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Abstract: Recent single image super resolution (SISR) studies 

were conducted extensively on small upscaling factors such as x2 

and x4 on remote sensing images, while less work was conducted 

on large factors such as the factor x8 and x16. Owing to the high 

performance of the generative adversarial networks (GANs), in this 

paper, two GAN’s frameworks are implemented to study the SISR 

on the residual remote sensing image with large magnification 

under x8 scale factor, which is still lacking acceptable results. This 

work proposes a modified version of the residual dense network 

(RDN) and then it been implemented within GAN framework 

which named RDGAN. The second GAN framework has been built 

based on the densely sampled super resolution network (DSSR) and 

we named DSGAN. The used loss function for the training employs 

the adversarial, mean squared error (MSE) and the perceptual loss 

derived from the VGG19 model. We optimize the training by using 

Adam for number of epochs then switching to the SGD optimizer. 

We validate the frameworks on the proposed dataset of this work 

and other three remote sensing datasets: the UC Merced, WHU-

RS19 and RSSCN7. To validate the frameworks, we use the 

following image quality assessment metrics: the PSNR and the 

SSIM on the RGB and the Y channel and the MSE. The RDGAN 

evaluation values on the proposed dataset were 26.02, 0.704, and 

257.70 for PSNR, SSIM and the MSE, respectively, and the 

DSGAN evaluation on the same dataset yielded 26.13, 0.708 and 

251.89 for the PSNR, the SSIM, and the MSE. 
 

Keywords: single image super-resolution, remote sensing, 

generative adversarial network, residual dense network, residual 
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1. Introduction 
 

Many computer vision systems involve having a high-quality 

image that eases extracting important features and employing 

this information to achieve some purposes. In image 

processing the task of reconstructing high-resolution (HR) 

image from low resolution (LR) one is called image super 

resolution (SR). The importance of the SR task has been 

shown in various tasks such as automated license plate [1] 

and face recognition [2], it also has been used in medical 

diagnostic [3] framework with the intent to maximize the 

performance of diagnosing illnesses and ensuring 

pathological invariant. 

The image SR system aims to reconstruct an HR image of 

LR input, by extracting most salient features, mapping these 

LR features to the HR space and generating an HR image. 

SR task is considered as inverse and ill-posed problem that 

has no unique solution which can treat all image domains 

and tackles all challenges that arise in the LR input image 

(e.g., modeling diverse levels of noise, blur kernel and 

upscale factor). Abundance of methods has been investigated 

to handle the SR problem in many computer vision systems 

appropriately. The most widely used approach is the 

Interpolation-based methods [4] with diverse settings (e.g., 

Bilinear, Bicubic, and Nearest Neighbor for pixel 

imputation). These methods have been widely used due to 

their real-time performance, however, the drawback of these 

methods, is that they treat all kinds of domains in the same 

way and ignores the fact of noise present and the nature of 

the input image, hence it failed in retrieving high-frequency 

details with high visual quality. 

Image super resolution studies are divided into two 

taxonomies regarding the inputs, single image super 

resolution (SISR) [5] and multi-image super-resolution 

(MISR) [6]. The MISR type concerned with having multiple 

LR images to reconstruct an HR image, i.e., employs or 

relies on image registration to allow extracting details that 

cannot be retrieved using a single image, hence, return a 

high-quality image. SISR methods take a single LR image to 

recover an HR image using the most presented details in the 

input. While multi-image input can yield nearly free noise 

images using more than one image, however, lacking a 

multi-images dataset and computation complexity restrict 

those methods. As a result, the researchers sought for another 

solution based on the available data and switched to the SISR 

methods that use a single LR image to reconstruct an HR 

image. 

Recent research of SISR using convolution neural networks 

(CNNs) and generative adversarial networks (GANs) have 

shown good performance. Pioneer work of CNN models is 

the SRCNN [5]. SRCNN model consists of three layers: 

feature extraction layer, non-linear mapping, and 

reconstruction layer. This network learns an end-to-end 

mapping between LR and HR images which outperformed 

the state-of-the-art methods. Further improvements had been 

conducted on the SRCNN to speed up the training in [7]. 

Later, many works had been designed based on the 

generative models such as the GANs model. The first work 

on SR using GAN is the SRGAN [8] model. SRGAN model 

employed the residual skip connection proposed in [9] as the 

generator network and design a classifier network as the 

discriminator network. Unlike previous work the SRGAN 

model used perceptual loss that derived from the difference 

between the VGG feature maps of the LR and HR images. 

Many works are conducted on the remote sensing image [10] 

to recover an HR image from the available LR image using 

learning- based methods. Since acquiring an HR satellite 

image is difficult due to many factors such as the weather 

condition and position of the capturing sensor and image 

sensor performance, in addition to the motion blurs, all these 

factors affect the quality of the image and yield a noisy 

degraded image. As a result, HR satellite image demand in 

computer vision systems has led researchers, specifically, to 

study this topic immensely. 
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In this work, we worked on developing a GAN model based 

on a single input image, to restore a realistic HR image with 

large factor (x8) from the observed LR image. We will 

explore a new solution by employing GAN model with 

appropriate generator-discriminator topology to acquire high 

vitality images. 

The contributions of this work are proposing and conducting 

the work on a new remote sensing dataset of residential area 

that suffers from noise-contaminated imaging conditions. 

Also, developing two GAN frameworks, RDGAN and 

DSGAN and improving the RDN model on large scale factor 

(x8). The remainder of the paper is arranged as follows. 

Section 2 gives an overview of the SR-related work. Next, 

section 3 shows the proposed methodology in this work in 

details, and then it comes up with the training settings and 

the used datasets. After that, section 4 shows the results in 

detail. Finally, section 5 shows ablation study on the 

RDGAN model. Finally, section 6 concludes the work and 

presents a future work. 
 

2. Related work 
 

The emerging SISR deep learning models had been trained 

in supervised manners using paired LR/HR images. In this 

section, we take an overview of the CNN and GAN-based 

SR models. Early works in SISR adopted pre-up-sampling 

methods [11-13], which interpolated the LR image to the 

desired size and fed it to the model. However, these methods 

had trained in the high-resolution feature space which had 

increased the needed computation and memory space for 

training. Post-up-sampling methods solve these issues by 

replacing pre-up-sampling with up-sampling layers at the 

end of the models. An improvement on the SRCNN model 

has been made in [7]. This work has reformulated the 

SRCNN and introduced a deconvolutional layer at the end of 

the model. Furthermore, progressive up-sampling [14] and 

iterative up-and-down sampling [15] paradigms have been 

introduced into SISR models.  

