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Abstract: The limitations in terms of power and processing in 

IoT (Internet of Things) nodes make nodes an easy prey for 

malicious attacks, thus threatening business and industry. Detecting 

malicious nodes before they trigger an attack is highly 

recommended. The paper introduces a special purpose IoT crawler 

that works as an inspector to catch malicious nodes. This crawler is 

deployed in the Fog layer to inherit its capabilities, and to be an 

intermediate connection between the things and the cloud 

computing nodes. The crawler collects data streams from IoT 

nodes, upon a priority criterion. A behavior analyzer, with a 

machine learning core, detects malicious nodes according to the 

extracted node behavior from the crawler collected data streams. 

The performance of the behavior analyzer was investigated using 

three machine learning algorithms: Adaboost, Random forest and 

Extra tree. The behavior analyzer produces better testing accuracy, 

for the tested data, when using Extra tree compared to Adaboost 

and Random forest; it achieved 98.3% testing accuracy with Extra 

tree. 
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1. Introduction 
 

Detecting malicious nodes in internet of things (IoT) before 

they trigger an attack on the nodes is highly recommended. 

A special purpose IoT crawler that works as an inspector to 

catch malicious nodes helps in solving such security 

problem.  This paper presents the IoT crawler which is 

deployed in the Fog layer to inherit its capabilities, and to be 

an intermediate connection between the things and the cloud 

computing nodes. Upon a priority criterion, this crawler 

collects data streams from the IoT nodes. It has a behavior 

analyzer with a machine learning core that detects malicious 

nodes according to the extracted node behavior from the 

collected data streams. 

In the early development of IoT, authors in [1] presented the 

definition of IoT: “A world where physical objects are 

seamlessly integrated into the information network and 

where the physical objects can become active participants in 

business processes. Services are available to interact with 

these 'smart objects' over the Internet, query their state and 

any information associated with them, considering security 

and privacy issues.” Security and privacy must be well-

thought-out in designing IoT systems.  

IoT is a well-known technology that is used to connect a 

wide range of different devices such as sensors, actuators and 

smart nodes with the ability to communicate with each other 

and make decisions with no need for human involvement 

[2]There are many IoT applications; such as: smart home, 

wearable’s, smart grid, connected car, connected health and 

many others [3]. According to Lee [4] IoT applications are 

categorized into three main types: monitoring and 

controlling, big data and business analytics, and information 

sharing and collaborating. In these categories, many 

challenges are faced due to characteristics of the things in the 

IoT such as resource constrained devices.  

According to McKinsey bottom-up application analysis, IoT 

is gaining 11.1 trillion Dollar by the year 2025, which is 11 

percent of the world economy. Moreover, they showed that 

one trillion IoT devices will be used by the year 2025[5]. IoT 

is not standing alone, it needs a huge backup bone which is 

Cloud Computing (CC). CC is significant and powerful 

processing and storing power that works hand by hand with 

the IoT to achieve its goals. The advantage of CC is the 

virtualized resources, quality of service (QoS) provisioning, 

security, and many other services. CC provides a set of 

services such as: data storage, CPU cycle, computer 

resources, and even security on the demand of a client/user 

[6][7]. The user only asks for a service without any direct 

management or involvement.  These services are provided by 

many enterprises such as amazon and google. The CC 

services are categorized into three terms: Software as a 

Service (SaaS), Platform as a service (PaaS) and 

Infrastructure as a service (IaaS) [8]. 

IoT devices are constrained not only due to its power 

limitations, memory, processing capabilities, and low power, 

but also radio limits the network interface too[9]. IoT data 

streams that are generated from widespread sensors are sent 

to a (CC) for further analysis and decision making. CC 

response time is not adequate for real time application. The 

blessing of the CC became a curse for applications that 

requires real time response. Messages passing and longtime 

trip from the ground to the CC consume more resources from 

the things [10].  

To overcome the problem of the constrained devices and 

long messages delay, CISCO in 2012 was the first proposing 

Fog Computing (FC)[11]. FC is a new platform that extends 

the CC services to the edge of the network, i.e. a closer CC 

to the ground is called a fog computing. FC, like the CC, is a 

virtualized platform which provides several services such as: 

computation, storage, and connecting the end users with the 

CC traditional servers.   

FC gained new characteristics over CC[12] that make it an 

attractive platform. These include a) Low latency, b) 

Geographical distribution over a wide area, c) Location 

awareness, d) Huge number of nodes, e) Wireless access is 

overriding, f) Supporting real time applications, g) Robust 

video streaming, and h) Heterogeneity. Those benefits of the 

FC make it favorable to deploy many applications that 

require geo distribution, low latency, and high mobility. 

Figure 1 illustrates the relation between fog and cloud 

computing in serving the IoT. As you can notice, a fog in FC 

is an intermediate between the cloud in CC and the end 

users. Thus, it eliminates a disadvantage that happens due to 

the distant of CC. 

