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Abstract: This article describes a simulated annealing based 

offloading decision with processing time, energy consumption and 

resource constraints in a Mobile Edge Computing Node. Edge 

computing mostly deals with mobile devices subject to constraints. 

Especially because of their limited processing capacity and the 

availability of their battery, these devices have to offload some of 

their heavy tasks, which require many calculations. We consider a 

single mobile device with a list of heavy tasks that can be 

offloadable. The formulated optimization problem takes into 

account both the dedicated energy capacity and the total execution 

time. We proposed a heuristic solution schema. To evaluate our 

solution, we performed a set of simulation experiments. The results 

obtained in terms of processing time and energy consumption are 

very encouraging. 
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1.  Introduction 
 

Recently , the development of the Internet of Things (IoT) 

has been largely supported by the parallel development of 

cloud computing capabilities. Cloud computing provides on-

demand resilient computing power that can host and support 

critical IoT functions. However, the proliferation of 

connected objects poses the problem of the confidentiality of 

the data produced. This proliferation also threatens the 

performance of support networks. Due to restricted battery 

power, memory and computational capacity, mobile devices 

face challenges in executing delay-sensitive and resource-

hungry mobile applications such as augmented reality and 

online gaming. Mobile Edge Computing (MEC) is foreseen 

as a remedy to alleviate this problem. In MEC, the mobile 

edge is enhanced with analysis and storage capabilities, 

possibly by a dense deployment of computational servers or 

by strengthening the already-deployed edge entities such as 

small cell base stations. Consequently, mobile devices are 

able to offload their computationally expensive tasks to the 

edge servers while requesting some specific quality of 

service. This process, referred to as computation offloading, 

is feasible due to the fact that edge servers are deployed in 

close proximity of mobile users, specifically in comparison 

to the remote cloud servers. 

Mobile Edge Computing (MEC) is a new technology, 

providing an IT service environment and cloud computing 

capabilities at the edge of the mobile network, within the 

Radio Access Network (RAN) and in close proximity to 

mobile subscribers. The goal is to reduce latency, ensure 

network operation and delivery of highly efficient services, 

and improve the users experience. The environment of 

Mobile Edge Computing is characterized by low latency, 

proximity, high bandwidth, and real-time insight into radio 

network information and location awareness. MEC is a 

natural development of the evolution of mobile base stations 

and the convergence of computer and telecommunication 

networks. Based on a virtualized platform, MEC is 

recognized by the European 5G PPP (Public-Private 

Partnership for Infrastructure 5G) as one of the key 

emerging technologies for 5G networks [1]. As illustrated in 

Figure 1, the authors of [2-4] studied that MEC can increase 

the capabilities of mobile devices by offloading some of 

their tedious applications via wireless access to a resource-

rich edge node, in order to effectively reduce their energy 

consumption [2]. In [5], the offloading decisions are adjusted 

to minimize the overall energy consumption. Similar to [6], 

to save energy consumption, an optimization problem which 

decides the offloading policy is studied. Often, a greedy 

application is broken down into several independent tasks 

with a time constraint in order to offload them efficiently 

and quickly [3, 7, 8]. Many papers studied resource 

allocation within a MEC infrastructure to optimize the 

processing time [9-12]. On the other hand, Many states of 

the artworks studied resource allocation within a MEC 

infrastructure to optimize the energy consumption [7, 13]. 

The current global trend of IoT evolves very quickly from 

user needs, the corresponding technologies and protocols, 

such as massive connectivity, energy constraints, scalability 

and reliability limitations and security, remain open research 

questions [14, 15]. In [16], the authors investigate a resource 

allocation policy to maximize the available processing 

capacity for MEC IoT networks with constrained power and 

unpredictable tasks. Unfortunately, most of them consider 

users with a unique task only. However, current Smart 

Mobile Devices (SMDs) can host several greedy 

applications that have to offload a part of their tasks to 

improve the quality of the experience or simply to avoid the 

waste of their available resources. Therefore, the offloading 

decision should be generalized according to a multi-task 

scenario. This problem relies on the joint decision of tasks’ 

offloading and the allocation of communication or 

computing resources.  