Many works had adopted skip connections to solve the 

vanishing/exploding gradient problem presented in the very 

deep CNN models. For instance, the work in [16] proposed 

an encoder-decoder framework with symmetric skip 

connections to tackle image restoration tasks, including 

denoising and SISR tasks with variance levels of noises. 

Also, the proposed VDSR in [17] had introduced global 

residual learning between the input image and output HR 

image to refine the high-frequency texture. 

Furthermore, the deep residual channel attention network 

(RCAN) [18] explored residual channel attention and 

presented a residual in residual (RIR) design that used long 

and short skip connections to allow increasing network depth 

and resolves deep network complexity. Moreover, the work 

in [19] incorporated attention mechanisms with the residual 

learning for SISR of remote sensing images, and in [20] a 

single and multi-scale SR models were proposed: EDSR and 

MDSR, which enhanced the residual block by removing 

batch normalization layers. Another work in [21], which 

designed memory network (MemNet) that consists of 

memory blocks that determine which information to store for 

the restoration process and prevent information loss as 

network depth increases. 

In [22], the authors had introduced a dual-path block that 

employed residual and dense connections. This design allows 

feature reusability and self and spatial attention blocks to 

handle the correlation among features at different levels. On 

the other hand, Jiang et al. [23] had invented a hierarchical 

dense recursive network (HDRN) to improve the features 

reusing alongside memory usage. This facilitates integrating 

multi-scale features generated by different layers and 

decreases the power to compute gradients. 

Work in [24] considered the SR problem as an inpainting 

task and proposed two-stage inpainting model concerns with 

structural and textural inpainting. This model reinforces 

constructing high-quality images by relying on edge 

information, however, it needs more computation to 

reconstruct the final HR. Super-resolution discriminative 

dense network SRDDN [25] is another introduced approach 

that aims to solve the drawback of treating all extracted 

features equally by introducing aggregation modules. 

Wang et al. [26] had developed an EEDS network that uses 

shallow CNN to maintain global image structure and deep 

CNN for retrieving the high-frequency details, which speed 

up the training convergence. Another design in [27] has 

implemented convolutional layers with 1D and 2D 

convolution kernels, e.g., 5x1 and 3x3, to perform 

orientation-aware features extraction. In [28], the proposed 

model has been built based on multi-scale feature extractions 

using a receptive field block (RFB), and to minimize the 

feature map size, 1x1 convolution layers were employed. 

In the earliest studies of SISR using GAN, SRGAN [8] 

adopted residual block with content loss based on the 

extracted high-level feature from the pre-trained VGG-19 

network [29, 30], it also used Parametric ReLU [31] 

activation unit at the generator rather than ReLU activation. 

Further refinement on residual blocks introduced in [32], and 

residual-in-residual dense block (RRDB) has been proposed 

to enhance GAN-generated images. Contrary to the SRGAN, 

leaky rectified activation unit (LeakyReLU) [33] and 

Relativistic Discriminator [34] were used in this work. 

Another improvement on the SRGAN discriminator model 

has been conducted in [35] to compensate for loss 

information and, preserving local details for accurate 

classification. 

Work in [10] proposed a dense residual generative 

adversarial network (DRGAN). This work used dense-

residual units (DRUs) and residual learning at the generator 

and adopted discriminator training according to the WGAN-

GP [36] for stability. Further improvement in [37] is 

implemented, which had designed EEGAN with an edge-

enhancement method to remove artifacts of the previous 

GAN models. Also, the proposed model in [38] has adopted 

a structure-preserving SR method (SPSR) to recover image 

structures and sharpen edges by adopting gradient guidance 

and introducing a new gradient loss. 
 

3. Methodologies 
 

To solve the SR task on remote sensing images with large 

scale factor, we implemented two GAN frameworks that 

consist of a generator and discriminator networks. In this 

section we will illustrate the proposed residual dense 

generative adversarial network (RDGAN) and the dense 

sampling generative adversarial network (DSGAN). 
 

3.1. Residual Dense GAN 
 

The residual dense GAN (RDGAN) model consists of two 

networks: generator, and discriminator networks. The 

generator is configured as a modified version of the residual 

dense network (RDN) proposed in [39] to reconstruct high 

resolution images (HR). For the discriminator network, we 
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proposed a new model with small capacity, unlike most of 

the recent proposed GAN models. 

Generator network as shown in Figure.1, the modified RDN 

model consists of external and shallow feature extraction 

layers, residual dense block (RDB), dense feature fusion and 

ended by up-sampling layers. Let’s denote 𝐼𝐿𝑅  and 𝐼𝑆𝑅  as 

the input and the output of the model. The external and the 

shallow convolution layers extract features from the input  

𝐼𝐿𝑅. 
Fexternal  =  Conv2Dexternal( ILR) 

 

Fshallow  =  Conv2Dshallow( ILR) 
 

Where 𝐶𝑜𝑛𝑣2𝐷𝑒𝑥𝑡𝑒𝑟𝑛𝑒𝑙  and 𝐶𝑜𝑛𝑣2𝐷𝑠ℎ𝑎𝑙𝑙𝑜𝑤  denote the 

external and the shallow convolution layers. The output 

𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙   is used for global residual learning and  𝐹𝑠ℎ𝑎𝑙𝑙𝑜𝑤  is 

used as input to RDB. Suppose we have N residual dense 

blocks (RDNs), the output 𝐹𝑛 of the n-th RDB can be 

obtained by  
Fn  =  RDBn( Fn−1)      

 

Fn =  RDBn( RDBn−1(. . . . (RDB1(Fshallow)). . . . )) 
 

Where 𝑅𝐷𝐵𝑛  denotes the operations of the nth-RDB. The 

RDB is a composite of convolution layers, rectified linear 

units (ReLU), local residual learning and dense feature 

fusion. 3.3, shows the used RDB design in this work. 

Assume that  𝐹𝑛−1 is the input to the n-th RDB then we can 

formulate the output of the n-th RDB as: 
 

Fconv−1 =  Conv2D(Fn−1) 

Fconv−2 = Conv2D([Fconv−1 , Fn−1]) 

Fconv−c = Conv2D([ Fn−1, Fconv−1 , Fconv−2, . . . . . , Fconv−c−1  ]) 

FLDFF  =  Concat( [Fn−1, Fconv−1, Fconv−2, . . . , Fconv−c]) 

Fconv1x1  =  Conv2D1x1( FLDFF) 

FLRL  =  Fconv1x1 +  Fn−1  

Where c represents the number of convolution layers in the 

RDB, the 𝐶𝑜𝑛𝑣2𝐷 represent the convolutional operation and 

𝐶𝑜𝑛𝑐𝑎𝑡 represents the dense feature fusion.  