IoT is growing rapidly; according to [13], number of IoT 
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devices will reach 26 billion by 2020, growing from 0.9 

billion in 2009. 

 
Figure 1. Fog computing in serving IoT 

 

Many challenges arise due to the huge diversity and volume 

for the IoT. One of the major challenges is maintaining 

security and trusted operations to satisfy users. Network 

security should protect the networked things against 

attackers who aim to modify or endanger operation 

conducted in the things.  Authors in [14] stated that the major 

security challenges face the IoT is: a) Authentication, b) 

Authorization and access control, and c) Privacy. 

Authentication means identifying legitimate users, who have 

the permission to access protected programs and resources. 

Authorization is the specification for access right for various 

resources and access control techniques must force a 

predefined restriction on resources. IoT data privacy is much 

more different from other data privacy, because IoT is 

collecting a very sensitive data about people and sometimes 

without even they notice.  

The IoT constrained devices properties make it vulnerable 

for attacks.  The lack in processing power and memory in 

IoT makes installing security methods and procedures very 

hard. A security breach would affect the IoT system, steal 

critical information, alter or steal data streams; or an attack 

threats the ecosystem and human lives.  IoT security 

protection should overlay different IoT system components 

and deal with the heterogeneity of the system. Moreover, it 

should be scalable. Scalability means as more IoT devices 

added, the system should operate correctly [15]. 

Authors in [16] demonstrated a layered architecture for IoT, 

which consists of four layers (perception layer, network 

layer, support layer, and application layer). They recommend 

that security solutions should be deployed for the various 

levels to gain inclusiveness security for an IoT system.  At 

the perceptual layer, different kinds of sensors gather data 

about unique objects from the real world. The responsibility 

of the network layer is to send gathered data streams from 

the perceptual layer to any system responsible for processing 

those streams, through the existing network protocols (wired 

or wireless). Support layer is responsible to take automated 

action depending on the result of the processed data and 

provide storage capabilities for the collated data.  At the 

application layer, a smart application, upon users' needs, can 

be provided such as: smart home, smart transportation, smart 

farm etc. 

The perceptual layer consists of devices and sensors.  The 

fog layer is the network layer. The cloud layer is top two 

which are the support and the application layers. The fog 

layer (which refers to the network layer) is the backbone that 

connects different IoT devices in the lowest level and 

connects them to the highest level, which is the CC[17]. 

Security challenges in an IoT system can be seen on the 

different layers, because of the characteristics of each layer 

different threats occur [18].  

Table 1 summarizes some of the challenges and threats on 

every layer. 
 

Table 1. IoT security challenges 

 

Crawlers are computer programs that visit the web pages and 

download them for the purpose of Internet searching or 

cashing the web page for search engines [36]. 

The main contributions of our work are developing a smart 

fog computing crawler to collect IoT data streams based on a 

priority, implement a behavior analyzer to detect malicious 

nodes according to IoT collected data streams, and 

investigate the performance of the behavior analyzer using 

three machine learning algorithms, which are: Adaboost, 

Random forest and Extra tree. 

The rest of the paper is organized as follows. Section 2 

delineates the related works. Section 3 demonstrates the 

proposed IoT crawler and its priority model. The behavior 

analyzer is described in section 4. Experimental results are 

shown and discussed in section 5 Section. The last section 

concludes the paper and suggests the future work. 

Layer Attack Ref 

 

 

Perception 

Layer 

Unauthorized Access to the Tags [19] 

Tag Cloning [20] 

Eavesdropping [21] 

Spoofing [22] 

Radio Frequency (RF) Jamming [23] 

 

 

Network Layer 

Sybil Attack [24] 

Sinkhole Attack [25] 

Sleep Deprivation Attack [26] 

Denial of Service (DoS) Attack. [27] 

Malicious code injection. [28] 

Man-in-the-Middle Attack [29] 

 

Support layer 

Unauthorized Access [30] 

DoS Attack [31] 

Malicious Insider [32] 

 

Application 

Layer 

Malicious Code Injection [33] 

DoS Attack [34] 

Sniffing Attack [35] 

Cloud 

Fog Fog Fog 

IoT devises/Sensors  
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2. Related Works  
 

According to [37] security and privacy requirements for an 

IoT system are resilience to attack, data authentication, and 

access control and user privacy. Resilience to attack means 

that an IoT system should be designed to be against single 

point of failure, data authentication means checking the 

integrity of data and its origin. Access control on provided 

user’s data is a must and the client’s privacy protection are 

highly required in every successful IoT system. Authors in 

[38] stated that security requirements for an IoT system are 

confidentiality, integrity, authentication, authorization/access 

control and availability. Table 2 gives a brief description for 

those requirements. The security requirements for IoT 

systems are increasing over time. 
 

