Crockett, R. A. Elliot, M. A. Enderwitz and R. W.

Stewart “Embedded Processing with the ARM CortexA9 on

the Xilinx Zynq-7000 All Programmable SoC,” The Zynq

Book, 2014.

[30] Xilinx, “7 Series FPGAs Configurable Logic Block”, User

Guide,[Online].Available:

https://www.xilinx.com/support/documentation/user_guides/u

g474_7Series_CLB.pdf.

[31] Housley “Using Advanced Encryption Standard (AES)

Counter Mode With IPsec Encapsulating Security Payload

(ESP),” RFC 3686, January 2004.

[32] Viega, J. and D. McGrew “The Use of Galois/Counter Mode

(GCM) in IPsec Encapsulating Security Payload (ESP),” RFC

4106, June 2005.

[33] A. Huttunen, B. Swander, V. Volpe, L. DiBurro und M.

Stenberg “UDP Encapsulation of IPsec ESP Packets,” RFC

3948, 2005.

[34] J. Rosenberg “A Bound End-to-End Tunnel (BEET) mode for

ESP,” RFC draft 09, 2008.

[35] J. Rosenberg “A Protocol for Network Address Translator

(NAT) Traversal for Offer/Answer Protocols,” RFC 5245,

2010.

[36] Niu, Y., Wu, L. and Zhang, X. “An IPSec accelerator design

for a 10Gbps in-line security network processor,” Journal of

Computers, Feb. 2013, Vol. 8, No. 2, pp.319–325, 2013.

[37] Muzaffar Rao, Thomas Newe, Edin Omerdic, Gerard Dooly,

Elfed Lewis, Daniel Toal “An efficient implementation of

FPGA based high speed IPSec (AH/ESP) core,” International

Journal Of Internet Protocol Technology, Inderscience

Enterprises, Vol. 11, No. 2, pp. 97-109, 2018.

[38] H. Michail, G. Athanasiou, A. Kritikakou, C. Goutis, A.

Gregoriades and V. Papadopoulou “Ultra high speed SHA-

256 hashing cryptographic module for IPSec

hardware/software codesign,” International Conference on

Security and Cryptography (SECRYPT), pp. 1-5, 2010.