 
              Figure 1. Mobile edge computing illustration 
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The remainder of this paper is organized as follows : the 

system’s model and the optimization problem formulation 

are presented in Section 2. In Section 3, we present our 

method to solve the optimization problem. In section 4 we 

present the simulation results and their discussion. Finally, 

Section 5 concludes the paper.  
 

2. System Model and Problem Formulation 
 

In this section, we present the adopted system model. First, 

we briefly present smart mobile devices parameters. Then, 

we describe in details our optimization problem formulation. 

2.1.  System Model 

Figure 2. Shows a single smart mobile device (SMD) 

containing an offloadable multi-task list. In this work, we 

plan to study the behavior of the offloading process for a 

multi-task SMD in an edge environment, while we optimize 

computation resources available at the edge server as well as 

at the mobile device. Particularly, the available energy at the 

SMD for tasks execution is limited. Besides, in the context 

of offloading, some pieces of a computationally intensive 

application are divided into multiple mutually independent 

offloadable tasks [17, 18]. Therefore, according to the 

available computational and radio resources, some tasks are 

pick-up from the resulting tasks list to be offloaded to the 

edge servers for computing. The others are performed 

locally on the SMD itself. The execution of the whole list 

must happen within the time limit of the application. 

Additionally, it is assumed that the SMD concurrently 

performs computation and wireless transmission.  

 
Figure 2. System model illustration 

For all these considerations, we derive a mathematical 

processing time model that considers three main decisions: 

the offloading decision for each task, the local execution 

frequency of the SMD, and the server execution frequency at 

the edge. Then, we formulate an processing time problem. 

Practically, the SMD is connected to an Edge Node (EN), 

and is intended to offload a set of independent tasks by the 

mean of an Edge Access Point (EAP).Additionally, the 

wireless channel conditions between the SMD and the 

wireless access point are not considered in this work. 

Moreover, at the time of the offloading decision and the 

transmission of the offloadable tasks, the uplink rate r is 

assumed almost unchanged.  

As shown in Figure 2., the considered smart mobile device 

contains N independent tasks denoted as τ ≜ {τ1, τ2, … , τN}. 

In addition, these tasks are assumed to be computationally 

intensive and delay sensitive and have to be completed. Each 

task τi  can be processed either locally or at the edge. It 

represents an atomic input data task that cannot be divided 

into sub-tasks. Moreover, it is characterized by the following 

three parameters  τi ≜ 〈di, λi, ti
max〉 . The first one denoted 

di [bits] identifies the amount of the input parameters and 

program codes to transfer from the user’s local device to the 

edge server. The second one denoted λi [cycles] specifies the 

workload referring to the computation amount needed to 

accomplish the processing of this task. The third parameter 

ti
max refers to the required maximum latency for this task. 

The execution nature decision for a task τi either locally or 

by offloading to the edge server is denoted xi 𝑤ℎ𝑒𝑟𝑒 xi ∈
{0; 1}. xi = 1 indicates that the SMD has to offload τi to the 

edge server, and xi = 0 indicates that τi is locally processed.  