Table 2. IoT security requirements 
Security 

requirement 

Description Ref 

Confidentiality Only authorized users can access 
resources 

[39] 

Integrity Protecting data from unauthorized 

modification 

[40] 

 

Authentication An IoT node is checked to be what 

it claims. 

[41] 

Authorization 
and access control 

Ensuring that authorized users are 
using resources as they supposed to 

and in a proper way. 

[42] 

Availability To make sure that IoT resources 
are always available as users are 

promised. 

[43] 

Energy 

efficiency 

No irregular power consumption 

shall be allowed. 

[44] 

 

The main objective of IoT is making decisions depending on 

data collected by the sensors and analyses this data for 

actions and future predictions. IoT constrained devices 

exchange sensitive and critical data. Data privacy and 

security is a major issue in these multibillion industries.  

Many solutions for gaining secure IoT and systems are 

presented in the literature [45][46][47][48][49][50]. IoT 

security threats are categorized into two classes according to 

[51]. The first class is the conventional security threats that 

any network ecosystem is vulnerable to. These threats are 

Confidentiality, Integrity, and Availability (CIA). However, 

because of the IoT heterogeneity, diversity, and huge 

growing enumeration, the security threats are much more 

complex and severe. The second class of threats arises 

because of the sensitivity of data that IoT devices collect 

which are more personal and dynamic. Huge number of 

widespread devices collect big data which is considered 

sensitive. For example, this data could be about personal 

spaces, health status, and geographical location. Attackers 

may reveal personal privacy by extracting this data. For 

dealing with new security threats in IoT systems, old 

solutions are not enough. New solutions should deal with 

huge variety and volume of IoT devices and should be 

scalable to span on wide range IoT systems.  

Authors in [52] presented an IoT intrusion detection system, 

they called it SVELTE. The system detects sinkhole and 

selective forwarding attacks. The overhead of their system is 

small and suitable for IoT constrained nodes. They 

implemented and evaluated the system in Contiki OS; the 

true positive rate they achieved didn’t reach 100%.   

Authors in [53] proposed a trust management protocol for 

IoT. The protocol addresses misbehaving nodes that change 

their behavior dynamically. In their work, every node 

autonomously executes trust evaluation with a formal 

treatment for the convergence, accuracy, and resilience 

properties for the dynamic management protocol.  The 

authors worked according to the assumption that good nodes 

execute the trust management protocol properly while a 

malicious node provides false trust recommendations. They 

used a trust-based service composition application for the 

protocol evaluation purposes. Their evaluation results show a 

maximum performance according to a ground truth status. 

Moreover, the proposed protocol is adaptable to dynamically 

changing environment and use three trust properties for 

evaluation which are honesty, cooperativeness, and 

community-interest.  

A Network Intrusion Detection System is proposed in [54] to 

detect policy violations or malicious nodes in IoT.  The 

proposed approach is based on conditional variation auto-

encoder, where they integrated the intrusion labels in the 

decoder layers. They reported that the proposed method is 

less complex than unsupervised methods and the results for 

classification are better than other classifiers. They tested 

their classifier on a host or host's network, and they 

concluded that it could recover missed features with a high 

accuracy.  

In [55] they proposed a network-based approach to detect 

IoT bots' attacks. They made a behavior snapshot of traffic 

for every IoT device to extract statistical features. These 

features are used as input for deep learning techniques to 

detect anomalies. They trained an auto-encoder (one for each 

device) to learn the normal behavior of the IoT device. The 

benefit of using auto encoders is ability to learn complex 

patterns. Their results hardly detect false alarm. In[56], 

authors proposed a new intrusion detection scheme for Sybil 

attack in IoT.  The scheme is lightweight. They combined 

Fuzzy C Means Algorithm (FCM) and Principal Component 

Analysis (PCA) algorithm. Their simulation showed that the 

new method improved the detection accuracy with a less 

false positive rate.   

In[57], authors presented three mechanisms for intruder 

detection in IoT, the proposed systems use trust management 

model. Three attacks against Routing Protocol for Low 

power and Lossy networks (RPL) are detected which are: 

Selective-Forwarding attacks, Sinkhole attacks, and Version 

Number attacks. In [58], they proposed an IoT/Fog attack 

detection system using distributed deep learning. They 

designed the system for distributed systems such as smart 

cities and used performance metrics such as detection rate, 

and accuracy false alarm rate to show that deep model 

outperforms are shallow ones. Moreover, they showed that 

distributed model performs better than centralized one 

because sharing parameters avoids local minima.   

In [59], they proposed a method to detect malicious 

applications depending on energy consumption patterns. 

They used unique local fingerprint for non-malicious nodes 

for detection and distinguishing malicious nodes. In[60] they 

presented a system to detect compromised IoT nodes, by 

using self-learning technique to classify devices according to 

communication patterns. Their proposed system is 

completely autonomous and can adapt with new devices 

types and new attacks too. 

