
101
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

Offloading Decisions in a Mobile Edge Computing

Node with Time and Energy Constraints

Mohamed EL GHMARY1*, Tarik CHANYOUR1, Youssef HMIMZ1 and Mohammed Ouçamah CHERKAOUI

MALKI1

1Sidi Mohamed Ben Abdellah University, LIIAN Labo, FSDM, Fez, Morocco.

Abstract: This article describes a simulated annealing based

offloading decision with processing time, energy consumption and

resource constraints in a Mobile Edge Computing Node. Edge

computing mostly deals with mobile devices subject to constraints.

Especially because of their limited processing capacity and the

availability of their battery, these devices have to offload some of

their heavy tasks, which require many calculations. We consider a

single mobile device with a list of heavy tasks that can be

offloadable. The formulated optimization problem takes into

account both the dedicated energy capacity and the total execution

time. We proposed a heuristic solution schema. To evaluate our

solution, we performed a set of simulation experiments. The results

obtained in terms of processing time and energy consumption are

very encouraging.

Keywords: Mobile Edge Computing; Computation Offloading;

Processing Time Optimization; Simulated Annealing.

1. Introduction

Recently , the development of the Internet of Things (IoT)

has been largely supported by the parallel development of

cloud computing capabilities. Cloud computing provides on-

demand resilient computing power that can host and support

critical IoT functions. However, the proliferation of

connected objects poses the problem of the confidentiality of

the data produced. This proliferation also threatens the

performance of support networks. Due to restricted battery

power, memory and computational capacity, mobile devices

face challenges in executing delay-sensitive and resource-

hungry mobile applications such as augmented reality and

online gaming. Mobile Edge Computing (MEC) is foreseen

as a remedy to alleviate this problem. In MEC, the mobile

edge is enhanced with analysis and storage capabilities,

possibly by a dense deployment of computational servers or

by strengthening the already-deployed edge entities such as

small cell base stations. Consequently, mobile devices are

able to offload their computationally expensive tasks to the

edge servers while requesting some specific quality of

service. This process, referred to as computation offloading,

is feasible due to the fact that edge servers are deployed in

close proximity of mobile users, specifically in comparison

to the remote cloud servers.

Mobile Edge Computing (MEC) is a new technology,

providing an IT service environment and cloud computing

capabilities at the edge of the mobile network, within the

Radio Access Network (RAN) and in close proximity to

mobile subscribers. The goal is to reduce latency, ensure

network operation and delivery of highly efficient services,

and improve the users experience. The environment of

Mobile Edge Computing is characterized by low latency,

proximity, high bandwidth, and real-time insight into radio

network information and location awareness. MEC is a

natural development of the evolution of mobile base stations

and the convergence of computer and telecommunication

networks. Based on a virtualized platform, MEC is

recognized by the European 5G PPP (Public-Private

Partnership for Infrastructure 5G) as one of the key

emerging technologies for 5G networks [1]. As illustrated in

Figure 1, the authors of [2-4] studied that MEC can increase

the capabilities of mobile devices by offloading some of

their tedious applications via wireless access to a resource-

rich edge node, in order to effectively reduce their energy

consumption [2]. In [5], the offloading decisions are adjusted

to minimize the overall energy consumption. Similar to [6],

to save energy consumption, an optimization problem which

decides the offloading policy is studied. Often, a greedy

application is broken down into several independent tasks

with a time constraint in order to offload them efficiently

and quickly [3, 7, 8]. Many papers studied resource

allocation within a MEC infrastructure to optimize the

processing time [9-12]. On the other hand, Many states of

the artworks studied resource allocation within a MEC

infrastructure to optimize the energy consumption [7, 13].

The current global trend of IoT evolves very quickly from

user needs, the corresponding technologies and protocols,

such as massive connectivity, energy constraints, scalability

and reliability limitations and security, remain open research

questions [14, 15]. In [16], the authors investigate a resource

allocation policy to maximize the available processing

capacity for MEC IoT networks with constrained power and

unpredictable tasks. Unfortunately, most of them consider

users with a unique task only. However, current Smart

Mobile Devices (SMDs) can host several greedy

applications that have to offload a part of their tasks to

improve the quality of the experience or simply to avoid the

waste of their available resources. Therefore, the offloading

decision should be generalized according to a multi-task

scenario. This problem relies on the joint decision of tasks’

offloading and the allocation of communication or

computing resources.