Sequence of RDBs is used to extract hierarchical features 

then these features are passed to dense feature fusion (DFF) 

operation and followed by global residual learning (GRL) 

connection. The feature maps from the external convolution 

layer and the output of the dense feature fusion are fed to 

sum operation that represents the global residual learning. 
 

FGDFF  =  Conv2D1x1(Concat( [F1 , F2, . . . . . . . . , Fn−1 , Fn])) 

 

FGRL  =  FGDFF  + Fexternal 
 

The residual dense block as shown in Figure.2 consists of a 

sequence of convolutional layers with local dense feature 

(LDFF) fusion and local residual learning (LRL). At the end 

of the generator, the sequence of upscaling modules is used 

to up-sample the output image to the target size. The 

upscaling module consists of convolution layer, shuffle 

operation and ReLU activation layer as shown in Figure.3. 

The discriminator network consists of sequential 

convolutional layers followed by batch normalization and 

Leaky ReLU except for the first convolution layer where the 

batch normalization is omitted. Then flatten, dense and batch 

normalization layers used to output one value that implies if 

the input image is an HR or SR image. The discriminator 

scheme is shown in Fig.4. All convolutional layers used 3x3 

kernel size while filters started from 64 and doubled until the 

last layer and every layer used stride of 2. Unlike SRGAN 

discriminator network, we omitted the fully connected layer 

in the proposed discriminator. 
 

 

Figure 1. RDGAN’s generator network design. 
 

 
Figure 2. Residual dense block (RDB) design. 

 

 
Figure 3. Upscaling block design. 

 

 
Figure 4. RDGAN’s discriminator network. 

 

3.2 Dense Sampling GAN 
 

In this framework, we employ the proposed dense-sampling 

super-resolution network (DSSR) method in [40] as a 

generator network. Similar to the RDGAN framework, this 

model adopts local residual connections and global dense 

connections within the generator network. The discriminator 

network is similar to the RDGAN with little changes. In the 

next subsections, we will describe the proposed generator 

and discriminator of the DSGAN framework. 

We used the same discrimination of the RDGAN model; 

however, we used two fully connected layers and removed 

the batch normalization layer at the end of the model before 

the final activation layer. Also, we use large capacity 

discriminator with more layers. 

3.3. Dataset 

The experiments are conducted on a collected dataset from 

Google earth API that contains 7000 images with resolution 

4800x2400. The used datasets for training contain 1400 and 

800 images. Due to resource limitation on GPUs and storage, 

.....
.....                
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we used 1400 images for the training the RDGAN model and 

700 for training the DSGAN model, next we cropped sub-

images from every image then randomly flip the patches 

horizontally or vertically, also we set the batch size to 8 

yielding training datasets of 11200 and 6400 images. The 

reset 200 and 100 images are used to validate the models, in 

addition we used three other datasets: UC Merced [41], 

WHU-RS19 [42] and RSSCN7 [43]. 

3.4. Training Details  

For preparing the input of the models, we imported the 

images in BGR format and normalized the images to range 

[0,1], then randomly cropped 8 patches of size 256x256 from 

every image to form the HR images set, next we down 

sample these images using bicubic interpolation method by 

the required upscale factor, which is set to x8 in this work. 

The down-sampled image is fed to the model as an input. 

The training batch size also is set to 8 in all conducted 

experiments. 

For both models: RDGAN (Residual dense GAN) and 

DSGAN (Dense sampling GAN), we adopt Adam [46] for 

optimizing the models, the learning rate set to 0.0001 while 

we left 𝛽1 and 𝛽2 with the default values. The weight of 

MSE, perceptual and the adversarial loss are set to 1, 

0.00001 and 0.00001, respectively. The perceptual loss is 

driven from the output features that are taken from the 20th 

layer of the pretrained visual geometry group (VGG19) 

network before the activation layer. 

For all convolutional layers in the two generators of the 

proposed models, except in the upscaling module of the 

RDGAN model, the growth rate is set to 64 and for the 

upscaling module the growth rate is set to 256. For all 

convolutional layers in both generators and discriminators 

the used kernel size is 3x3 and same padding. Generator 

architecture in the RDGAN model consists of 18 residual 

dense blocks (RDB) and 3 convolution layers within the 

RDB. 
 

4. Results 
 

To validate the work, we used PSNR, SSIM and MSE 

metrics to assess model performance. We tested the models 

on our dataset, and three other remote sensing datasets 

compared with previous work. In this study we selected the 

results of bicubic interpolation and the DSSR model as a 

baseline. Also, we presented sample of generated images 

from the two proposed models to assess the quality of the 

images. 

4.1. Reference Quantitative Evaluation 

First, we tested both models on our collected dataset and 

compared the result with bicubic interpolation implemented 

in OpenCV. Table 1 shows the evaluated objective metrics 

on our proposed dataset of 2400 images using the proposed 

models. 

The peak signal-to-noise ratio (PSNR) and the structural 

similarity (SSIM) are evaluated on both RGB and the Y 

luminance channel of transformed YCbCr space while the 

mean squared error (MSE) is evaluated on RGB channels 

only, higher PSNR and SSIM values indicate better quality. 

We evaluated PSNR and SSIM on Y channel similar to 

[40,44] for comparison. The PSNR and SSIM indicate the 

average value on the RGB channels while the PSNR_Y and 

SSIM_Y indicate the average on the Y channel. Highest 

value for PSNR and SSIM indicates better quality while 

lowest value of MSE metric indicates better quality. 

Table 1 shows the quantity values on the proposed dataset of 

the DSGAN and RDGAN frameworks and compares 

between the proposed models and bicubic interpolation and 

the state-of-the-art DSSR [40] after we trained the model on 

the same data set. As shown both models perform well on the 

test samples, and the RDGAN boost the RDN model by 0.21, 

0.009, 0.21, 0.008 and 13.35 in PSNR, SSIM, PSNR_Y, 

SSIM_Y, and MSE, respectively. The DSGAN boost the 

DSSR model by 0.03, 0.001, 0.03, 0.001 and 2.14 in PSNR, 

SSIM, PSNR_Y, SSIM_Y, and MSE, respectively. 