In [61], authors proposed an unsupervised learning technique 

to detect malicious nodes that manipulate transmitted packets 

from source to destination. In their work, they identified 

suspicious nodes in IoT multi hop forwarding transmission 

paths. They clustered members in the network according to 
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their behavior into three groups based on their suspicious 

level. They used two detection modes, hard detection and 

soft detection. Both [62][63] discussed IoT systems security 

and privacy and how to deploy fog layer to improve the 

security solutions for its attractive properties by distributing 

a certificate revocation for the IoT devices. 

In the context of IoT, authors in [64] have improved the 

Internet web crawler to obtain data from IoT nodes to 

determine the application and the node version. By knowing 

the application and node version, IoT vulnerabilities can be 

managed.  

Authors in [65] proposed an IoT crawler that is called Cross 

Node Driven Search (CND) to extract knowledge from IoT 

nodes. The crawler differentiates between IoT nodes 

according to some criteria which makes it superior to 

classical crawling strategies such as: Breadth-First Search 

(BFS) [66], crawling online social graphs, and Random Walk 

(RW) [67]. 

Many search engines for IoT and Web of Things (WoT) have 

been proposed in the literature [68][69][70][71]. The existing 

IoT crawlers are mainly used for knowledge extraction, and 

the crawlers were not used to investigate the IoT nodes for 

security reasons. Thus, our proposed crawler works as a 

security inspector that watches the IoT nodes and collects 

data streams to analyze the behavior of those nodes.  
 

3. Smart IoT Fog Crawler  
 

IoT crawler is responsible for visiting the IoT nodes in a 

cyclic manner according to a priority model we call it 

ThingsRank.  IoT nodes are part of a very huge population. 

These nodes are not in the same level of importance. For 

instance, if a node is a small sensor collecting weather data 

along with other sensors, it is not as important as an actuator 

controlling a facility door entrance. We are presenting the 

IoT nodes ranking as an importance level. If the node is 

important, the crawler would visit it more than a less 

important IoT node. The reason is that important node 

security breaches affect the IoT ecosystem more than just 

attacking a small sensor collecting redundant data.  

An IoT network can be represented as a graph. This will lead 

to a better visualization how the nodes are connected and 

what do we mean by the importance level. Things-graph is 

like the one presented in Figure 2. This graph is undirected; 

thus, a link exists between two things if and only if they are 

connected via a communication link. The connected things 

can be presented as an adjacency matrix too.  

 

 

 

 

 

 

 

 

 

 

An 

undirected graph is a pair G= (V, E), where V is the set of 

vertices (or nodes) and E is the set of edges connecting the 

vertices in G. In an undirected graph of things, the nodes are 

the IoT nodes and the edges are the connections between the 

things. A graph that represents the connection between 

things is called Things-Graph. Things-Graph, as in Figure.3, 

demonstrates every edge that is connecting two things is an 

unordered pair e={u,v} or e={v,u}. This definition implies 

that the graph does not contain self-loops and it satisfies the 

connections of the IoT. The undirected graph also represents 

symmetric relations[72]. 

 

Figure 3. An example of abstract simple Things-Graph, 

where the nodes represent things and the edges represent 

connections. 
 

Taking a deeper look into the IoT, all the nodes in the graph 

must be connected to a master node (i.e. a gateway or any 

other Fog device) either directly or through other vertices. 

No node can work alone, this would allow for more grouping 

the nodes in order to gain a better controlling on them. In 

other words, every IoT node must join at least one group, 

where the group head/master is a Fog node.  

The ThingsRank for a device in an IoT, mathematically, is 

expressed by function (1).  The ThingsRank of a device u, 

that is R(u,t), depends on the ThingsRank of the devices that 

are directly connected to it at time t, divided by C(v). The 

C(v)denotes the number of devices connected to thing v; if 

the connection is bidirectional; where Bu is the set of all 

devices connected to u. 
 

 
A damping factor is added because a thing that has no 

connection to other things may not be reached by the 

crawler. Thus, things with no connection are assumed to be 

connecting to all other things, and their ranks are divided 

equally between all other things. The value of the damping 

factor according to [73] is 0.85 and some Bayesian analysis 

recommends the optimal value of d (damping factor) to be 

0.31 [74]. The equation using the damping factor would be 

as in function (2). 
 

  
Where R(Ti,t) is the rank of a thing i, for i= 1, 2, 3, …,N at 

time t, N is the number of things at time t, M(Ti) is set of  

things  that are  connected to thing number i,, and C(Tj) is the 

number of connections to thing Tj. 

Initially (at t=0), all the things (nodes) are gaining the same 

rank as in function (3). 