 Figure 1. Mobile edge computing illustration

102
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

The remainder of this paper is organized as follows : the

system’s model and the optimization problem formulation

are presented in Section 2. In Section 3, we present our

method to solve the optimization problem. In section 4 we

present the simulation results and their discussion. Finally,

Section 5 concludes the paper.

2. System Model and Problem Formulation

In this section, we present the adopted system model. First,

we briefly present smart mobile devices parameters. Then,

we describe in details our optimization problem formulation.

2.1. System Model

Figure 2. Shows a single smart mobile device (SMD)

containing an offloadable multi-task list. In this work, we

plan to study the behavior of the offloading process for a

multi-task SMD in an edge environment, while we optimize

computation resources available at the edge server as well as

at the mobile device. Particularly, the available energy at the

SMD for tasks execution is limited. Besides, in the context

of offloading, some pieces of a computationally intensive

application are divided into multiple mutually independent

offloadable tasks [17, 18]. Therefore, according to the

available computational and radio resources, some tasks are

pick-up from the resulting tasks list to be offloaded to the

edge servers for computing. The others are performed

locally on the SMD itself. The execution of the whole list

must happen within the time limit of the application.

Additionally, it is assumed that the SMD concurrently

performs computation and wireless transmission.

Figure 2. System model illustration

For all these considerations, we derive a mathematical

processing time model that considers three main decisions:

the offloading decision for each task, the local execution

frequency of the SMD, and the server execution frequency at

the edge. Then, we formulate an processing time problem.

Practically, the SMD is connected to an Edge Node (EN),

and is intended to offload a set of independent tasks by the

mean of an Edge Access Point (EAP).Additionally, the

wireless channel conditions between the SMD and the

wireless access point are not considered in this work.

Moreover, at the time of the offloading decision and the

transmission of the offloadable tasks, the uplink rate r is

assumed almost unchanged.

As shown in Figure 2., the considered smart mobile device

contains N independent tasks denoted as τ ≜ {τ1, τ2, … , τN}.

In addition, these tasks are assumed to be computationally

intensive and delay sensitive and have to be completed. Each

task τi can be processed either locally or at the edge. It

represents an atomic input data task that cannot be divided

into sub-tasks. Moreover, it is characterized by the following

three parameters τi ≜ 〈di, λi, ti
max〉 . The first one denoted

di [bits] identifies the amount of the input parameters and

program codes to transfer from the user’s local device to the

edge server. The second one denoted λi [cycles] specifies the

workload referring to the computation amount needed to

accomplish the processing of this task. The third parameter

ti
max refers to the required maximum latency for this task.

The execution nature decision for a task τi either locally or

by offloading to the edge server is denoted xi 𝑤ℎ𝑒𝑟𝑒 xi ∈
{0; 1}. xi = 1 indicates that the SMD has to offload τi to the

edge server, and xi = 0 indicates that τi is locally processed.

From this point, all time expressions are given in Seconds,

and energy consumptions are given in Joule. Then, if the

SMD locally executes task τi , the completion time of its

local execution is ti
L =

λi

fL
. So, for all tasks, we have:

tL =
λi ∑ (1−xi)N

i=1

fL
 (1)

Additionally, the corresponding energy consumption is

given by: ei
L = kL. fL

2. λi [19]. Hence, the total energy

consumption while executing all tasks that were decided to

be locally executed in the SMD is given by :

 eL = kL. fL
2. ∑ λi(1 − xi)

N
i=1 (2)

If task 𝜏𝑖 is offloaded to the edge node, the offloading

process completion time is: ti
O = ti

Com + ti
Exec + ti

Res ,

where ti
Com is the time to transmit the task to the EAP, and it

is given by ti
Com =

di

r
 . ti

Exec is the time to execute the task τi

at the EN, and it can be formulated as ti
Exec =

λi

fS
. ti

Res is the

time to receive the result out from the edge node. Because

the data size of the result is usually ignored compared to the

input data size, we ignore this relay time and its energy

consumption as adopted by [20]. Hence, for the 𝜏𝑖 task ti
O =

xi (
di

r
+

λi

fS
), and for all tasks, we have:

tO = ∑ xi (
di

r
+

λi

fS
)N

i=1 (3)