Table 1. Average PSNR, SSIM on RGB and Y channel and 

MSE of Bicubic method, DSSR, RDN, RDGAN and 

DSGAN models on the proposed test set on 2400 images. 

The bold and underlined value indicates the best result. 
Model  / 

Metric 

PSNR SSIM PSNR_Y SSIM_Y MSE 

Bicubic 22.37 0.559 23.69 0.601 434.50 

DSSR  24.76 0.673 26.10 0.707 254.03 

RDN 24.47 0.660 25.81 0.696 271.05 

RDGAN  24.68 0.669 26.02 0.704 257.70 

DSGAN 24.79 0.674 26.13 0.708 251.89 

To compare with other works, we used MHAN [44] and 

tested our models on the used dataset in those works. as 

shown in Table 2 the evaluation results of MHAN and DSSR 

are taken based on different sample than the samples used to 

validate the proposed models. We compared the bicubic 

interpolation with the proposed models. Comparing with the 

proposed models that is trained on residential remote sensing 

images while the work in [44] are trained on various types of 

remote sensing, we find that our models are promised and 

can perform well on unseen data.  

It can be observed from Table 2 that the RDGAN model 

outperforms the MHAN model in SSIM with difference 

0.007 on the RSSCN7 dataset. The RDGAN also 

outperforms the MHAN in the SSIM of the WHU-RS19 

dataset with increment by 0.006. Another comparison with 

the MHAN is conducted on the proposed Test30 dataset in 

[44]. In Table 3 the average of the PSNR, SSIM and MSE, 

shows that the proposed RDGAN model has a better result in 

the SSIM metric by an amount of 0.002. 

Table 2. Average PSNR and SSIM on the Y channel of 

Bicubic method, MHAN, RDGAN and DSGAN models on 

the RSSCN7 and WHU-RS19 dataset. The bold and 

underlined value indicates the best result. 
 Bicubic

 
PSRN/SS

IM 

MHAN 

[44] 
 

PSRN/SS

IM 

DSGAN 
 

PSRN/SS

IM 

RDGAN 
 

PSRN/SS

IM 

RSSCN

7 

25.25   /

0.544 

26.34  

/0.588 

26.34   /

0.596 

26.35   /

0.596 

WHU-

RS19 

25.30   /

0.589 

27.03   /

0.646 

26.87/ 

0.653 

26.79   /

0.652 

Table 3. Average PSNR, SSIM and MSE of Bicubic method, 

RDGAN and DSGAN models on the proposed Test30 

dataset in [44]. The bold and underlined value indicates the 

best result. 
 PSNR SSIM PSNR_Y SSIM_Y 

Bicubic 25.10 0.535 26.45 0.576 

RDGAN  26.28 0.588 27.66 0.625 

DSGAN 25.89 0.575 27.63 0.624 

MHAN — — 27.83 0.623 
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In Table 4, Table 5 and Table 6, the PSNR, SSIM were 

evaluated on each class in the WHU-RS19, UC Merced and 

RSSCN7 and compared the results with bicubic method and 

MHAN. The results show that the proposed models are 

promising even though the proposed models are trained only 

on a residential area.  

Table 4. Average PSNR and SSIM on Y channel of each 

class in the WHU-RS19 dataset for each method. 
 

WHU-RS19 

Bicubic 

 
PSNR/ 

SSIM 

MHAN [44] 

 
  PSNR/ 

SSIM 

RDGAN 

 
  PSNR/ 

SSIM 

DSGAN 

 
  PSNR/ 

SSIM 

Airport 22.76/ 0.555 24.64/ 0.633 24.48/ 0.641 24.52/ 0.643 

Beach 37.68/ 0.940 41.42/ 0.948 37.79/ 0.947 38.91/ 0.947 

Bridge 27.74/ 0.805 30.51/ 0.840 30.60/ 0.843 30.67 /0.844 

Commercial 20.31/ 0.417 21.56/ 0.501 21.71/ 0.512 21.77 /0.514 

Desert 36.45/ 0.896 38.17/ 0.903 37.84/ 0.901 37.51 /0.901 

Farmland 31.72/ 0.769 33.20/ 0.793 33.15/ 0.796 33.11 /0.796 

Football Field 22.36/ 0.590 24.99/ 0.668 24.98/ 0.677 25.12 /0.680 

Forest 24.79/ 0.407 25.58/ 0.452  25.45/ 0.450 25.52 /0.450 

Industrial 21.26/ 0.473 23.20/ 0.557  23.47/ 0.584 23.49 /0.585 

Meadow 32.97/ 0.786 34.69/ 0.806  34.24/ 0.798 34.16 /0.798 

Mountain 21.98/ 0.335 22.73/ 0.394  22.64/ 0.394 22.64 /0.393 

Park 23.92/ 0.513 25.18/ 0.568  25.01/ 0.569 25.02 /0.570 

Parking 20.97/ 0.556 22.43/ 0.629  22.54/ 0.648 22.62 /0.650 

Pond 27.46/ 0.744 29.15/ 0.785  28.89/ 0.773 28.93 /0.779 

Port 21.97/ 0.631 23.63/ 0.702  23.77/ 0.704 23.85 /0.709 

Railway Station 21.89/ 0.409 23.04/ 0.479  22.98/ 0.488 23.00 /0.489 

Residential 19.42/ 0.420 21.0/ 0.513  21.17/ 0.538 21.18 /0.537 

River 24.59/ 0.539 25.88/ 0.585  25.89/ 0.592 25.97 /0.595 

Viaduct 20.54/ 0.409 22.55/ 0.514  22.41/ 0.529 22.47 /0.529 

Average 25.30/ 0.589 27.03/ 0.646 26.79/ 0.652 26.87/ 0.653 

Table 5. Average PSNR, SSIM on Y channel of each class 

in the UC Merced test dataset for each method. 
 