 
The crawler is walking as a Markov Chain; the next 
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Figure 2. An example of Things-graph 
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movement only depends on the current state of the crawler 

not on a sequence of previous events. The Markov process is 

a stochastic model that gives a description of events 

sequence. In this Markov model, the next state only depends 

on the current state, thus it is called memory less model[75].  

In the World Wide Web (WWW), context web crawler 

(spider) is software responsible for visiting the web pages 

and indexing them for the search engines [76]. In our study, 

the IoT crawler visits the IoT nodes and eavesdrops on the 

network traffic data to analyze it as a legality behavioral 

measurement.   

As we mentioned earlier visiting the nodes is not trivial. It is 

done according to an importance level which is called 

ThingsRank as in function (2). The Web search engine works 

in three steps: crawling, indexing and ranking. In our 

approach, we are working according to other three steps, 

which are: ranking, crawling, and sniffing traffic. You can 

notice the difference which is the visiting method. In the web 

crawling, visiting is done according to search algorithms 

such as breadth first search and depth first search, and after 

visiting the page and indexing it; a rank is assigned to it.  

 In the IoT crawler, algorithm visiting is done according to 

the node importance (i.e. ThingsRank). The most important 

nodes are tested first if they are exhibiting a normal behavior 

or not. The group head maintains a list of its member that is 

updated in a cyclic manner. In this list, each node in IoT is 

assigned a priority according to ThingsRank algorithm. 

According to CISCO IoT reference model [77] the 

connectivity layer is right above the things in IoT and the 

IoT crawler is deployed in the Fog layer to gain its pros. 

Ranking algorithm updates the ThingsRank for a Things-

Graph in a cyclic manner since the adjacency matrix is 

changing dynamically over time. The summation of the IoT 

nodes rank within the group should be one. Initially, all the 

things are gaining the same rank as in function (3). The 

algorithm in the group head calculates the new ThingsRank 

according to Algorithm1.  

ThingsRank(Ᾰ) is the algorithm that is responsible for 

ranking IoT nodes within a group.  The input for this 

algorithm is a set of IoT nodes, and the output is rank for 

those nodes.  

Initially, for a new group, the rank value is partitioned evenly 

as inline 4 calculations, and then the algorithm modifies the 

rank value depending on number of connected things to 

every node in the group periodically, line 14. The new rank 

values for the set of nodes, for loop in line 16, are used in the 

next iteration. Algorithm 2 shows the pseudocode for the IoT 

crawler. 

 In Algorithm 2, the IoT Crawler (Ᾰ), the ranked nodes are 

sorted according to their rank values, then the crawler 

collects the things data stream (Sniff) starting from the most 

important node to the least important node. An array of 

records of data streams is the output for this algorithm. These 

data streams are the input for the behavior analyzer. Calling 

ThingsRank(Ᾰ) and Crawler (Ᾰ) algorithms are used 

according to a cyclic manner within a predefined time 

period. 

Detecting a malicious node is done by measuring its 

behavior; this is so called behavioral Intrusion Detection 

Systems (IDS)[78]. The output from the crawler is an input 

for the behavior analyzer that is also deployed in a FC node. 

As Figure.4 illustrates, the detecting of a malicious node is 

done by a behavior analyzer. The behavior analyzer should 

identify the malicious node according to its behavior.  Then, 

the system should take an action regarding the malicious 

node such as shutting down the system or blocking the 

node(s).  

Figure 4. Cycle of malicious node capturing approach 
 

4. Behavior Analyzer 
 

As mentioned earlier, the behavior analyzer is responsible 

for analyzing captured data streams and differentiates 

malicious nodes from the legitimate ones. Figure.5 
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demonstrates the proposed behavior analyzer workflow. The 

captured data streams are analyzed using a machine learning 

technique. The behavior analyzer then gives a binary 

decision 0 if the node is legitimate and 1 if the node is 

malicious. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Working flow of the behavior analyzer 
 

In this proposed behavior analyzer, we investigate the 

deployment of three different machine learning techniques: 

Random Forest, Extra Tree and AdaBoost. Next, we will 

give a brief description of each technique. 

Machine learning according to [79] means that a computer 

can learn from prior experience. In machine learning, the 

system can reach the data and learn from it. For instant, if the 

system has a prior knowledge about the behavior of the 

malicious node, then it should be able to detect malicious 

nodes to maintain the security of an IoT system. Machine 

learning is divided into supervised and unsupervised 

learning. In supervised learning, the system is trained using 

labeled data which are tagged with the ground truth. On the 

other hand, in unsupervised machine learning, the machine is 

trained using unlabeled data. For example, finding patterns 

and similarities are examples of clustering in unsupervised 

learning. 

AdaBoost, short for adaptive boosting, is a supervised 

machine learning technique, it was first proposed in 1995 by 

Freund and Shapire [80]. The magic of AdaBoost is its 

ability to combine a set of weak classifiers to produce a 

strong one. It is a fast convergence easy implemented 

algorithm. Adaboost generates a set of weak learners by 

generating a set of weights over the training data, then after 

each cycle, the maintained weights are adjusted adaptively.  