So, the energy consumption of the communication process

can be obtained by multiplying the resulting transmission

period by the transmission undertaken power 𝑝𝑇 , and the rest

of the execution period by the idle mode power 𝑝𝐼 . Thus,

this energy is:

eC =
pT ∑ xidi

N
i=1

r
 (4)

Finally, given the offloading decision vector 𝕏 for all tasks,

the local execution frequency 𝒇𝑳 of the SMD, and the server

execution frequency 𝒇𝑺 at the edge, the total execution time

for the SMD is composed of its local execution time, the

communication time as well as the execution time at the EN,

and it is given by:

T(𝕏, fL, fS) = tL + tO (5)

Then, according to equations (1) and (3), the total execution

time can be formulated as:

T(𝕏, fL, fS) = {
∑ λi

N
i=1 −∑ λixi

N
i=1

fL
+

∑ dixi
N
i=1

r
+

∑ λixi
N
i=1

fS
} (6)

2.2. Problem Formulation

In this section, we present our optimization problem

formulation that aims to minimize the overall execution time

103
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

in the offloading process. Initially, to prepare the problem’s

data we start with an initial sorting of the tasks list τ ≜
{τ1, τ2, … , τN} according to their deadlines ti

max. Hence, the

tasks execution order within the SMD or the edge server in

the final solution must fulfill the initial order for both cases.

Accordingly, the obtained problem is formulated as:

𝓟𝟏: min
{x,fL,fS}

{
∑ λi

N
i=1 − ∑ λixi

N
i=1

fL

+
∑ dixi

N
i=1

r
+

∑ λixi
N
i=1

fS

}

s.t. (C1.1) xi ∈ {0; 1}; i ∈ ⟦1; N⟧;

 (C1.2) FL
min ≤ fL ≤ FL

max;

 (C1.3) 0 < fS ≤ FS ;

 (C1.4) ti
L =

(1−xi)

fL
∑ λk(1 − xk)i

k=1 ≤ ti
max; i ∈ ⟦1; N⟧;

 (C1.5) ti
O = xi ∑ xk (

dk

r
+

λk

fS
)i

k=1 ≤ ti
max ; i ∈ ⟦1; N⟧;

 (C1.6) eL + eC = kL. fL
2. ∑ λi(1 − xi) +N

i=1

pT

r
∑ dixi

N
i=1 ≤ Emax.

In this work, each one of the available tasks can be either

executed locally or offloaded to the edge node. Thus, every

feasible offloading decision solution has to satisfy the above

constraints:

The constraint (C1.1) refers to the offloading decision

variable xi for task τi which equals 0 or 1. The second

constraint (C1.2) indicates that the allocated variable local

frequency fL belongs to a priori fix interval given by

[FL
min, FL

max]. Similarly, the allocated variable remote edge

server frequency fS belongs to the interval]0, FS
max] in

constraint (C1.3) . The constraint (C1.4) shows that the

execution time of each decided local task must satisfy its

deadline ti
max. Similarly, in constraint (C1.5), the offloading

time of each decided offloadable task must satisfy the same

deadline ti
max . The final constraint (C1.6) imposes that the

total local execution energy must not exceed the tolerated

given amount Emax. This constraint is important especially

for SMDs with critical battery.

3. Problem Resolution

In this section, we will introduce how we derive our solution

from the obtained optimization problem. Hence, we begin by

the problem’s decomposition in Section 3.1. In Section 3.2

we present the problems’ resolution in order to get the

optimal solutions. After that, we present the proposed

solutions.

3.1. Problem Decomposition

In our proposed model, the offloading decision vector for all

the tasks is denoted 𝕏. Let define the vector that contains the

offloadable tasks’ identifiers:

𝕏1 = {i ∈ 𝕏 / xi = 1 } (7)

𝕏0 = {i ∈ 𝕏 / xi = 0 } (8)

Additionally, we define: Λi = ∑ λi
i
k=1 ,Λi

1 = ∑ xiλi
i
k=1 , Di =

∑ di
i
k=1 , Di

1 = ∑ xidi
i
k=1 .

