
180
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

Image Malware Detection using Deep Learning

Jamal El Abdelkhalki, Mohamed Ben Ahmed, Boudhir Anouar Abdelhakim

Computer Science, Systems and Telecommunication Laboratory, (LSIT), University AbdelmalekEssaadi, Tangier, Morocco

Abstract: We are currently living in an area where artificial

intelligence is making out every day to day life much easier to

manage. Some researchers are continuously developing the codes of

artificial intelligence to utilize the benefits of the human being. And

there is the process called data mining, which is used in many

domains, including finance, engineering, biomedicine, and cyber

security. The utilization of data mining, artificial intelligence

algorithms like deep learning is so vast that we can't even name

them all. This technology has almost touched every industry and

cyber security is the most beneficial. The process of enhancing

cyber security with the help of deep learning methods has come out

of the theory books and many organizations are utilizing them

rather than using a traditional piece of software to defend against

online threats. Especially in the field of recognizing and classifying

codes or malware. And this is essential, because, with the advent of

cloud computing and the Internet of Things, expand potential

malware infection sites from PCs to any electronic device. This

makes our day to day life very unsafe. In this post, first, we will

describe in brief how deep learning can be the most useful and

promising techniques to detect malware. Besides this we will go

through a deep neural network, ResNet for malware dynamic

behavior classification jobs.

Keywords:Malware,detection,Malware,CNN,ResNet, Cyber

security.

1. Introduction

Nowadays, data analysis is a crucial step for any project in

several areas such as IT, marketing, finance. In this context,

the analysis of the log files motivated a large number of

researchers. The latter conducted their research studies on

the different data are in the volumetric log files[1].This

particular method of data analyzing is showing a promising

feature in the context of malware detection. Therefore,

Malware detection is a process of analyzing any suspicious

applications that exist in the PC[2]. It is a key part of

software safety research.

Generally, to detect and classify malware, there are clear sets

of detection methods. Since there are many methods to detect

malware, the result is not the same all the time. Most of the

time, we see users are making use of generic anti-virus

software to shield against malicious applications or software.

However, this is not a trustworthy system, to begin

with[3].This software most of the time are unable to classify

and unable to detect malware mutation, variants, and rapid

code changes. As a result, the user left the PC vulnerable to

numerous threats.What is making his worse is the continuous

changes in the way malicious software or codes are being

made. And, besides this, every now and then there's new

malware popping up in the market. According to "China

Internet Security Report for the First Half of 2018": with the

help of 360 Internet Security center, researchers found out

that in the

first half of 2018 alone, there were more than 140 million

occurrences of new malicious programs, which were

detected by the Internet Security software and 795,000 new

malicious software were being intercepted regularly.

Amongst them, the number of malicious software built for

the PC was 149,098,000 hence 779,000 new harmful

applications were being intercepted per day. The same

program detected about 2.831 million malicious programs

build to affect the Android platform, and they were

intercepting about 16,000 new malicious programs every

day. After going through the stats, we can obviously see why

it is becoming more and more difficult to find a suitable

solution to detect malware. However, it is a concern for

everyone who needs a proper and efficient answer[4]. The

method that can actively used in order to answer to the

problem of detecting or classifying malware, is the method

of deep learning.

In this paper, we study, at the beginning, the research work

in relation to malware especially those based in detection

malware using different methods. We presented a deep

learning model for malware detection using malware image.

Deep learning is widely used in image recognition.

2. Related works

Family since different anti-virus software has different tags

for one group. Marcos Sebastiain[5] advocated AV Class

which makes use of the semantic analysis of malicious

program name tags produced by various engines to recognize

the same familiarly Bartos[6] stated that undiscovered

malicious code variants could be identified by drawing out

statistical characteristics from the network stream without

proper code fingerprints features. YuFeng et al. [7] advised

to make use of a method called ASTROID. This exceptional

method can automatically extract common malicious features

from a known malware family database to detect new

malicious codes. This technique changes the homogeneous

harmful code detection into highest satisfiability problem

solving by exploring the most suspicious common subgraph

(MSCS) from a small number of identified malware family

examples. The outcomes show that the suggested method is

better to the manual technique in detection efficiency and

accuracy rate, also can defeat behavioral obfuscation and

other counter measures. Advancement of malware

technologies. And today, if we research a bit about different

types of malware detection technologies, we will be able to

find a few exceptional detection methods of malware codes,

and here they follow: Rules-based method[8], Heuristic

Analysis[9], DNA Analysis[10],and Deep Learning

Method[11], [12].