From this point, all time expressions are given in Seconds, 

and energy consumptions are given in Joule. Then, if the 

SMD locally executes task τi , the completion time of its 

local execution is ti
L =

λi

fL
. So, for all tasks, we have: 

tL =
λi ∑ (1−xi)N

i=1

fL
 (1) 

Additionally, the corresponding energy consumption is 

given by: ei
L = kL. fL

2. λi  [19]. Hence, the total energy 

consumption while executing all tasks that were decided to 

be locally executed in the SMD is given by : 

   eL = kL. fL
2. ∑ λi(1 − xi)

N
i=1   (2) 

If task 𝜏𝑖  is offloaded to the edge node, the offloading 

process completion time is:  ti
O =  ti

Com + ti
Exec + ti

Res , 

where ti
Com is the time to transmit the task to the EAP, and it 

is given by ti
Com =

di

r
 . ti

Exec is the time to execute the task τi 

at the EN, and it can be formulated as ti
Exec =

λi

fS
. ti

Res is the 

time to receive the result out from the edge node. Because 

the data size of the result is usually ignored compared to the 

input data size, we ignore this relay time and its energy 

consumption as adopted by [20]. Hence, for the 𝜏𝑖 task ti
O =

xi (
di

r
+

λi

fS
), and for all tasks, we have: 

tO = ∑ xi (
di

r
+

λi

fS
)N

i=1  (3) 

So, the energy consumption of the communication process 

can be obtained by multiplying the resulting transmission 

period by the transmission undertaken power 𝑝𝑇 , and the rest 

of the execution period by the idle mode power 𝑝𝐼 . Thus, 

this energy is: 

eC =
pT ∑ xidi

N
i=1

r
 (4) 

Finally, given the offloading decision vector 𝕏 for all tasks, 

the local execution frequency 𝒇𝑳 of the SMD, and the server 

execution frequency 𝒇𝑺 at the edge, the total execution time 

for the SMD is composed of its local execution time, the 

communication time as well as the execution time at the EN, 

and it is given by: 

T(𝕏, fL, fS) =  tL + tO (5) 

Then, according to equations (1) and (3), the total execution 

time can be formulated as: 

T(𝕏, fL, fS) = {
∑ λi

N
i=1 −∑ λixi

N
i=1

fL
+

∑ dixi
N
i=1

r
+ 

∑ λixi
N
i=1

fS
} (6) 

2.2.  Problem Formulation 

In this section, we present our optimization problem 

formulation that aims to minimize the overall execution time 
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in the offloading process. Initially, to prepare the problem’s 

data we start with an initial sorting of the tasks list τ ≜
{τ1, τ2, … , τN} according to their deadlines ti

max. Hence, the 

tasks execution order within the SMD or the edge server in 

the final solution must fulfill the initial order for both cases. 

Accordingly, the obtained problem is formulated as: 

𝓟𝟏: min
{x,fL,fS}

{
∑ λi

N
i=1 − ∑ λixi

N
i=1

fL

+
∑ dixi

N
i=1

r
+  

∑ λixi
N
i=1

fS

} 

s.t.  (C1.1) xi ∈  {0; 1};      i ∈  ⟦1; N⟧; 

       (C1.2)     FL
min ≤ fL ≤ FL

max; 

      (C1.3)     0 < fS ≤ FS ; 

      (C1.4) ti
L =

(1−xi)

fL
∑ λk(1 − xk)i

k=1 ≤ ti
max;  i ∈  ⟦1; N⟧; 

      (C1.5)  ti
O = xi ∑ xk (

dk

r
+

λk

fS
)i

k=1 ≤ ti
max ;  i ∈  ⟦1; N⟧; 

     (C1.6)  eL + eC =    kL. fL
2. ∑ λi(1 − xi) +N

i=1

                                       
pT

r
∑ dixi

N
i=1 ≤ Emax. 

 

In this work, each one of the available tasks can be either 

executed locally or offloaded to the edge node. Thus, every 

feasible offloading decision solution has to satisfy the above 

constraints: 

The constraint (C1.1)  refers to the offloading decision 

variable xi  for task τi  which equals 0 or 1. The second 

constraint (C1.2) indicates that the allocated variable local 

frequency fL belongs to a priori fix interval given by 

[FL
min, FL

max]. Similarly, the allocated variable remote edge 

server frequency fS belongs to the interval ]0, FS
max]  in 

constraint (C1.3) . The constraint (C1.4)  shows that the 

execution time of each decided local task must satisfy its 

deadline ti
max. Similarly, in constraint (C1.5), the offloading 

time of each decided offloadable task must satisfy the same 

deadline  ti
max . The final constraint (C1.6)  imposes that the 

total local execution energy must not exceed the tolerated 

given amount Emax. This constraint is important especially 

for SMDs with critical battery. 
 