Also, given the decision vector 𝕏1 , constraint (C1.4) for a

local task can be reformulated as
Λi−Λi

1

ti
max ≤ fL; ∀ i ∈ ⟦1; N⟧.

Finally, it is equivalent to one constraint: max
i

{
Λi−Λi

1

ti
max } ≤ fL.

Likewise, constraint (C1.5) for an offloadable task means
Di

1

r
+

Λi
1

fS
≤ ti

max (∀ i ∈ ⟦1; N⟧) . So
Di

1

r
 and

Λi
1

fS
 must be

strictly less than ti
max (∀ i ∈ ⟦1; N⟧) ; particularly

min
i

{ti
max −

Di
1

r
} > 0. In this case constraints (C1.5) can be

reformulated as
Λi

1

ti
max−

Di
1

r

≤ fS; ∀ i ∈ ⟦1; N⟧ . Finally, it is

equivalent to one constraint: max
i

{
Λi

1

ti
max−

Di
1

r

} ≤ fS.

Similarly, constraint (C1.6) means 𝑘𝐿 . 𝑓𝐿
2. (ΛN − ΛN

1) +

𝒑𝑇 DN

1

𝑟
≤ Emax . So 𝑘𝐿 . 𝑓𝐿

2. (ΛN − ΛN
1) and

𝒑𝑇 DN
1

𝑟
 must be

strictly less than Emax. In this case constraint (C1.6) can be

reformulated as fL ≤ √
Emax−

𝐩T DN
1

r

kL(ΛN−ΛN
1)

. For ease of use, let note:

𝑓𝐿
− = 𝑚𝑎𝑥

𝑖
{

𝛬𝑖−𝛬𝑖
1

𝑡𝑖
𝑚𝑎𝑥 } (9)

fL
+ = √Emax−

pT DN
1

r

kL(ΛN−ΛN
1)

 (10)

fS
− = max

i
{

Λi
1

ti
max−

Di
1

r

} (11)

Thus, for a given offloading decision vector 𝕏, we get the

following optimization sub-problem:

𝓟𝟐(𝕏): min
{fL,fS}

{
ΛN − ΛN

1

fL

+
 DN

1

r
+

ΛN
1

fS

}

 s.t. (C2.1) FL
min ≤ fL ≤ FL

max;

 (C2.2) fL
− ≤ fL ;

 (C2.3) fS
− ≤ fS ≤ FS ;

 (C2.4) kLfL
2(ΛN − ΛN

1) +
pT DN

1

r
≤ Emax.

Considering the continuous variables fL and fS, problem P2

is a continuous multi-variable optimization problem. The

objective function T(𝕏, fL, fS) =
ΛN−ΛN

1

fL

+
 DN

1

r
+

ΛN
1

fS

 can be

decomposed into the following two independent functions

T1(fL) and T2(fS) where 𝑇1(𝑓𝐿) =
ΛN−ΛN

1

𝑓𝐿

 and T2(fS) =
 DN

1

r
+

ΛN

1

fS

. Moreover, given the disjunction between constraints

(C2.1), (C2.2) and (C2.4) on the one hand, and (C2.3) in

problem P2 on the other hand, this last can be equivalently

decomposed into the following two independent

optimization sub-problems.

𝓟𝟑. 𝟏(𝕏): min
{fL}

{T1(fL) =
ΛN − ΛN

1

fL

}

 s.t. (C3.1.1) FL
min ≤ fL ≤ FL

max;

 (C3.1.2) fL
− ≤ fL ≤ fL

+.

𝓟𝟑. 𝟐(𝕏): min
{fS}

{T2(fS) =
 DN

1

r
+

ΛN
1

fS

}

104
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

 s.t. (C3.2.1) fS
− ≤ fS ≤ FS.

3.2. Problems Resolution

The objective function T1(fL) of the problem 𝒫3.1 is a

strictly increasing continuous function according to its

variable 𝑓𝐿. On the other hand, the objective function T2(fS)

of the problem 𝒫3.2, decreases strictly w.r.t. the variable 𝑓𝑆.

3.2.1. Processing Frequencies Determination

From an offloading decision vector 𝕏 , and taking into

account the constraints obtained (C3.1.1) , (C3.1.2) and
(C3.2.1), the following algorithm gives the optimal allocated

local frequency fL as well as the remote edge server’s

processing frequency fS.