They aim to prove how gene sequence classifier can be

applied to classify malware and how rapidly it acts as

opposed to other hybrid techniques. BIG15 dataset consists

of another important which is family classification, the

reason is, to understand how malware affects the affected

device, recognizing the family classification is crucial to

know threat level they pose, and how to defend against them

[13]. Various machine learning methods have been employed

so far for malware family classification. Some use opcodes

or instructions of assembly code to predict representative

181
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

classes and some make images of machine language code to

classify given malware, while other use hybrid approaches.

To summarize, malware image analysis highlighted in the

related works. However ,a huge effort still required to

progress and promote the system efficiency. In this purpose,

it is necessary to monitor and detect malware by following

specific methodologies using deep learning and provide a

prediction of malware image.

3. Background

3.1 Deep learning

Deep learning or deep neural networks (DNNs) takes

inspiration from how the brain works and forms a sub

module of artificial intelligence. The main strength of deep

learning architectures is the capability to understand the

meaning of data when it is in large amounts and to

automatically tune the derived meaning with new data with

brand-new data without the necessity for an area expert

knowledge. Convolutional neural networks (CNNs) and

Recurrent neural networks (RNNs) are two types of deep

learning architectures predominantly applied in real-life

scenarios. Generally, CNN architectures are used for spatial

data.

The concepts behind the various deep learning architectures

are discussed in a mathematical way.

3.1.1 Deep Neural Network (DNN)

DEEP NEURAL NETWORK (DNN) A feed forward neural

network (FFN) creates a directed graph in which a graph is

composed of nodes and edges. FFN passes information along

edges from one node to another without formation of a cycle.

Multi-layer perceptron (MLP) is a type of FFN that contains

3 or more layers, specifically one input layer, one or more

hidden layer and an output layer in which each layer has

many neurons, called as units in mathematical notation. The

number of hidden layers is selected by following a hyper

parameter tuning approach[14].

A (FFN) feed forward neural network creates a directed

graph in which a graph is composed of nodes and edges. The

information passed by the FFN along edges from one node to

another without formation of a cycle. (MLP) Multi-layer

perceptron is a type of FFN that contains 3 or more layers,

precisely one input layer, one or more hidden layer and an

output layer in which each layer has many neurons, called as

units in mathematical notation. The number of hidden layers

is selected by following a hyper parameter tuning approach.

The transformation of information from one layer to another

is done in the direct without considering the past values.

Moreover, neurons in each layer are fully connected .An

MLP with n hidden layers can be mathematically formulated

as given below:

𝐻(𝑥) = 𝐻𝑛(𝐻𝑛−1(𝐻𝑛−2(• • • (𝐻1(𝑥))))) (1)

H defines hidden layer. This way of stacking hidden layers is

typically called as deep neural networks (DNNs)[Fig 1].

shows a pictorial representation of DNN architecture with n

hidden layers. It takes input:

𝑋 = 𝑋1, 𝑋2, • • •, 𝑋𝑝−1, 𝑋𝑝(2)

𝑎𝑛𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑠: 𝑂 = 𝑂1, 𝑂2, • • •, 𝑂𝑐−1, 𝑂𝑐 (3)

Each hidden layer uses Rectified linear units (ReLU) as the

non-linear activation function. This helps to reduce the state

of vanishing and error.

Figure 1. Architecture of DNN with n hidden layers

Gradient issue. ReLU has been turned out to be more

proficient and capable of accelerating the entire training

process altogether[15]. ReLU is defined mathematically as

follows:

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) (4)

Where x denotes input

3.1.2 Convolutional Neural Network (CNN)

Before we review how deep learning is employed for

malware classification, let us revisit how convolutional

neural networks are used for image classification. An image

is input to the network in its raw pixel format. The image

goes through a sequence of convolutional layers which can

be viewed as automatically computing image features at

different levels of abstraction. The spatial dimension of

feature maps decreases due to max pooling layers. Neurons

in higher layers correspond to larger receptive fields of pixels

in the input image over which features are being computed.

These convolutional layers are followed by fully connected

layers (dense layers), or in more modern architectures, by

global average pooling layer. Right in the end, we have

classification output layer which outputs probabilities of the

image being in different categories. For speech recognition,

we can convert speech signal into a 2-D image called

spectrogram in which time is one axis and other is frequency,

and we can apply similar techniques[16].

It is shown in [Fig 2]., where all connections and hidden

layers and its units are not shown. Here, m implies the total

number of filters, ln denotes the number of input features

& on the other hand p implies decreased feature

dimension, it depends on pooling length. In this work, CNN

network comprised of convolution 1Dlayer, pooling 1D

layer, and fully connected layer. A CNN network can have

more than one convolution 1D layer, pooling1D layer and

fully connected layer. In convolutional 1D layer, the filters

slide over the 1D sequence data and extracts optimal

features. The features that are extracted from each filter are

grouped into a new feature set called as feature map. The

number of filters and the length are chosen by following a

hyperparameter tuning method. This in turn uses non-linear

activation function, ReLU on each element. The dimensions

of the optimal features are reduced using pooling 1D layer

using either max pooling, min pooling or average pooling.