UC Merced 

Bicubic 

 
  PSNR/ SSIM 

RDGAN 

 
  PSNR/ SSIM 

DSGAN 

 
  PSNR/ SSIM 

Agricultural 19.29/ 0.325 21.39/ 0.348 22.59/ 0.398 

Airplane 19.06/ 0.657 23.31/ 0.722 25.16/ 0.779 

Baseball diamond 22.28/ 0.739 26.34/ 0.766 29.05/ 0.814 

Beach 21.22/ 0.742 25.30/ 0.758 27.58/ 0.815 

Buildings 18.23/ 0.582 22.31/ 0.676 24.28/ 0.747 

Chaparral 17.51/ 0.423 20.46/ 0.491 21.23/ 0.551 

Dense residential 17.82/ 0.545 21.52/ 0.631 23.50/ 0.714 

Forest 18.71/ 0.397 20.96/ 0.426 22.67/ 0.487 

Freeway 18.72/ 0.599 23.34/ 0.675 26.02/ 0.750 

Golf course 21.93/ 0.738 26.62/ 0.761 29.38/ 0.811 

Harbor 16.49/ 0.540 19.01/ 0.615 20.58/ 0.684 

Intersection 19.08/ 0.584 22.69/ 0.644 24.67/ 0.705 

Medium residential 18.72/ 0.532 22.20/ 0.609 23.86/ 0.667 

Mobile home parks 17.29/ 0.474 20.47/ 0.582 21.55/ 0.635 

Overpass 18.47/ 0.547 22.15/ 0.620 24.55/ 0.689 

Parking lot 16.50/ 0.471 18.93/ 0.549 20.05/ 0.617 

River 20.42/ 0.637 24.20/ 0.663 26.99/ 0.718 

Runway 19.63/ 0.651 24.41/ 0.710 27.57/ 0.780 

Sparse residential 19.28/ 0.558 23.02/ 0.602 25.32/ 0.668 

Storage tanks 18.65/ 0.628 23.08/ 0.700 25.14/ 0.759 

Tennis court 19.49/ 0.631 23.75/ 0.675 26.46/ 0.743 

Average 18.99/ 0.571 22.64/ 0.630 24.68/ 0.692 

Table 6. Average PSNR and SSIM on Y channel of each 

class in the RSSCN7 dataset for each method. 
 

RSSCN7 

Bicubic 

 
  PSNR/ 

SSIM 

MHAN [44] 

 
  PSNR/ 

SSIM 

RDGAN 

 
  PSNR/ 

SSIM 

DSGAN 

 
  PSNR/ 

SSIM 

Grass 30.32/ 0.729 31.64/ 0.752 31.46/ 0.751 31.42 /0.751 

Industry 21.31/ 0.454 22.66/ 0.524 22.85/ 0.541 22.85/ 0.541 

River lake 27.09/ 0.695 28.42/ 0.731 28.31/ 0.732 28.30/ 0.732 

Filed 30.37/ 0.676 31.38/ 0.691 31.37/ 0.696 31.34/ 0.696 

Forest 25.58/ 0.423 26.17/ 0.458 26.15/ 0.461 26.14/ 0.460 

Resident 20.55/ 0.386 21.63/ 0.460 21.69/ 0.475 21.69/ 0.474 

Parking 21.53/ 0.446 22.48/ 0.497 22.65/ 0.515 22.65/ 0.515 

Average 25.25/ 0.544 26.34/ 0.588 26.35/ 0.596 26.34/ 0.596 

 

 

 

4.2. Qualitative Evaluation 
 

In this section, we provide random samples of the generated 

images of the proposed 2400 images were used in evaluation. 

In Fig 5, a comparison among the images represented the 

DSGAN, RDGAN, HR and bicubic images, the proposed 

models are outperforming the traditional method in 

generating images with high frequent textures. 

4.3. Ablation Study 

This section studies the effect of the local feature fusion part 

within the RDB and using the MSE loss with the adversarial 

loss without using the perceptual loss. In table 7, we assess 

all models on 2400 images to find the effect of the removed 

part. We found that the perceptual loss increases the 

assessment metrics with small amount while the concatenate 

layer in the RDB has a significant effect on the results. The 

concatenate layer has more effect in improving model’s 

performance compared with the perceptual loss. 
 

Table 7. Average PSNR, SSIM on the Y channel of RDGAN 

model with various settings on the proposed test set of 2400 

images. The bold and underlined value indicates the best 

result. 
 M-RDGAN M-RDGAN M-RDGAN 

Perceptual Loss X √ √ 

Local Dense Feature Fusion √ x √ 

PSNR_Y   / SSIM_Y 25.93/ 0.703 25.70/ 0.692 26.0195/ 

0.704 

5. Conclusion 

This work proposed two GAN models to treat the SISR task 

under large scale factor (x8). First, we proposed an improved 

the version of the RDN model in [39] by adding an external 

feature extraction layer that improved the reconstructed 

image and then we employed the modified RDN in a GAN 

framework. Also, we highlighted the effect of the dense 

connection and the perceptual loss that is derived from the 

generated feature maps of the VGG19 network. The 

proposed model shows a good performance in both quality 

and quantity metrics on the proposed dataset. Also, the 

models show a comparable result to one of the recent works 

on three other datasets. 

We also proposed the DSGAN framework based on the 

DSSR network [40] to boost the performance of the original 

model by building GAN based framework. We adopted the 

same setting of the DSSR as we went along with their 

findings regarding the best hyper parameters values. The 

comprehensive experimental results have demonstrated that 

this work returns comparable results with others with small 

network capacity.  

For future work, we can study the performance of the 

proposed frameworks on various degradation models as 

explored in work [45], also derive perceptual loss function 

from the discriminator network rather than VGG19 model.    
 

References 
     

[1] C. H. Chuang, L. W. Tsai, M. S. Deng, J. W. 

Hsieh and K. C. Fan, “Vehicle license plate 

recognition using super-resolution technique,” 2014 

11th IEEE International Conference on Advanced 

Video and Signal Based Surveillance (AVSS), 

pp.411-416, 2014: IEEE. 

[2] G. Gao, D. Zhu, M. Yang, H. Lu, W. Yang and 

H. Gao, “Face image super-resolution with pose via 

nuclear norm regularized structural orthogonal 



123 
International Journal of Communication Networks and Information Security (IJCNIS)                                            Vol. 14, No. 1, April 2022 
 

procrustes regression,” Neural Computing and 

Applications, Vol. 32, No. 9, pp. 4361-4371, 2020. 

[3] C. H. Pham, A. Ducournau, R. Fablet and F. 

Rousseau, “Brain MRI super-resolution using deep 

3D convolutional networks,” 2017 IEEE 14th 

International Symposium on Biomedical Imaging 

(ISBI 2017), pp.197-200, 2017: IEEE.  

[4] V. H. Patil and D. S. Bormane, “Interpolation for 

super resolution imaging,”  Innovations and 

Advanced Techniques in Computer and Information 

Sciences and Engineering: Springer, pp.483- 489, 

2007. 

[5] W. Shi, J. Caballero, F. Huszár, J. Totz, AP. 