Algorithm 1: frequencies optimum for a given 𝕏

Input: The offloading policy 𝕏.

Output: fLand fS.

1: Determinate 𝕏1 according to (8);

2: if 𝕏 = 𝕏1then

3: fL = 0;
4: goto 12;

5: end if

6: Calculate: fL
−, fL

+ according to (9) and (10)

respectively;

7: if Emax ≤
pT DN

1

r
 or fL

− > FL
max or fL

+ < FL
min or

fL
− > fL

+then return ∅;

8: else if fL
+ > FL

min then fL = FL
max;

9: else fL = fL
+;

10: end if

11: end if

12: if min
𝑖

{𝑡𝑖
𝑚𝑎𝑥 −

𝐷𝑖
1

𝑟
} ≤ 0 then return ∅;

13: else
14: Calculate: fS

− according to (11);
15: if fS

− > FS then return ∅;
16: else fS = FS;

17: end if

18: end if

19: return (fL, fS);

3.2.2 The Processing Time Determination

To evaluate the processing time of a state, the following

expression is adopted. It gives the minimal processing time

by calling the first algorithm to calculate (fL , fS) if the

problem is feasible. Otherwise, it ∞.

T(𝕏, fL, fS) =

{
∞ 𝐢𝐟 fL = ∅ 𝐨𝐫 fS = ∅

T(𝕏, fL, fS) according to (12) otherwise
 (12)

3.3. Proposed Solutions

Next, the problem relies on determining the optimal

offloading decision vector 𝕏 that gives the optimal

processing time. However, to iterate over all possible

combinations of a list of N binary variables, the time

complexity is exponential (the exhaustive search over all

possible solutions requires 2N iterations). Subsequently, the

total time complexity of the whole solution (including

Algorithm 1) is O(2N)*O(1)=O(2N) that is not practical for

large values of N. In the following, we propose a low

complexity approximate algorithm to solve this question.

3.3.1 Simulated Annealing Offloading Solution

The following algorithm presents the pseudo-code of the

simulated annealing based heuristic as described above.

Algorithm 3:Simulated Annealing Pseudo-code

Input: The list 𝜏 of N sub-tasks.

Output: the offloading policy 𝕏∗.

Initialize: a random policy 𝕏.

1: Call Algorithm 2 to calculate T using 𝜏 and 𝕏;

2: For k = 0 to kmax do

3: Temp ← temperature(k ∕ kmax)

4: Pick a random neighbour, 𝕏𝑛𝑒𝑤 ← neighbour(𝕏)

5: Call Algorithm 2 to calculate Tenew using 𝜏 and

𝕏𝑛𝑒𝑤;

6: if Tnew≠∞ then

7: if P(T, Tnew, Temp) ≥ random(0, 1) then

8: 𝕏 ← 𝕏𝑛𝑒𝑤 ;
9: T← Tnew;

10: End if

11: end if

12: end for

13: 𝕏∗ ← 𝕏 ;

With, random (0,1) is a function that allows to generate a

random number in [0,1]. neighbor (𝕏) is a function to

generate a decision vector state near the input 𝕏. P(T, Tnew,

Temp) is an acceptance probability function that depends on

processing time T and Tnew of the two states 𝕏 and 𝕏𝑛𝑒𝑤 ,

and on a global Temp parameter called the temperature that

varies over the iterations.

In our proposed first solution, which we denote Original

Simulated Annealing Offloading Decision (SAOD), among

the main parameters introduced in this solution, we present

the computation density proportion variable for each task i

given by:

χi =
ωi−ωmin

ωmax−ωmin
 (13)

Where 𝜔𝑖 =
𝑑𝑖

𝜆𝑖
 is the i task computation density.

In our proposed second solution, which we denote Modified

Simulated Annealing Offloading Decision (MSAOD),

instead of the threshold probability p0 =
1

(1+e−∆T/Temp0)
 used

in SAOD. Since p0 belong to [0;
1

2
] , we adopted the

following probability:

p =
3

2
− p0 . (14)

Where p belong to [
1

2
; 1] , and Temp0 is the initial

temperature constant. ∆Ti is the solutions’ processing time

variation while changing the task i state.