Since the maximum output within a selected region is

selected in max pooling, we adopt max pooling in this work.

Finally, the CNN network contains fully connected layer for

classification. In fully connected layer, each neuron contains

a connection to every other neuron. Instead of passing the

pooling 1D layer features into fully connected layer, it can

also be given to recurrent layer, LSTM to capture the

182
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

sequence related information. Finally, the LSTM features are

passed into fully connected layer for classification [17].

Convolutional layers: These layers apply a certain number of

convolution operations (linear filtering) to the image in

sequence. Typically, these filters extract edge, color, and

shape information from the input image. Basically, the filters

operate on subregions of an image and perform computation

such that it produces a single value as output for each

subregion. The output (say x) of this layer is typically

forwarded to a non-linear function (called ReLU activation)

which is defined as:

(𝑥) = (0, 𝑥) (5)

Pooling layers: This layer is responsible for down sampling

(i.e. reducing the spatial resolution of the input layers) the

data produced from convolution layers so that processing

time can be reduced, and so that computational resources can

handle the scale of the data. This is due to that fact that as a

result of pooling, the number of learnable parameters is

reduced in the subsequent layers of the network. Max

pooling is a commonly used pooling technique that keeps the

maximum value in a region (e.g. 2x2 non-overlapping

regions of data) and discards the remaining values.

Fully connected layers: This layer performs classification on

the output generated from convolution layers and pooling

layers. Every neuron in this layer is connected to every

neuron present in the previous layer. This type of layer is

typically followed by a Dropout layer that improves the

generalization capability of the model by preventing over-

fitting which is commonly occurring problem in deep

learning domain [18] [Fig 2].

Figure 2. Architecture of CNN for malware detection[14]

3.2 Transfer learning

Transfer learning is what we do every day, it is to take

advantage of learning acquired previously, to, by analogy,

solve a similar but different problem. The transfer learning of

neural networks is based on the same principle. If we trained

a neural network to differentiate malware, benign, from

photos, then we can rely on this network to guess what

category malware belongs to. And even better. This is

possible because neural networks are stacked in layers, each

learning from the previous. This is how a CNN (neural

network by convolution) will have its first layers specialized

in the recognition of simple shapes (horizontal lines, vertical

lines, diagonals, ...), its following layers dedicated to the

recognition of shapes a little more complex (circle, square,

triangle,…), its following layers oriented towards, for

example recognition of faces, recognition of body parts,….

and the final layers will focus on what is being learned from

this network (malware or benign). During the learning phase,

the neural network changes its weights. The weights (which

are numbers) and the architecture of the network are

sufficient to characterize it (apart from a few parameters not

described here). It is therefore very easy to benefit from an

existing neural network, without having to recalculate what

has enabled it to reach its optimal configuration, calculated

for the dataset and the problem for which it was designed

[Fig 3] [19].

Figure 3. Transfer learning

3.3. Residential Energy Services Network (ResNet)

Unfortunately, deep CNNs are hard to train due to vanishing

gradients in the long forward feed and backward propagate

process. A residual neural network, on the other hand, has

shortcut connections parallel to the normal convolutional

layers. Mathematically, A ResNet layer approximately

calculates:

 𝑦 = 𝑓(𝑥) + 𝑖𝑑(𝑥) = 𝑓(𝑥) + 𝑥 (6)

Those shortcuts act like highways and the gradients can

easily flow back, resulting in faster training and much more

layers. The winner model that Microsoft used in ImageNet

2015 has 152 layers, nearly 8 times deeper than best CNN

[Fig 4][20].

Figure 4. A deeper residual function F for ImageNet[21]

In order to detect malware and compute the accuracy, we

applied CNN. The CNN can be based on several different

models like VGG nets, GoogleNet model, ResNet model…

In this study, we utilized the ResNet model because it has

tremendous performance as compare to the other models[22].

In this article, we will not consecrate it to give more details

about the comparison between the others models and ResNet

model but we will go with another comparison more

important compared to our study, it is the comparison

between the architectures of ResNet (18, 34, 50, 101, 152).

For further, there is several of ResNet model’s architectures,

it depends on number of hidden layers.

As we said before, Resnet is one of the most powerful deep

neural networks- until now- which has achieved excellent

performance results concerning the classification of

Malware. We can find many different ResNet architecture

(The same concept but with a different number of layers:

ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-

110, ResNet-152).

In this paragraph, we will explain more about the models of

ResNet. Therefore, regarding the small networks (ResNet 18

and ResNet 34), it used a block with two layers deep. While

183
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

the other architectures of ResNet (50, 101,152) used three

layers deep [Fig 5].