3. Problem Resolution 
 

In this section, we will introduce how we derive our solution 

from the obtained optimization problem. Hence, we begin by 

the problem’s decomposition in Section 3.1. In Section 3.2 

we present the problems’ resolution in order to get the 

optimal solutions. After that, we present the proposed 

solutions. 

3.1. Problem Decomposition 

In our proposed model, the offloading decision vector for all 

the tasks is denoted 𝕏. Let define the vector that contains the 

offloadable tasks’ identifiers: 

𝕏1 = {i ∈ 𝕏   /    xi = 1 } (7) 

𝕏0 = {i ∈ 𝕏   /    xi = 0 } (8) 

Additionally, we define: Λi = ∑ λi
i
k=1 ,Λi

1 = ∑  xiλi
i
k=1  , Di =

∑ di
i
k=1   , Di

1 = ∑  xidi
i
k=1 .  

Also, given the decision vector 𝕏1 , constraint (C1.4) for a 

local task can be reformulated as 
Λi−Λi

1

ti
max ≤ fL;  ∀ i ∈  ⟦1; N⟧. 

Finally, it is equivalent to one constraint: max
i

{
Λi−Λi

1

ti
max } ≤ fL. 

Likewise, constraint (C1.5)  for an offloadable task means  
Di

1

r
+

Λi
1

fS
≤ ti

max  (∀ i ∈  ⟦1; N⟧) . So   
Di

1

r
 and  

Λi
1

fS
  must be 

strictly less than ti
max  (∀ i ∈  ⟦1; N⟧) ; particularly 

min
i

{ti
max −

Di
1

r
} > 0. In this case constraints (C1.5) can be 

reformulated as 
Λi

1

ti
max−

Di
1

r

≤ fS;  ∀ i ∈  ⟦1; N⟧ . Finally, it is 

equivalent to one constraint: max
i

{
Λi

1

ti
max−

Di
1

r

} ≤ fS.  

Similarly, constraint (C1.6)  means  𝑘𝐿 . 𝑓𝐿
2. (ΛN − ΛN

1 ) +

 
𝒑𝑇 DN

1

𝑟
≤ Emax . So 𝑘𝐿 . 𝑓𝐿

2. (ΛN − ΛN
1 )  and  

𝒑𝑇 DN
1

𝑟
 must be 

strictly less than Emax. In this case constraint (C1.6) can be 

reformulated as fL ≤ √
Emax− 

𝐩T DN
1

r

kL(ΛN−ΛN
1 )

. For ease of use, let note: 

𝑓𝐿
− = 𝑚𝑎𝑥

𝑖
{

𝛬𝑖−𝛬𝑖
1

𝑡𝑖
𝑚𝑎𝑥 } (9) 

fL
+ = √Emax− 

pT DN
1

r

kL(ΛN−ΛN
1 )

 (10) 

fS
− = max

i
{

Λi
1

ti
max−

Di
1

r

} (11) 

Thus, for a given offloading decision vector 𝕏, we get the 

following optimization sub-problem: 

𝓟𝟐(𝕏):   min
{fL,fS}

{
ΛN − ΛN

1

fL

+
 DN

1

r
+ 

ΛN
1

fS

} 

         s.t.    (C2.1)              FL
min ≤ fL ≤ FL

max; 

                  (C2.2)             fL
− ≤ fL ; 

                  (C2.3)            fS
− ≤ fS ≤ FS ; 

                  (C2.4)            kLfL
2(ΛN − ΛN

1 ) +
pT DN

1

r
≤ Emax. 