Aitken, R. Bishop, et al., “Real-time single image and 

video super-resolution using an efficient sub-pixel 

convolutional neural network,” Proceedings of the 

IEEE conference on computer vision and pattern 

recognition, pp.1874-1883, 2016. https://cv-

foundation.org/openaccess/content_cvpr_2016/papers

/Shi_Real-

Time_Single_Image_CVPR_2016_paper.pdf 

[6] M. R. Arefin, V. Michalski, P. L. St-Charles, A. 

Kalaitzis, S. Kim, S. E. Kahou, et al., “Multi-image 

super-resolution for remote sensing using deep 

recurrent networks,” Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern 

Recognition Workshops, pp.206-207, 2020. 

https://openaccess.thecvf.com/content_CVPRW_202

0/papers/w11/Arefin_Multi-Image_Super-

Resolution_for_Remote_Sensing_Using_Deep_Recur

rent_Networks_CVPRW_2020_paper.pdf 

[7] C. Dong, C. C. Loy and X. Tang, “Accelerating 

the super-resolution convolutional neural network,” 

European conference on computer vision, pp.391-

407, 2016: Springer. 

[8] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. 

Cunningham, A. Acosta, et al., “Photo-realistic single 

image super-resolution using a generative adversarial 

network,” Proceedings of the IEEE conference on 

computer vision and pattern recognition, pp.4681-

4690, 2017. 

https://openaccess.thecvf.com/content_cvpr_2017/pap

ers/Ledig_Photo-

Realistic_Single_Image_CVPR_2017_paper.pdf 

[9] K. He, X. Zhang, S. Ren and J. Sun, “Deep 

residual learning for image recognition,” Proceedings 

of the IEEE conference on computer vision and 

pattern recognition, pp.770-778, 2016. 

https://openaccess.thecvf.com/content_cvpr_2016/pap

ers/He_Deep_Residual_Learning_CVPR_2016_paper

.pdf 

[10] W. Ma, Z. Pan, F. Yuan and B. Lei, “Super-

resolution of remote sensing images via a dense 

residual generative adversarial network,” Remote 

Sensing, Vol. 11, No. 21, p.2578, 2019. 

[11] J. Kim, J. K. Lee and K. M. Lee, “Deeply-

recursive convolutional network for image super-

resolution,” Proceedings of the IEEE conference on 

computer vision and pattern recognition, pp.1637-

1645, 2016. 

https://openaccess.thecvf.com/content_cvpr_2016/pap

ers/Kim_Deeply-

Recursive_Convolutional_Network_CVPR_2016_pa

per.pdf 

 

[12] C. Dong, C. C. Loy, K. He and X. Tang, 

“Image super-resolution using deep convolutional 

networks,” IEEE transactions on pattern analysis and 

machine intelligence, Vol. 38, No. 2, pp.295-307, 

2015. https://arxiv.org/pdf/1501.00092.pdf 

[13] Y. Tai, J. Yang and X. Liu, “Image super-

resolution via deep recursive residual network,” 

Proceedings of the IEEE conference on computer 

vision and pattern recognition, pp.3147-3155, 2017. 

https://openaccess.thecvf.com/content_cvpr_2017/pap

ers/Tai_Image_Super-

Resolution_via_CVPR_2017_paper.pdf 

[14] M. Zhao, X. Liu, H. Liu and K. K. L. Wong, 

“Super-resolution of cardiac magnetic resonance 

images using Laplacian pyramid based on generative 

adversarial networks,” Computerized Medical 

Imaging and Graphics, Vol. 80, p.101698, 2020. 

[15] Y. Yu, X. Li and F. Liu, “E-DBPN: Enhanced 

deep back-projection networks for remote sensing 

scene image super resolution,” IEEE Transactions on 

Geoscience and Remote Sensing, Vol. 58, No. 8, 

pp.5503- 5515, 2020. 

[16] X. Mao, C. Shen and Y. B. Yang, “Image 

restoration using very deep convolutional encoder-

decoder networks with symmetric skip connections,” 

arXiv preprint arXiv:160309056. 2016. 

[17] X. Mao, C. Shen and Y. B. Yang, “Image 

restoration using very deep convolutional encoder-

decoder networks with symmetric skip connections,” 

Advances in neural information processing systems, 

Vol. 29, pp.2802-2810, 2016. 

https://openaccess.thecvf.com/content_cvpr_2016/pap

ers/Kim_Accurate_Image_Super-

Resolution_CVPR_2016_paper.pdf 

[18] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong and 

Y. Fu, “Image super-resolution using very deep 

residual channel attention networks,” Proceedings of 

the European conference on computer vision 

(ECCV), pp.286-301, 2018. 

https://openaccess.thecvf.com/content_ECCV_2018/p

apers/Yulun_Zhang_Image_Super-

Resolution_Using_ECCV_2018_paper.pdf 

[19] J. M. Haut, R. Fernandez-Beltran, M. E. 

Paoletti, J. Plaza and A. Plaza, “Remote sensing 

image superresolution using deep residual channel 

attention,” IEEE Transactions on Geoscience and 

Remote Sensing, Vol. 57, No. 11, pp.9277-9289, 

2019.   

[20] B. Lim, S. Son, H. Kim, S. Nah and K. Mu 

Lee, “Enhanced deep residual networks for single 

image super-resolution,” Proceedings of the IEEE 

conference on computer vision and pattern 

recognition workshops, pp.136-144, 2017. 

https://openaccess.thecvf.com/content_cvpr_2017_wo

rkshops/w12/papers/Lim_Enhanced_Deep_Residual_

CVPR_2017_paper.pdf 

[21] Y. Tai, J. Yang, X. Liu and C. Xu, “Memnet: A 

persistent memory network for image restoration,” 

Proceedings of the IEEE international conference on 

computer vision, pp.4539-4547, 2017. 