In order to get 50- layer ResNet, the block with three layers

replace the block with two layers in the 34-layer net. This

model has 3.8 billion FLOPs. The same method is applied

with 101-layer and 152-layer ResNets, they are constructed

by using more 3-layer blocks Even after the depth is

increased, the 152-layer ResNet (11.3 billion FLOPs) [Fig

5].

Figure 5. Sizes of outputs and convolutional kernels for

ResNet[28]

4. Methodology of the proposed models

4.1 Malware detection

The machine learning approach to predict the capability of

countering a code mutation, variation and reverse

engineering of the codes, which can be used to determine the

strength of the harmful alien code obfuscation variants that

produced soon afterward[23]. This method is effective

against successfully predict or counter the new malicious

samples and recognize the class variants by making use of

deep learning method. And there's a possibility to use this

technique to automate the detection of malware which will

reduce a lot of human resources and efforts. It is a promising

chapter of malware detection technology and can offer a new

path for anti-malware research and application.

4.2 The proposed system

In this section, we introduce a deep learning model for

malware detection using malware image. Deep learning is

widely used in image recognition. Especially convolutional

neural network CNN is mainly used. In neural network, each

node in the previous layer gives effects to all node in the next

layer. However, in CNN, only several nodes in the current

layer give effects to the nodes in the next layer.so, CNNs are

able to use local correlation. It means that CNN learns

features from the image.

Using the process of training and inference framework has a

similar process, during the training phase, a known set of

data is transmitted to an untrained neural network. The

results of the framework are compared to the results of

known data sets. Next, the framework reassesses the error

value and updates the weight of the data set in the layers of

the neural network depending on how the value is correct or

incorrect. This reassessment is very important for the training

stage because it adjusts the neural network to improve the

performance of the next task that it learns. In contrast to

training, inference does not reassess or adjust the layers of

the neural network based on the results. Inference infers the

knowledge of a trained neural network model and uses it to

infer a result. Thus, when a new unknown data set is entered

via a trained neural network, it generates a prediction based

on the predictive accuracy of the neural network. Inference

comes after training because it requires a trained neural

network model. While a deep learning system can be used

for inference, the important aspects of inference make a deep

learning system not ideal. Deep learning systems are

optimized to handle large amounts of data to process and re-

evaluate the neural network. This requires high performance

computing which is more energy, which means more costs.

The inference can be smaller data sets, but hyper-calibrated

to many devices [Fig 6].

Figure 6. Model of detection malware

5. Data Preparation and Environment Setup

In this segment, we present details regarding dataset numbers

for both malware & benign apps. Additionally, this segment

represents how we set up the test conditions to observe

behavior for these applications.

To evaluate the effectiveness of classical machine learning

and deep learning architectures, it is required to create a large

data set with a variety of different samples. The publicly

available data sets for possible research in cyber security for

malware detection are very limited due to the privacy

preserving policies of the individuals and organizations.

Over time, as malware have grown it has become

increasingly difficult to have one source having all types of

malware families. Many researchers try to collaborate their

findings but still there is not a single dataset or repository to

acquire all the required samples. In this research, the publicly

available dataset contains 3000 benign and 3012 malware

which were split up into the following: training dataset

(60%), validation data (20%), and testing data (20%). The

training dataset was shuffled but the validation and testing

dataset were not.[Fig 7].

Figure 7. Data set of malware detection

To classify images using a deep learning model we will need

images from both benign and malware files. We will only do

a binary classification (malware and benign class). Multi-

184
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

class classification can also be done using this technique,

with the idea being that a variant of malware files will have

images different from the other.

[Fig 8] presents all steps of the architecture of our system.

First of all, we started with download malware and begin

software from open source databases (Download), after that

we extract this files that contain malware and benign

software (Unpacking). The third step is the operation code

from each instruction and then produces a data set in which

each instance is described by sequences of opcodes(Opcode).

Next, the binary image matrices are reconstructed by these

opcode sequences with their probabilities and information

gains (Binary image). Later, we split dataset into two parts

training and testing phases (Split Dataset). The next step is to

implement fastai in PytTorch of the models ResNet:18, 34,

50, 101 and 152 (Implement the models). After that, we

optimize the model to reduce Learning Rate (Reduce LR).

The last step is prediction on test dataset (Malware or

Benign).

Figure8. Architecture for proposed model from data

preparation to prediction

Once we have our dataset ready, we will convert each file

into a 256x256 grayscale image (each pixel has a value

between 0 and 255)[Fig 9].

Since malware detection is done in real time, we need to

classify an image as benign or malware within seconds.

Therefore, keeping the image generation process simple and

short will help us save valuable time.

We used fastai for PyTorch library to implement the image

classification with Google Colaboratory tool for the purpose

of classification, the below shows the Neural Network

generated by the Deep Learning technique.