Considering the continuous variables fL and fS, problem P2 

is a continuous multi-variable optimization problem. The 

objective function T(𝕏, fL, fS) =
ΛN−ΛN

1

fL

+
 DN

1

r
+  

ΛN
1

fS

 can be 

decomposed into the following two independent functions 

T1(fL) and T2(fS) where 𝑇1(𝑓𝐿) =
ΛN−ΛN

1

𝑓𝐿

  and T2(fS) =
 DN

1

r
+

 
ΛN

1

fS

. Moreover, given the disjunction between constraints 

(C2.1), (C2.2) and (C2.4)  on the one hand, and (C2.3)  in 

problem P2 on the other hand, this last can be equivalently 

decomposed into the following two independent 

optimization sub-problems. 

𝓟𝟑. 𝟏(𝕏):   min
{fL}

{T1(fL) =
ΛN − ΛN

1

fL

} 

         s.t.    (C3.1.1)            FL
min ≤ fL ≤ FL

max; 

                  (C3.1.2)           fL
− ≤ fL ≤ fL

+. 

𝓟𝟑. 𝟐(𝕏):   min
{fS}

{T2(fS) =
 DN

1

r
+  

ΛN
1

fS

} 
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         s.t.    (C3.2.1)            fS
− ≤ fS ≤ FS. 

3.2. Problems Resolution 

The objective function T1(fL)  of the problem 𝒫3.1  is a 

strictly increasing continuous function according to its 

variable 𝑓𝐿. On the other hand, the objective function T2(fS) 

of the problem 𝒫3.2, decreases strictly w.r.t. the variable 𝑓𝑆. 

3.2.1. Processing Frequencies Determination 

From an offloading decision vector 𝕏 , and taking into 

account the constraints obtained (C3.1.1)  , (C3.1.2)   and  
(C3.2.1), the following algorithm gives the optimal allocated 

local frequency fL  as well as the remote edge server’s 

processing frequency fS. 

Algorithm 1: frequencies optimum for a given 𝕏 

Input: The offloading policy 𝕏. 

Output: fLand fS. 

1: Determinate 𝕏1 according to (8); 

2: if 𝕏 = 𝕏1then 

3:     fL = 0; 
4:     goto 12; 

5: end if 

6: Calculate: fL
−, fL

+ according to (9) and (10) 

respectively; 

7: if Emax ≤
pT DN

1

r
  or fL

− > FL
max or fL

+ < FL
min or 

fL
− > fL

+then return ∅; 

8: else if fL
+ >  FL

min then fL = FL
max; 

9:        else fL = fL
+; 

10:       end if 

11: end if 

12: if min
𝑖

{𝑡𝑖
𝑚𝑎𝑥 −

𝐷𝑖
1

𝑟
} ≤ 0 then return ∅; 

13: else 
14:        Calculate: fS

− according to (11); 
15:        if fS

− > FS then return ∅; 
16:        else    fS = FS; 

17:        end if 

18: end if 

19: return (fL, fS); 

3.2.2  The Processing Time Determination 

To evaluate the processing time of a state, the following 

expression is adopted. It gives the minimal processing time 

by calling the first algorithm to calculate ( fL , fS ) if the 

problem is feasible. Otherwise, it ∞.  

T(𝕏, fL, fS) = 

{
∞ 𝐢𝐟  fL = ∅ 𝐨𝐫 fS = ∅ 

T(𝕏, fL, fS) according to (12) otherwise
  (12) 

3.3.  Proposed Solutions 

Next, the problem relies on determining the optimal 

offloading decision vector 𝕏  that gives the optimal 

processing time. However, to iterate over all possible 

combinations of a list of N binary variables, the time 

complexity is exponential (the exhaustive search over all 

possible solutions requires 2N iterations). Subsequently, the 

total time complexity of the whole solution (including 

Algorithm 1) is O(2N)*O(1)=O(2N) that is not practical for 

large values of N. In the following, we propose a low 

complexity approximate algorithm to solve this question. 