[22] D. W. Chen and C. H. Kuo, “Modified Dual 

Path Network With Transform Domain Data for 

https://cv-foundation.org/openaccess/content_cvpr_2016/papers/Shi_Real-Time_Single_Image_CVPR_2016_paper.pdf
https://cv-foundation.org/openaccess/content_cvpr_2016/papers/Shi_Real-Time_Single_Image_CVPR_2016_paper.pdf
https://cv-foundation.org/openaccess/content_cvpr_2016/papers/Shi_Real-Time_Single_Image_CVPR_2016_paper.pdf
https://cv-foundation.org/openaccess/content_cvpr_2016/papers/Shi_Real-Time_Single_Image_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w11/Arefin_Multi-Image_Super-Resolution_for_Remote_Sensing_Using_Deep_Recurrent_Networks_CVPRW_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w11/Arefin_Multi-Image_Super-Resolution_for_Remote_Sensing_Using_Deep_Recurrent_Networks_CVPRW_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w11/Arefin_Multi-Image_Super-Resolution_for_Remote_Sensing_Using_Deep_Recurrent_Networks_CVPRW_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w11/Arefin_Multi-Image_Super-Resolution_for_Remote_Sensing_Using_Deep_Recurrent_Networks_CVPRW_2020_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/Kim_Deeply-Recursive_Convolutional_Network_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/Kim_Deeply-Recursive_Convolutional_Network_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/Kim_Deeply-Recursive_Convolutional_Network_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/Kim_Deeply-Recursive_Convolutional_Network_CVPR_2016_paper.pdf
https://arxiv.org/pdf/1501.00092.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Tai_Image_Super-Resolution_via_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Tai_Image_Super-Resolution_via_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Tai_Image_Super-Resolution_via_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/Kim_Accurate_Image_Super-Resolution_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/Kim_Accurate_Image_Super-Resolution_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/Kim_Accurate_Image_Super-Resolution_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yulun_Zhang_Image_Super-Resolution_Using_ECCV_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yulun_Zhang_Image_Super-Resolution_Using_ECCV_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yulun_Zhang_Image_Super-Resolution_Using_ECCV_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017_workshops/w12/papers/Lim_Enhanced_Deep_Residual_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017_workshops/w12/papers/Lim_Enhanced_Deep_Residual_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017_workshops/w12/papers/Lim_Enhanced_Deep_Residual_CVPR_2017_paper.pdf


124 
International Journal of Communication Networks and Information Security (IJCNIS)                                            Vol. 14, No. 1, April 2022 
 

Image Super-Resolution,” IEEE Access, Vol. 8, 

pp.97975-97985, 2020. 

[23] K. Jiang, Z. Wang, P. Yi and J. Jiang, 

“Hierarchical dense recursive network for image 

super-resolution,” Pattern Recognition, 107, 

p.107475, 2020. 

[24] K. Nazeri, H. Thasarathan and M. Ebrahimi, 

“Edge-informed single image super-resolution,” 

Proceedings of the IEEE/CVF International 

Conference on Computer Vision Workshops, 2019. 

https://openaccess.thecvf.com/content_ICCVW_2019

/papers/AIM/Nazeri_Edge-

Informed_Single_Image_Super-

Resolution_ICCVW_2019_paper.pdf 

[25] J. Ma, X. Wang and J. Jiang, “Image super 

resolution via dense discriminative network,” IEEE 

Transactions on Industrial Electronics, Vol. 67, No. 7, 

pp. 5687-5695, 2019. 

[26] Y. Wang, L. Wang, H. Wang and P. Li, “End-

to-end image super-resolution via deep and shallow 

convolutional networks,” IEEE Access, Vol. 7, 

pp.31959-31970, 2019. 

[27] D. Chen, Z. He, Y. Cao, J. Yang, Y. Cao, M. 

Y. Yang, et al, “Deep Neural Network for Fast and 

Accurate Single Image Super-Resolution via 

Channel-Attention-based Fusion of Orientation-aware 

Features,” arXiv preprint arXiv:191204016, 2019. 

https://arxiv.org/pdf/1912.04016.pdf 

[28] T. Shang, Q. Dai, S. Zhu, T. Yang and Y. Guo, 

“Perceptual extreme super-resolution network with 

receptive field block,” Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern 

Recognition Workshops, pp.440-441, 2020. 

https://openaccess.thecvf.com/content_CVPRW_202

0/papers/w31/Shang_Perceptual_Extreme_Super-

Resolution_Network_With_Receptive_Field_Block_

CVPRW_2020_paper.pdf 

[29] J. Johnson, A. Alahi and L. Fei-Fei, 

“Perceptual losses for real-time style transfer and 

super-resolution,” European conference on computer 

vision, pp.694-711, 2016: Springer. 

[30] K. Simonyan and A. Zisserman, “Very deep 

convolutional networks for large-scale image 

recognition,” arXiv preprint arXiv:14091556, 2014. 

https://arxiv.org/pdf/1409.1556.pdf(2014.pdf 

[31] K. He, X. Zhang, S. Ren and J. Sun, “Delving 

deep into rectifiers: Surpassing human-level 

performance on imagenet classification,” Proceedings 

of the IEEE international conference on computer 

vision, pp.1026-1034, 2015. 

https://openaccess.thecvf.com/content_iccv_2015/pap

ers/He_Delving_Deep_into_ICCV_2015_paper.pdf 

[32] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. 

Dong, et al., “Esrgan: Enhanced super-resolution 

generative adversarial networks,” Proceedings of the 

European Conference on Computer Vision (ECCV) 

Workshops, 2018. 

https://openaccess.thecvf.com/content_ECCVW_201

8/papers/11133/Wang_ESRGAN_Enhanced_Super-

Resolution_Generative_Adversarial_Networks_ECC

VW_2018_paper.pdf 

[33] B. Xu, N. Wang, T. Chen and M. Li, 

“Empirical evaluation of rectified activations in 

convolutional network,” arXiv preprint 

arXiv:150500853, 2015. 

https://arxiv.org/pdf/1505.00853.pdf%E3%80%82Re

LU 

[34] A. Jolicoeur-Martineau, “The relativistic 

discriminator: a key element missing from standard 

GAN,” arXiv preprint arXiv:180700734, 2018. 

https://arxiv.org/pdf/1807.00734.pdf 

[35] D. Lee, S. Lee, H. Lee, K. Lee and H. J. Lee, 

“Resolution-preserving generative adversarial 

networks for image enhancement,” IEEE Access, 

Vol. 7, pp.110344-110357, 2019. 

[36] I. Gulrajani, F. Ahmed, M. Arjovsky, V. 

Dumoulin and A. Courville, “Improved training of 

wasserstein gans,” arXiv preprint arXiv:170400028, 

2017. https://arxiv.org/pdf/1704.00028.pdf] 

[37] K. Jiang, Z. Wang, P. Yi, G. Wang, T. Lu and 

J. Jiang, “Edge-enhanced GAN for remote sensing 

image superresolution,” IEEE Transactions on 

Geoscience and Remote Sensing, Vol. 57, No. 8, 

pp.5799-5812, 2019. 