Fastai is a deep learning library that provides researchers

with high-level components that can quickly and easily

achieve good cutting-edge results in standard deep learning

areas and provides researchers with low-level components

that can be mixed and matched to create new patterns. It

aims to do both things without substantial compromise in

ease of use, flexibility or performance. This is possible

through a carefully layered architecture, which expresses the

common underlying models of many deep learning and data

processing techniques in terms of decoupled

abstractions. These abstractions can be expressed concisely

and clearly by taking advantage of the dynamism of the

underlying python language and the flexibility of the

PyTorch library.

Fastai includes: A new type distribution system for Python

with a semantic type hierarchy for tensors A computer vision

library optimized by GPU which can be extended in pure

Python An optimizer which refactors the common

functionalities of modern optimizers into two elements basic,

allowing the algorithms to optimize the code. A new

bidirectional callback system that can access any part of the

data, the model or the optimizer and modify it at any time

during training A new API from data block and much more.

In this article we have used this library to create our own

comprehensive deep learning model for detecting malware

on different images. The library is already widely used in

research, industry and education [24].

Figure 9. Benign image (left) and malware image (right)

6. Experiments and Evaluation

In this paper, we are going to cover ResNet-152 in detail

which is the most efficient one for our system. More details

and explanation are presented in this axis.

In order to compare the models of ResNet, our system

calculates four parameters (Accuracy, Precision, Recall and

F1 score) using four main evaluation metrics [Table 1]:

Table 1. Evaluation metrics of each indicator

Indicator Formula

Accuracy

Precision

Recall

F1 Score

Here below the explanation of each indicator:

Accuracy is a measure of correct classification.

Precision is a measure of accurate positive predictions over

the total amount of positive predictions.

Recall is a measure of true positive over total actual positive.

F1 score is used whenever there needs to be a balance

between Precision and Recall and there is a large imbalance

in the dataset[Table 1] [25].

As we can see in the figure above, our system used four main

parameters to calculate the accuracy, the precision, the recall

and the F1 score.

These parameters are presented as Confusion matrix[Fig

10][26].

185
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

Figure 10. Confusion matrix

Each parameter of confusion matrix is explained below:

TP: True Positives is the number of correctly identified

malware samples.

TN: True Negatives is the number of correctly identified

benign samples.

FP: False Positives is the number of samples that were

benign but identified as malware.

FN: False Negatives are the samples that were malware but

not identified correctly by the model[25].

[Table2] shows the results of each ResNet model (18, 34, 50,

101 and 152) considered in this research.

Accuracy: The base models ResNet 18 and ResNet 34

reached the lowest value accuracy with a negligible

difference in which ResNet 18 presents 87,9% and ResNet

34 presents 87%. Note that ResNet 101 with an accuracy of

91% and ResNet 50 with an accuracy slightly better of

91,6% perform so good but they still not the best compared

to ResNet 152 with the highest accuracy of 93,5%.

Precision: The ResNet 34 have noticeable lower precision

than all the other model with a percentage of 87,3% followed

by ResNet 18 with a precision of 88,5%, that means that they

are incorrectly classifying benign samples as malware.

ResNet 101 and ResNet 50 achieved a high precision

of91,8% and 93,2% successively but they still lower than the

precision achieved by ResNet 152 (93,4%). That indicates

that most samples classified as infected was indeed infected

for this model (ResNet 152).

Recall: All ResNet models were close but ResNet-152 was

the best (95%). Since recall is a measure of many infected

samples where missed by the models, ResNet 152 seem to be

effective at identifying most infected samples. A high recall

score suggests that the model is strong at identifying less

obvious malware samples.

F1 Score:ResNet 152 model scored the highest with a score

of 94,1%. That indicates ResNet 152 has the best balance of

precision and recall. In other word, it has the best balance

between identifying only malware samples and identifying

most of infected samples over all[Table 2].

Concerning the detection time, we have reserved a part just

above.

Table 2. Results of confusion matrix for each ResNet model

Model Accuracy Precision Recall
F1

score
Time (s)

ResNet 18 0,879 0,885 0,90 0,892 37

ResNet 34 0,87 0,873 0,91 0,891 40

ResNet 50 0,916 0,932 0,916 0,923 43

ResNet 101 0,91 0,918 0,933 0,925 51

ResNet 152 0,935 0,934 0,95 0,941 56

We present the table above as a graph in order to simplify the

overview. We can see clearly why we choose ResNet 152 in

our system (Best accuracy 93,5%, best precision 93,4%, best

recall 95% and best F1 score 94,1%)[Fig 11]. So, we can say

it is the better choice to extract the features from images.