The misclassified training samples weights will be increased, 

and on the other side, the weights of the correctly classified 

training samples will be decreased.  The main idea of 

Adaboost is maintaining a distribution of weights over the 

training data samples. Initially, all the weights are distributed 

evenly, then, after each iteration, the weights are adjusted 

according to the classification output. 

Random Forest is an ensemble learning method that consists 

of large number of decision trees [81] with each tree in the 

forest, a class prediction is made; but the tree with the most 

votes wins and becomes the model prediction. The concept 

of the random forest is simple and robust. The uncorrelated 

models that are presented in the trees are a committee with 

performance that is superior to any other individual model. 

The produced trees have a low correlation and each tree is 

protected from the other trees' errors. In other word, if some 

trees are wrong, others would still operate in the right 

direction. 

Extra tree is another ensemble learning method based on 

decision tree [82] it is a low variance random forest. It builds 

multiple random trees depending on random features. The 

enhancement that the extreme tree has made on the random 

forest is that it makes no bootstrapping; this means samples 

are done without replacement. In extra tree, the splits are 

random with no best splits; all observations are extremely 

random splits to minimize over fitting (over learning). 
 

5. Experimental results 
 

5.1 Benchmark Dataset  
 

Variety benchmark datasets are used for intrusion detection 

evaluation such as: KDD98, KDDCUP99 [83] and NSLKDD 

[84]. But, unfortunately, they are not recently generated, and 

those datasets do not reflect low footprint threats and IoT 

traffic. UNSW-NB15 is a modern benchmark dataset created 

in 2015; it is hybrid of real and synthetic traffic to mimic 

attack or malicious behavior [85]. We used UNSW-NB15 

dataset to evaluate the behavior analyzer system. 

The UNSW-NB15 dataset consists of 2.5 million data point 

and 47 different features that are categorized into different 

five groups. Two target labels exist: one is the data point 

attack and the other is the attack category. The dataset 

contains nine attack categories with a tenth no attack 

category. They are listed in Table 3 with their record 

distribution.  

Table 3. Dataset attack categories 

Category No. of records 

Normal 2,218,761 

Fuzzers 24,246 

Analysis 2,677 

Backdoors 2,329 

DoS 16,353 

Exploits 44,525 

Generic 215,487 

Reconnaissance 13,987 

Shellcode 1,511 

Worms 174 
 

The UNSW-NB15 benchmark dataset contains all new 

attacks information according to Common Vulnerabilities 

and Exposures (CVE)1. Nine types of attacks are found in the 

dataset, they are mentioned in Table 3 with their records 

distribution. Following are brief descriptions of those 

attacks. 

 Fuzzing attack is based on fuzz testing which is a dynamic 

testing method. The attack involves feeding a random invalid 

and unexpected data to a node software or hardware until it 

crashes. The attacker may flood the buffers or overflows an 

integer in order to cause system crash, memory leakage, or 

any system fault [86]. In analysis attack, the intruder 

eavesdrops to the communication lines between two nodes 

and analyzes it to lunch different types of attack such as: port 

scan attack, spam and HTML break through [87]. Backdoor 

attack [88] is a technique of stealing the system security to 

gain an access to a system or its data. Once the attacker gains 

access to the system, he/she can steal financial credentials or 

 
1 https://cve.mitre.org 

Input:  

Data streams  

Processing: 

Machine Learning 

Technique 

Output:  

Binary decision, 

 0 legitimate 

1 Malicious  
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any other important data. The attacker furthermore would 

install malware for future attacks, it is considered as the 

fourth common attack.  

In Denial of Service (DoS) [89] attack, the intruder tries in 

different ways to consume the network resources to block 

out legitimate users in the network. For instance, flooding 

the traffic to consume bandwidth or CPU time is an example. 

Many illegitimate nodes (infected with a Trojan) 

compromise the system, therefore blocking a single IP 

address is not adequate to stop the attack. In exploits attack, 

the attacker discovers a system vulnerability, then takes the 

advantage of this flaw to attack the system either by using a 

malicious file or gaining higher privileges to install further 

malware [90]. 

Reconnaissance attacks are about gathering information 

about a system user, a well-known reconnaissance attack is 

social engineering [91]. Shellcode is a small piece of 

executable code used to attack a system through 

vulnerability. The shellcodes are used to remotely download 

a malware and infect the computer system software/hardware 

[92]. Worms is a self-replicating malware that attack the 

system through security holes then it spread itself through 

the network [93], the worms can damage the files within the 

system or steal/change the user credentials. 