Moreover, the ε parameter introduced in SAOD, which

represents a tolerance parameter, is critic (as other

parameters) for the proposed heuristic. Thus, in our final

solution MSAOD we choose to regularly vary this parameter

between 𝜔𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥 . Then we select the best solution.

4. Results and Discussion

In this section, we carried out a serie of experiments to

evaluate the performance of our proposed solution. First, we

present simulation setup parameters. Then, several

performance analysis are detailed to prove the efficiency of

our approach.

105
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

4.1. Simulation Setup

The presented results in this work are averaged for 100 time

executions. We implement all the algorithms on the C++

language. The transmission bandwidth between the mobile

device node and remote edge server is set tor = 100Kb/s. The

local CPU frequency fL of the mobile device will be

optimized between FL
min = 1MHz and FL

max = 60MHz. The

CPU frequency of the remote edge server node will be

optimized under the value FS = 6GHz. The deadlines ti
max

are uniformly defined from 0.5s to 2s. The threshold energy

Emax is uniformly chosen in [0.6 , 0.8] ∗ Λ. kL. (FL
max)2 .

Additionally, the data size of each one of the N tasks is

assumed to be in [30,300] Kb. For the cycle amount of each

task, it is assumed to belong to [60,600]MCycles. The

transmission power is set to be pT = 0.1 Watt. For the

energy efficiency coefficients, we set kL = 10−26 and kS =
10−29.

For the simulated annealing method, the following parameter

values are adopted: factor = 0.75, ε= 0.3, εmin = 0.1 and

εmax = 0.4, Temp0 = 200, Δt = 0.02(in SAOD), CF=0.5.

4.2. Performance Analysis

We present our results in terms of average decision time and

average tasks’ processing time.

We start by studying the average tasks’ processing time for

each method. Thus, we carried an experiment where we vary

the number of tasks parameter between 2 and 50 tasks.

4.2.1 Factor Parameter

The following figure shows a rapid decrease of the task

processing time of the MSAOD method for a factor between

0.4 and 0.9 for N in {10,15,20,25}. Then, the processing

time remains almost stable for all values of N.

Figure 3. Tasks’ Processing Time for factor between 0.4 and

0.95

Figure 4. Execution Time Average for factor between 0.4

and 0.9

The figure 4 illustrates the running time for N

in{10,15,20,25} w.r.t. the factor value. Therefore, we find

that the best factor value that minimizes the task processing

time for most N values is factor = 0.75. Subsequently, we

will set the factor to 0.75.

4.2.2 The Processing Time

As the performance study of the proposed solution in [21]

with three situations (in MEC context), Figure 5 and Figure

6 Show a comparison between three situations (with N

between 2 and 50): 1) All tasks are offloaded to the Edge

Node. 2) The offloading decision is done using our MSAOD

solution. 3) All tasks are executed locally.

Figure 5. Tasks’ Processing Time for N between 2 and 50.

From this figure, our proposed solution saves between 148%

and 168% of processing time compared to the local

execution of all tasks. However, when we compare our

MSAOD solution to the offloading of all tasks, we find some

negligible degradation that does not exceed 2%, it comes

from the fact that, when offloading tasks we ignore the

offloading constraints; as a result, we get the infeasible

solutions. Therefore, we show that our proposed heuristic

scheme efficiently manages the offloading decisions. To

show the real difference between MSAOD solution and the

offloading of all tasks, that is shown in Figure 5, we report

their results with a zoom in Figure 6.

Figure 6. Tasks’ Processing Time for N between 2 and 50.

Figure 7 shows that the results of the MSAOD solution are

better than those of SAOD for all N values. The results of

the first represent a gain in processing time that varies

between 0% and 2%.

106
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

Figure 7. Tasks’ Processing Time for N between 2 and 50.

Figure 8. Execution Time Average for N between 2 and 50.

Figure 8 illustrates the execution time comparison for

MSAOD and SAOD methods while N is set between 2 and

50. The MSAOD and SAOD solutions give a near linear

execution time that reached for N=50 respectively 1.23ms

and 2.10ms. Accordingly, the performance in terms of

execution time of the SAOD method is slightly higher than

the MSAOD method.