ResNet 152 is a deep learning based image classifier. For our

task we finetune the ResNet152 mode 1 on our

malware/benign binary classification dataset. In addition to

that, ResNet 152 is the new one (It is introduced in 2015),

that means it is deeper in terms of layers (152), It added a

large number of layers with strong performance (As we

already explained previously in the chapter 3.3 Residential

Energy Services Network).

Figure 11. Comparison for used ResNet models

[Table 3] presents our ROC curves (The Receiver Operating

Characteristic), it measures the models’ abilities to detect

malware and it is calculated with the same parameters that

we mentioned above (TP, FN, FP and TN) but this time

using two evaluation metrics:

Table 3. Evaluation metrics of TPR and FPR
Indicator Formula

True Position Rate (TPR)

False Position Rate (FPR)

The [Table4] shows True Positive Rate and False Positive

Rate of each ResNet model, but we generate only the one

that we are interested in (ResNet 152) [Fig 12].

Table 4. FPR and TPR of each model

[Table 5] shows the confusion matrix successively of ResNet

18, ResNet 34, ResNet 50, ResNet 101 and ResNet 152.

We generate ROC curve of ResNet 152. In order to analyze

this ROC curve, we must measure the area under curve

(AUC) value. That helps us to know if our model ResNet

152 has the ability to differentiate between classes. In our

case, we get AUC=0,94. It is a high value. That means our

model (ResNet 152) is accurately predicting benign samples

as benign and malicious samples as malicious.

Model FPR TPR

ResNet 18 0,14 0,90

ResNet 34 0,16 0,910

ResNet 50 0,08 0,91

ResNet 101 0,10 0,93

ResNet 152 0,08 0,94

186
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

Table 5. Confusion matrix for different model of ResNet

Models Confusion matrix

ResNet 18

Benign

Malware

 Benign Malware

ResNet 34

Benign

Malware

 Benign Malware

ResNet 50

Benign

Malware

 Benign Malware

ResNet 101

Benign

Malware

 Benign Malware

ResNet 152

Benign

Malware

 Benign Malware

So, the best performing model is the ResNet 152 model

because it has the higher precision scores which involve both

TP and FP values, in other words, with an AUC of 0.94,

ResNet 152 is arguably a good model for our system [Fig

12].

For our system, we are going to go with ResNet-152 which

is the most efficient one for our system with an accuracy

value of 93,52%(We tested all the ResNet architectures:

18,34,50, 101 and152) [Fig13].

As we can observe in the[Fig14], the ResNet152 really

performed better in terms of prediction accuracy. However, it

performed poorly in terms of running time on malware

dataset as compared with the other architectures (ResNet 18,

34, 50 and 101). But in our case, this difference of running

time is not too remarkable that is why we accepted it.

Figure 12. Receiver Operating characteristic (ROC)

Figure 13. Comparison of ResNet models

0:37 0:40 0:43
0:51 0:56

Running Time (s)

Figure 14. Running time of different architectures of

ResNet

As can be seen from the [Table6], we used 5 parameters in

order to perform the prediction of malware. The role of every

parameter is explained below.

• Poch: Denotes the number of iterations or passes of the

entire training dataset.

• Train loss: Loss function output for the training set for

that particular epoch. The loss function for our case is

binary-cross entropy loss function.

• Valid loss: Same as train loss but on the validation / test

set. For this experiment, validation set is same as test set as

there is no hyperparameter tuning done

False Positive Rate

187
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

• Testing Accuracy: Represents a test method is said to

be accurate when it measures what it is supposed to

measure. This is calculated after every epoch.

• Time (second): time taken to train for the current epoch

or iteration.

As we can see in the [Table6], the best accuracy to our

system is 91,66%. However, we are not sure about this

value. So, there is a simple way that can help us to

determinate the reasonable minimum and maximum

boundary value, this tool is “LR range test”. This test is

reliable whenever having a new architecture dataset.

Therefore, all we must do is to run our system for several

epochs while the learning rate increase and decrease linearly

between minimum and maximum LR value [Fig 15][24].

Table6. Model ResNet 152 before LR range test

 Epoch
Testing

Accuracy
Train_loss Valid_loss Time

0 0,824074 0,627386 0,721273 00 :57

1 0,888889 0,447629 0,320702 00 :57

2 0,916667 0,318618 0,262 00 :56

3 0,907407 0,344537 0,495571 00 :56

0,10
0,12
0,14
0,16
0,18
0,20
0,22
0,24
0,26
0,28
0,30

le-

06

le-

05

le-

04

le-

03

le-

02
LR

Figure 15. Learning rate plot

The main parameter that can change all the results in terms

of increasing the accuracy and decreasing the error at a time,

is the Epoch that indicates the number of times you browse

the entire dataset.

We tested several different numbers of iterations of dataset

using the LR range test and we get the following output.