3.3.1  Simulated Annealing Offloading Solution 

The following algorithm presents the pseudo-code of the 

simulated annealing based heuristic as described above.  

Algorithm 3:Simulated Annealing Pseudo-code 

Input: The list 𝜏 of N sub-tasks. 

Output: the offloading policy 𝕏∗. 

Initialize: a random policy 𝕏. 

1: Call Algorithm 2 to calculate T using 𝜏 and 𝕏; 

2: For k = 0 to kmax do 

3:        Temp ← temperature(k ∕ kmax) 

4:        Pick a random neighbour, 𝕏𝑛𝑒𝑤 ← neighbour(𝕏) 

5:        Call Algorithm 2 to calculate Tenew using 𝜏 and 

𝕏𝑛𝑒𝑤; 

6:        if Tnew≠∞ then 

7:               if P(T, Tnew, Temp) ≥ random(0, 1) then 

8:                     𝕏 ← 𝕏𝑛𝑒𝑤  ; 
9:                     T← Tnew; 

10:               End if 

11:       end if 

12: end for 

13: 𝕏∗ ← 𝕏  ; 

With, random (0,1) is a function that allows to generate a 

random number in [0,1]. neighbor ( 𝕏 ) is a function to 

generate a decision vector state near the input 𝕏. P(T, Tnew, 

Temp)  is an acceptance probability function that depends on 

processing time T and Tnew of the two states 𝕏 and 𝕏𝑛𝑒𝑤 , 

and on a global Temp parameter called the temperature that 

varies over the iterations. 

In our proposed first solution, which we denote Original 

Simulated Annealing Offloading Decision (SAOD), among 

the main parameters introduced in this solution, we present 

the computation density proportion variable for each task i 

given by: 

χi =
ωi−ωmin

ωmax−ωmin
 (13) 

Where 𝜔𝑖 =
𝑑𝑖

𝜆𝑖
 is the i task computation density. 

In our proposed second solution, which we denote Modified 

Simulated Annealing Offloading Decision (MSAOD), 

instead of the threshold probability p0 =
1

(1+e−∆T/Temp0)
 used 

in SAOD. Since p0  belong to [0;
1

2
] , we adopted the 

following probability:  

p =
3

2
− p0 . (14) 

Where p  belong to [
1

2
; 1] , and Temp0  is the initial 

temperature constant. ∆Ti  is the solutions’ processing time 

variation while changing the task i state. 

Moreover, the ε  parameter introduced in SAOD, which 

represents a tolerance parameter, is critic (as other 

parameters) for the proposed heuristic. Thus, in our final 

solution MSAOD we choose to regularly vary this parameter 

between 𝜔𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥 . Then we select the best solution. 
 

4. Results and Discussion  

In this section, we carried out a serie of experiments to 

evaluate the performance of our proposed solution. First, we 

present simulation setup parameters. Then, several 

performance analysis are detailed to prove the efficiency of 

our approach. 
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4.1.  Simulation Setup 

The presented results in this work are averaged for 100 time 

executions. We implement all the algorithms on the C++ 

language. The transmission bandwidth between the mobile 

device node and remote edge server is set tor = 100Kb/s. The 

local CPU frequency fL of the mobile device will be 

optimized between FL
min = 1MHz and FL

max = 60MHz. The 

CPU frequency of the remote edge server node will be 

optimized under the value FS = 6GHz. The deadlines ti
max 

are uniformly defined from 0.5s to 2s. The threshold energy 

Emax  is uniformly chosen in [0.6 , 0.8] ∗ Λ. kL. (FL
max)2 . 

Additionally, the data size of each one of the N tasks is 

assumed to be in [30,300] Kb. For the cycle amount of each 

task, it is assumed to belong to [60,600]MCycles. The 

transmission power is set to be pT = 0.1  Watt. For the 

energy efficiency coefficients, we set kL = 10−26 and kS =
10−29. 