The data types for the 47 features of UNSW-NB15 are 

different such as: Boolean, integer, float, nominal and 

timestamps. For instance, is-ftp-login is a Boolean feature; it 

is 1 if the ftp (File Transfer Protocol) session is accessed by 

the user with a password and 0 otherwise. Source to 

destination packet count and destination to source packet 

count are examples of integer features. Most of the 

timestamp features are floats such as the time between the 

SYN and the SYN-ACK packets of the TCP.  The attack 

categories and protocol types are examples for nominal data 

points. 

The 47 features of the UNSW-NB15 dataset are divided into 

five groups: flow features, basic features, content features, 

time features and additional generated features. There are 

two additional labeled features, which are attack category 

and a label for each record that is 1 if it is attack and 0 

otherwise. Preprocessing is made to convert the nominal 

values to numerical values to be properly used in the 

behavior analyzer. 
 

5.2 Performance metrics 
 

Detecting a malicious node is considered a binary 

classification problem [94], a node is malicious, or it is 

legitimate and there is no third option. A binary classifier is 

used for Network Intrusion Detection System (NIDS) 

detection. Performance metrics used to measure the 

performance of NIDS are True Positive (TP), True Negative 

(TN), False Positive (FP) and False Negative (FN) [95]. 

Table 4 explains these four-performance metrics along with 

an example on every metric. 

The TP and TN are the wanted results from NIDSs, while the 

false ones are incorrect results that are not recommended. 

Confusion metric is a table that represents the four-

performance metrics as shown in Table 5. It has two 

dimensions which are the actual and the predicted ones [96]. 

From the previous confusion matrix, a set of evaluation 

metrics can be derived, which are accuracy, precision, 

sensitivity, specificity, F1 score, Receiver Operator 

Characteristic (ROC) and Precision-Recall (PR) [97].  

Accuracy, measures the effectiveness of the IDS algorithm 

by showing the probability of the true positive values which 

gives an overall assessment for the IDS effectiveness. See 

function (4). 
 

Table 4.  Network Intrusion Detection Systems 

Performance Metrics 
Performance 

metric 
Description Example Visualizatio

n 

TP Classifier 

correctly labels 

positive ones.   

A malicious 

node is 

detected 
correctly by the 

system. 
 

TN Classifier 

correctly labels 
negative ones.  

A legitimate 

node is 
detected 

correctly.   

 

FP Classifier 

incorrectly 

labels positive 
ones as 

negative.  

A legitimate 

node is 

considered 
malicious 

incorrectly.    

 

FN Classifier 
labels positive 

ones with 
negative 

incorrectly. 

A malicious 
node passes the 

system as 
legitimate.  

 

 
 

Table 5. Confusion matrix 
 Actual 

Positive  

Actual 

Negative  

Predicted Positive  TP FP 

Predicted Negative  FN TN 

 

 

 
 

Precision measures the predictive capability of the IDS 

algorithm; it is also called positive predictive value, as 

shown in function (5).  

 
Sensitivity or recall is the true positive rate which measures 

the actual intrusions that are predicted by the algorithm, as in 

function (6).  

 
Specificity is the true negative rate which measures the 

actual legitimate nodes that are predicted by the algorithm, 

see function (7). 
 

 
As in function (8), F1 score is a precision/recall function. In 

other words, it measures the balance between precision and 

recall.  

   
Both sensitivity and specificity measure the effectiveness of 

the IDS on a single class. The ROC curve demonstrates the 

relation between the two. ROC curve is a preferable way for 
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visualizing the IDS performance and to choose an operating 

point or a suitable decision threshold. PR (precision-recall) 

curve demonstrates the relation between precision and recall; 

it measures the performance of a system at different 

thresholds [98]. 
 

5.3 Experimental Results 
 

Experiments were made using Python 3.7 and tensorflow 

2.0. Class 0 means no attack and class 1 means an attack 

(malicious node).  Three machine learning algorithms, which 

are Adaboost, Random forest and Extra tree, were employed. 

The testing accuracy for the used machine learning 

algorithms are shown in Figure.6, the results imply that when 

the crawler runs with the Extra Tree testing, Random forest, 

and AdaBoost, the average accuracies are 98.3%, 97.7%, and 

80.2%, respectively.  The results were averages of five runs 

and rounded to three significant digits. The results of the five 

tests of each algorithm were very close. Extra tree 

outperforms the Random forest because it uses all the 

learning samples rather than using replicas. In the Extra tree 

cut-points are fully random; no best split is made as in 

random forest.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Testing Accuracy using Adaboost, Random 

forest and Extra tree algorithms 
 

Table 6. Class specific results for attack detection for 

precision, Recall and F1-Score on UNSW-NB15 dataset 

using the Adboost, Random, and Extra Tree machine 

learning algorithms. 
Algorith

m 

Class Precision Recall F1-

Socre 

AdaBoost 0 1.00 0.72 0.84 

1 0.32 0.98 0.48 

Random 

Forest 

0 1.00 0.98 0.99 

1 0.84 0.99 0.91 

Extra 

Tree 

0 1.00 0.99 0.98 

1 0.88 1.00 0.93 

The results in Table 6 show that the three algorithms have 

1.00 precision for class 0 predicting (normal traffic). This 

implies that the three algorithms can predict no attack class, 

thus a legitimate node would not be considered malicious. 