For the epoch 0 and 1, we can see the accuracy increases as

the number of epochs rises. In which the testing accuracy of

the epoch 0 was 87,96% and it increased to 90,74% in the

epoch 1 [Table7].

For the two epochs 2 and 3, the value of testing accuracy is

constant in the same percentage (93,52%). This step is the

points that warns us and determines the number of epoch

necessary to detect the malware. Therefore, in each operation

of detection of malware, we must increase the epoch (the

testing accuracy increases too) until the value of the accuracy

stays constant or begins to decrease. Here we have to stop

increasing the epochs [Table7]. In this case, the epoch 2 was

the optimal one that stabilizes the highest accuracy (93,52%).

[Fig16]: shows the evolution of the Loss function and the

accuracy as a function of the epoch numbers for ResNet 152.

Table7. Model ResNet 152 after LR range test

Epoch
Testing

Accuracy
Train_loss Valid_loss Time

0 0,87963 0,604314 0,257363 00 :57

1 0,907407 0,408414 0,181318 00:57

2 0,935185 0,309338 0,167167 00 :56

3 0,935185 0,26714 0,151349 00 :56

0,00

1,00

2,00

200 400 600 800 1000 1200

Valid Train

Figure 16. Training and validation loss of our system using

ResNet152

In order to simplify the total overview and the interpretation,

the results are displayed as graph with two main parameters:

The epoch and the Testing Accuracy [Fig17].

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0 1 2 3
Accuracy

Figure 17. The optimal accuracy of ResNet15

Here are images of the output we got after running my code

(Few images from the training dataset will be shown on 2

rows) [Table 18].

Deep learning provides an exceptional promising path

towards, efficient, robust malware classification and

detection.

After testing all architectures of ResNet model, our system

performs better with 152 layers. However, this architecture is

not the best one in terms of time. Despite of this

‘’negligible’’ difference, this note open a new door of a new

research about finding a best model in terms of prediction

accuracy and running time at a time.

Therefore, this is not the end result. The neural network and

deep learning method is a vast area that needs more analysis

and research to bring more promising results and

applications which will address any shortcoming we

currently face.

188
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

Table 18. The images with maximum losses

7. Conclusion

If we look at the trend of cyber security, we will find out that

the whole world is looking forward to a solution to the ever-

growing concern of malware. And thankfully deep learning

and neural networks are showing new and promising hope.

From regular articles to academic research papers, everyone

is showing promising results.

The model we have presented here is relative simplicity and

has shown its efficacy in the research that used it in this

paper. In this work, we design a light-weighted deep

learning-based malware detection system. Which has been

proven to be capable enough to work well on different

datasets. Furthermore, benefited from instruction grouping

interpretation, the accuracy, and effectiveness of our method

are all updated. Opposed to other work, our analysis,

detection and prediction method is more lightweight both in

aspects of the training data extraction and training time.

In the future, our goal is to compare the difference between

the methods of prediction, and we hope to achieve our goal

so fast.

References

[1] J. E. Abdelkhalki, M. B. Ahmed, et A. Slimani, « Incident

prediction through logging management and machine

learning », in Proceedings of the 4th International

Conference on Smart City Applications - SCA ’19,

Casablanca, Morocco, 2019, p. 1‑8, doi:

10.1145/3368756.3369069.

[2] « Malware analysis », Wikipedia. févr. 29, 2020, Consulté

le: mars 21, 2020. [En ligne]. Disponible sur:

https://en.wikipedia.org/w/index.php?title=Malware_analysi

s&oldid=943198641.

[3] J. Barriga et S. G. Yoo, « Malware Detection and Evasion

with Machine Learning Techniques: A Survey »,

International Journal of Applied Engineering Research, vol.

12, p. 7207‑7214, sept. 2017.

[4] A. Chuvakin, K. Schmidt, et C. Phillips, Logging and Log

Management: The Authoritative Guide to Understanding the

Concepts Surrounding Logging and Log Management.

Newnes, p. 115‑135, mai 2012.

[5] M. Sebastián, R. Rivera, P. Kotzias, et J. Caballero,

« AVclass: A Tool for Massive Malware Labeling », in

Research in Attacks, Intrusions, and Defenses, Cham, 2016,

p. 230‑253, doi: 10.1007/978-3-319-45719-2_11.

[6] K. Bartos, M. Sofka, et V. Franc, « Optimized Invariant

Representation of Network Traffic for Detecting Unseen

Malware Variants », p. 17.

[7] J. Z. Kolter et M. A. Maloof, « Learning to Detect and

Classify Malicious Executables in the Wild », Journal of

Machine Learning Research, vol. 7, no Dec, p. 2721‑2744,

2006.

[8] S. Chakraborty et L. Dey, « A rule based probabilistic

technique for malware code detection », Multiagent and Grid

Systems, vol. 12, no 4, p. 271‑286, janv. 2016, doi:

10.3233/MGS-160254.