[38] C. Ma, Y. Rao, Y. Cheng, C. Chen, J. Lu and J. 

Zhou, “Structure-preserving super resolution with 

gradient guidance,” Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern 

Recognition, pp.7769-7778, 2020. 

https://openaccess.thecvf.com/content_CVPR_2020/p

apers/Ma_Structure-

Preserving_Super_Resolution_With_Gradient_Guida

nce_CVPR_2020_paper.pdf 

[39] Y. Zhang, Y. Tian, Y. Kong, B. Zhong and Y. 

Fu, “Residual dense network for image super-

resolution,” Proceedings of the IEEE conference on 

computer vision and pattern recognition, pp.2472-

2481, 2018. 

https://openaccess.thecvf.com/content_cvpr_2018/pap

ers/Zhang_Residual_Dense_Network_CVPR_2018_p

aper.pdf 

[40] X. Dong, X. Sun, X. Jia, Z. Xi, L. Gao and B. 

Zhang, “Remote sensing image super-resolution using 

novel dense-sampling networks,” IEEE Transactions 

on Geoscience and Remote Sensing. Vol. 59, No. 2, 

pp.1618-1633, 2020. 

[41] Y. Yang and S. Newsam, “Bag-of-visual-

words and spatial extensions for land-use 

classification,” Proceedings of the 18th SIGSPATIAL 

international conference on advances in geographic 

information systems, pp.270-279, 2010. 

https://faculty.ucmerced.edu/snewsam/papers/Yang_

ACMGIS10_BagOfVisualWords.pdf 

[42] D. Dai and W. Yang, “Satellite image 

classification via two-layer sparse coding with biased 

image representation,” IEEE Geoscience and Remote 

Sensing Letters, Vol. 8, No. 1, pp.173-176, 2010. 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10

.1.1.703.6870&rep=rep1&type=pdf 

[43] Q. Zou, L. Ni, T. Zhang and Q. Wang, “Deep 

learning based feature selection for remote sensing 

scene classification,” IEEE Geoscience and Remote 

Sensing Letters, Vol. 12, No. 11, pp.2321-2325, 

2015. http://mvr.whu.edu.cn/pubs/2015-

IEEE_GRSL.pdf 

[44] D. Zhang, J. Shao, X. Li and H. T. Shen, 

“Remote sensing image super-resolution via mixed 

high-order attention network,” IEEE Transactions on 

https://openaccess.thecvf.com/content_ICCVW_2019/papers/AIM/Nazeri_Edge-Informed_Single_Image_Super-Resolution_ICCVW_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCVW_2019/papers/AIM/Nazeri_Edge-Informed_Single_Image_Super-Resolution_ICCVW_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCVW_2019/papers/AIM/Nazeri_Edge-Informed_Single_Image_Super-Resolution_ICCVW_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCVW_2019/papers/AIM/Nazeri_Edge-Informed_Single_Image_Super-Resolution_ICCVW_2019_paper.pdf
https://arxiv.org/pdf/1912.04016.pdf
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w31/Shang_Perceptual_Extreme_Super-Resolution_Network_With_Receptive_Field_Block_CVPRW_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w31/Shang_Perceptual_Extreme_Super-Resolution_Network_With_Receptive_Field_Block_CVPRW_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w31/Shang_Perceptual_Extreme_Super-Resolution_Network_With_Receptive_Field_Block_CVPRW_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w31/Shang_Perceptual_Extreme_Super-Resolution_Network_With_Receptive_Field_Block_CVPRW_2020_paper.pdf
https://arxiv.org/pdf/1409.1556.pdf(2014.pdf
https://openaccess.thecvf.com/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://openaccess.thecvf.com/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://openaccess.thecvf.com/content_ECCVW_2018/papers/11133/Wang_ESRGAN_Enhanced_Super-Resolution_Generative_Adversarial_Networks_ECCVW_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCVW_2018/papers/11133/Wang_ESRGAN_Enhanced_Super-Resolution_Generative_Adversarial_Networks_ECCVW_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCVW_2018/papers/11133/Wang_ESRGAN_Enhanced_Super-Resolution_Generative_Adversarial_Networks_ECCVW_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCVW_2018/papers/11133/Wang_ESRGAN_Enhanced_Super-Resolution_Generative_Adversarial_Networks_ECCVW_2018_paper.pdf
https://arxiv.org/pdf/1505.00853.pdf%E3%80%82ReLU
https://arxiv.org/pdf/1505.00853.pdf%E3%80%82ReLU
https://arxiv.org/pdf/1807.00734.pdf
https://arxiv.org/pdf/1704.00028.pdf%5d
https://openaccess.thecvf.com/content_CVPR_2020/papers/Ma_Structure-Preserving_Super_Resolution_With_Gradient_Guidance_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Ma_Structure-Preserving_Super_Resolution_With_Gradient_Guidance_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Ma_Structure-Preserving_Super_Resolution_With_Gradient_Guidance_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Ma_Structure-Preserving_Super_Resolution_With_Gradient_Guidance_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Residual_Dense_Network_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Residual_Dense_Network_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Residual_Dense_Network_CVPR_2018_paper.pdf
https://faculty.ucmerced.edu/snewsam/papers/Yang_ACMGIS10_BagOfVisualWords.pdf
https://faculty.ucmerced.edu/snewsam/papers/Yang_ACMGIS10_BagOfVisualWords.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.703.6870&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.703.6870&rep=rep1&type=pdf
http://mvr.whu.edu.cn/pubs/2015-IEEE_GRSL.pdf
http://mvr.whu.edu.cn/pubs/2015-IEEE_GRSL.pdf


125 
International Journal of Communication Networks and Information Security (IJCNIS)                                            Vol. 14, No. 1, April 2022 
 

Geoscience and Remote Sensing, Vol. 59, No. 6, 

pp.5183-5196, 2020. 

[45] I. A. Aljarrah, “Effect of Image Degradation on 

Performance of Convolutional Neural Networks,” 

International Journal of Communication Networks 

and Information Security, Vol. 13, No. 2, pp.215-219, 

2021.https://www.proquest.com/openview/a6b2ff5f9

d04975992cebf6fac34ce35/1?pq-

origsite=gscholar&cbl=52057 

[46] D. P. Kingma, J. Ba, “Adam: A method for 

stochastic optimization,”, arXiv preprint 

arXiv:14126980, 2014. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Visual comparison of bicubic interpolation methods and our models on ×8 factor 
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