For predicting class 1(malicious traffic), extra tree algorithm 

has the highest precision over AdaBoost and Random forest 

with 88%, while AdaBoost precision is the lowest with 32% 

value.  The lowest value for class 0 recall among the three 

algorithms is 72% for Adaboost algorithm; the highest is for 

Extra tree with 99%, while random forest recall for random 

forest is 98%. Class 1 recall values are high among the three 

algorithms; they are ranging from 98% to 100%. F1 scores 

for class 0, for the three algorithms, are higher than F1 scores 

for class 1. Adaboost F1 scores for class 0 and class1 are the 

lowest among the other two algorithms, with 84% and 48% 

values respectively. The reason why Extra tree overall results 

were the best is that the splitting reduces the variance by 

averaging the deep decision trees and randomly choosing a 

value for the trees split to boost the performance of the last 

decision tree. 

Figure 7 shows the confusion matrix for the three algorithms. 

Extra tree and random forest results are almost similar for 

predicting a malicious node (TP) with 99% rate, while 

Adaboost is the lowest with 97% TP rate.  

Figure 8 demonstrates the ROC curves class 1 prediction for 

Adaboost, Random Forest and Extra tree, respectively. The 

largest the area the better the result would be. Notice that the 

AUC (Area Under the Curve) for Extra tree is 99.6%, which 

is the largest among the three algorithms. This implies that 

Extra tree outperforms random forest and AdaBoost. In 

summary, all the conducted results from the simulation 

(testing accuracy, precision, recall, F1 score, confusion 

matrix, ROC and AUC) for the Extra tree are always the 

best. Extra trees are extremely randomized in both the 

attributes and cut point, while generating the decision trees, 

using all the learning samples without replicas generates no 

bios in the extra tree performance.  

Table 7 shows a comparison between our work and other 

related work in term of the accuracy. Authors in [99] used 

different machine learning algorithms on the same dataset, 

the UNSW-NB15 dataset. Overall, the table shows that the 

accuracy results for our selected techniques are better than 

the techniques used in. For instance, our best result was the 

Extra tree classifier with 98.3% accuracy, while their best 

result was for the Decision tree with 85.6% accuracy. Our 

selected classifiers results are better because they are 

ensemble learning algorithms, which means that they used 

different learning techniques and select (vote) for the best 

technique, beside that Random forest and Extra tree can deal 

with the high complexity of the selected dataset. 
  

Table 7. Comparison between different machine learning 

techniques on UNSW-NB15 dataset in term of accuracy 
Our Result Results in [99] 

Technique  Accuracy(%) Technique  Accuracy(%) 

Adaboost 80.2 Naive Based  82.1 

Random forest  97.8 Decision tree 85.6 

Extra Tree  98.3 Logistic 

Regression  

83.2 

 

 
(1) AdaBoost 

80.20%

97.80% 98.30%

Adaboost Random forest Extra Tree 

Machine Learning Algorithm 

T
e
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g
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c
c
u
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(2) Random forest 

(3) Extra tree 

 

Figure 7. Adaboost, Random forest and Extra tree 

confusion matrices for attack prediction on UNSW-NB15 

dataset 
 

 
(1) AdaBoost  

 
(2) Random forest  

 
(3) Extra Tree  

Figure 8. Adaboost, Random forest and Extra tree ROC 

curves for attack prediction 

6. Conclusion 

Securing IoT systems is highly required and published 

literature lack special dedicated systems for IoT security. We 

presented an intelligent IoT crawler; and we think it is the 

first crawler that collects IoT data streams from IoT nodes to 

analyze it. The IoT crawler walks in a predefined priority 

criterion. In other words, visiting the IoT nodes is not done 

trivially. The most influencing and important nodes are 

visited first to check their legibility. Checking and 

investigating nodes are done by a behavior analyzer that 

takes the IoT collected data stream as an input. 

We used ensemble machine learning techniques to detect 

malicious nodes; Extra tree algorithm showed the best results 

with 98.3% accuracy. Our results for malicious detection, for 

the selected classifiers, are better than other results in term of 

accuracy.  An action shall be taken regarding a malicious 

node such as shutting down the system or further 

investigating in a suspected node. Deploying the IoT crawler 

and the behavior analyzer is done in a Fog Computing node 

to avoid the IoT constrained node limitations. In the future, 

we will increase the number of attacks that the behavior 

analyzer can detect, and we hope to be able to recognize the 

zero-day attack. 
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