[9] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, et A. Hamzeh,

« A survey on heuristic malware detection techniques », in

The 5th Conference on Information and Knowledge

Technology, shiraz, Iran, mai 2013, p. 113‑120, doi:

10.1109/IKT.2013.6620049.

[10] Y. Ki, E. Kim, et H. K. Kim, « A Novel Approach to Detect

Malware Based on API Call Sequence Analysis »,

International Journal of Distributed Sensor Networks, vol.

11, no 6, p. 659101, juin 2015, doi: 10.1155/2015/659101.

[11] S. Ren, K. He, R. Girshick, et J. Sun, « Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal

Networks », in Advances in Neural Information Processing

Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M.

Sugiyama, et R. Garnett, Éd. Curran Associates, Inc., 2015,

p. 91–99.

[12] A. Krizhevsky, I. Sutskever, et G. E. Hinton, « ImageNet

classification with deep convolutional neural networks »,

Commun. ACM, vol. 60, no 6, p. 84‑90, mai 2017, doi:

10.1145/3065386.

[13] M. Furqan Rafique, M. Ali, A. Saeed Qureshi, A. Khan, et

A. Majid Mirza, « Malware Classification using Deep

Learning based Feature Extraction and Wrapper based

Feature Selection Technique », arXiv e-prints, vol. 1910, p.

arXiv:1910.10958, oct. 2019.

[14] R. Vinayakumar, M. Alazab, K. P. Soman, P.

Poornachandran, et S. Venkatraman, « Robust Intelligent

Malware Detection Using Deep Learning », IEEE Access,

vol. 7, p. 46717‑46738, 2019, doi:

10.1109/ACCESS.2019.2906934.

[15] X. Glorot, A. Bordes, et Y. Bengio, « Deep Sparse Rectifier

Neural Networks », p. 9.

[16] S. Dube, « Deep Learning for Malware Classification »,

Medium, mars 28, 2019. https://medium.com/ai-ml-at-

symantec/deep-learning-for-malware-classification-

dc9d7712528f (consulté le mars 22, 2020).

[17] T. N. Sainath, O. Vinyals, A. Senior, et H. Sak,

« Convolutional, Long Short-Term Memory, fully connected

Deep Neural Networks », in 2015 IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP), South Brisbane, Queensland, Australia, avr.

2015, p. 4580‑4584, doi: 10.1109/ICASSP.2015.7178838.

[18] M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y.

Wang, et F. Iqbal, « Malware Classification with Deep

Convolutional Neural Networks », in 2018 9th IFIP

International Conference on New Technologies, Mobility

and Security (NTMS), Paris, févr. 2018, p. 1‑5, doi:

10.1109/NTMS.2018.8328749.

[19] S. Kornblith, J. Shlens, et Q. V. Le, « Do Better ImageNet

Models Transfer Better? », arXiv:1805.08974 [cs, stat], juin

2019, Consulté le: avr. 18, 2020. [En ligne]. Disponible sur:

http://arxiv.org/abs/1805.08974.

[20] L. Sun, « ResNet on Tiny ImageNet », p. 1 ‑6, avr. 2017.

Image Prediction Actual Loss Probability

Malware Bening 2.99 0.05

Bening Malware 2.01 0.13

Bening Malware 1.31 0.27

Benign Malware 1.31 0.27

Malware Benign 1.14 0.32

Malware Benign 0.85 0.43

189
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

[21] chm, « Understanding and Implementing Architectures of

ResNet and ResNeXt for state-of-the-art Image… », mc.ai,

p. 2‑8, févr. 07, 2018.

[22] R. U. Khan, X. Zhang, et R. Kumar, « Analysis of ResNet

and GoogleNet models for malware detection », J Comput

Virol Hack Tech, vol. 15, no 1, p. 29‑37, mars 2019, doi:

10.1007/s11416-018-0324-z.

[23] S. Banescu, C. Collberg, et A. Pretschner, « Predicting the

Resilience of Obfuscated Code Against Symbolic Execution

Attacks via Machine Learning », p. 19.

[24] J. Howard et S. Gugger, « fastai: A Layered API for Deep

Learning », Information, vol. 11, no 2, p. 108, févr. 2020,

doi: 10.3390/info11020108.

[25] A. McDole, M. Abdelsalam, M. Gupta, et S. Mittal,

« Analyzing CNN Based Behavioural Malware Detection

Techniques on Cloud IaaS », p. 2 ‑16, févr. 2020.

[26] M. S. Gadelrab, M. ElSheikh, M. A. Ghoneim, et M.

Rashwan, « BotCap: Machine Learning Approach for Botnet

Detection Based on Statistical Features », vol. 10, no 3, p.

17, 2018.