For the simulated annealing method, the following parameter 

values are adopted: factor = 0.75,  ε= 0.3, εmin = 0.1 and 

εmax = 0.4, Temp0 = 200, Δt = 0.02(in SAOD), CF=0.5.  

4.2.  Performance Analysis 

We present our results in terms of average decision time and 

average tasks’ processing time. 

We start by studying the average tasks’ processing time for 

each method. Thus, we carried an experiment where we vary 

the number of tasks parameter between 2 and 50 tasks.  

4.2.1  Factor Parameter 

The following figure shows a rapid decrease of the task 

processing time of the MSAOD method for a factor between 

0.4 and 0.9 for N in {10,15,20,25}. Then, the processing 

time remains almost stable for all values of N.  

 
Figure 3. Tasks’ Processing Time for factor between 0.4 and 

0.95 

 
Figure 4. Execution Time Average for factor between 0.4 

and 0.9 

The  figure 4 illustrates the running time for N 

in{10,15,20,25} w.r.t. the factor value. Therefore, we find 

that the best factor value that minimizes the task processing 

time for most N values is factor = 0.75. Subsequently, we 

will set the factor to 0.75. 

4.2.2 The Processing Time 

As the performance study of the proposed solution in [21] 

with three situations (in MEC context), Figure 5 and Figure 

6 Show a comparison between three situations (with N 

between 2 and 50): 1) All tasks are offloaded to the Edge 

Node. 2) The offloading decision is done using our MSAOD 

solution. 3) All tasks are executed locally. 

 
Figure 5. Tasks’ Processing Time for N between 2 and 50. 

From this figure, our proposed solution saves between 148% 

and 168% of processing time compared to the local 

execution of all tasks. However, when we compare our 

MSAOD solution to the offloading of all tasks, we find some 

negligible degradation that does not exceed 2%, it comes 

from the fact that, when offloading tasks we ignore the 

offloading constraints; as a result, we get the infeasible 

solutions. Therefore, we show that our proposed heuristic 

scheme efficiently manages the offloading decisions. To 

show the real difference between MSAOD solution and the 

offloading of all tasks, that is shown in Figure 5, we report 

their results with a zoom in Figure 6. 

 
Figure 6. Tasks’ Processing Time for N between 2 and 50. 

Figure 7 shows that the results of the MSAOD solution are 

better than those of SAOD for all N values. The results of 

the first represent a gain in processing time that varies 

between 0% and 2%. 
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Figure 7. Tasks’ Processing Time for N between 2 and 50. 

 
Figure 8. Execution Time Average for N between 2 and 50. 

Figure 8 illustrates the execution time comparison for 

MSAOD and SAOD methods while N is set between 2 and 

50. The MSAOD and SAOD solutions give a near linear 

execution time that reached for N=50 respectively 1.23ms 

and 2.10ms. Accordingly, the performance in terms of 

execution time of the SAOD method is slightly higher than 

the MSAOD method. 

5. Conclusion 
 

In this paper, we have considered a single smart mobile 

device (SMD) containing an offloadable multi-task list. We 

are devoted to enable the latency sensitive tasks to run on 

user equipments by implementing partial computation 

offloading. First, we have consided the single user 

offloading problem, where the MEC resources are 

considered to be unconstrained. Later, we extend it to the 

multi-task offloading problem, where the resource 

constraints  are taken into consideration. As demonstrated by 

emulation experiment based on numerical simulation, the 

proposed simulated annealing algorithm in this article is 

capable of offloading tasks that require a lot of processing 

time and simultaneously improve the offloading rate to 

ultimately reduce the total processing time of tasks. The 

obtained results in terms of execution time of the proposed 

algorithms are very encouraging. In the course of future 

work, we will generalize our study to the multi-user case.  
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