5. Conclusion

In this paper, we have considered a single smart mobile

device (SMD) containing an offloadable multi-task list. We

are devoted to enable the latency sensitive tasks to run on

user equipments by implementing partial computation

offloading. First, we have consided the single user

offloading problem, where the MEC resources are

considered to be unconstrained. Later, we extend it to the

multi-task offloading problem, where the resource

constraints are taken into consideration. As demonstrated by

emulation experiment based on numerical simulation, the

proposed simulated annealing algorithm in this article is

capable of offloading tasks that require a lot of processing

time and simultaneously improve the offloading rate to

ultimately reduce the total processing time of tasks. The

obtained results in terms of execution time of the proposed

algorithms are very encouraging. In the course of future

work, we will generalize our study to the multi-user case.

References

[1] D. Catteeuw and B. Manderick, "Heterogeneous populations

of learning agents in the minority game," in International

Workshop on Adaptive and Learning Agents, Springer, pp.

100-113, 2011.

[2] Y. Jararweh, M. Al-Ayyoub, M. Al-Quraan, A. T. Lo’ai, and

E. Benkhelifa, "Delay-aware power optimization model for

mobile edge computing systems," Personal and Ubiquitous

Computing, vol. 21, no. 6, pp. 1067-1077, 2017.

[3] M.H. Chen, B. Liang, and M. Dong, "Joint offloading and

resource allocation for computation and communication in

mobile cloud with computing access point," presented at the

IEEE INFOCOM 2017-IEEE Conference on Computer

Communications, pp.1-9,2017.

[4] G. Premsankar, M. Di Francesco, and T. Taleb, "Edge

computing for the Internet of Things: A case study," IEEE

Internet of Things Journal, vol. 5, no. 2, pp. 1275-1284, 2018.

[5] S. Sardellitti, G. Scutari, and S. Barbarossa, "Joint

optimization of radio and computational resources for

multicell mobile-edge computing," IEEE Transactions on

Signal and Information Processing over Networks, vol. 1, no.

2, pp. 89-103, 2015.

[6] X. Xu et al., "An energy-aware computation offloading

method for smart edge computing in wireless metropolitan

area networks," Journal of Network and Computer

Applications, vol. 133, pp. 75-85, 2019.

[7] H. Li, "Multi-task Offloading and Resource Allocation for

Energy-Efficiency in Mobile Edge Computing," International

Journal of Computer Techniques, vol. 5, no. 1, pp. 5-13,

2018.

[8] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, "Delay-optimal

computation task scheduling for mobile-edge computing

systems," presented at the 2016 IEEE International

Symposium on Information Theory (ISIT), pp. 1451-1455

2016.

[9] Y. Wu, L. Qian, K. Ni, C. Zhang, and X. Shen, "Delay-

Minimization Nonorthogonal Multiple Access enabled Multi-

User Mobile Edge Computation Offloading," IEEE Journal of

Selected Topics in Signal Processing, pp. 392-407, 2019.

[10] Y. Wang, X. Tao, X. Zhang, P. Zhang, and Y. T. Hou,

"Cooperative Task Offloading in Three-Tier Mobile

Computing Networks: An ADMM Framework," IEEE

Transactions on Vehicular Technology, vol. 68, no. 3, pp.

2763-2776, 2019.

[11] X. Sun and N. Ansari, "Latency aware workload offloading in

the cloudlet network," IEEE Communications Letters, vol.

21, no. 7, pp. 1481-1484, 2017.

[12] S. Jošilo and G. Dán, "Decentralized algorithm for

randomized task allocation in fog computing systems,"

IEEE/ACM Transactions on Networking, vol. 27, no. 1, pp.

85-97, 2019.

[13] M.H. Chen, B. Liang, and M. Dong, "Joint offloading

decision and resource allocation for multi-user multi-task

mobile cloud," presented at the 2016 IEEE International

Conference on Communications (ICC), pp. 1-6, 2016.

[14] L. Li, Y. Xu, Z. Zhang, J. Yin, W. Chen, and Z. Han, "A

prediction-based charging policy and interference mitigation

approach in the wireless powered Internet of Things," IEEE

Journal on Selected Areas in Communications, vol. 37, no. 2,

pp. 439-451, 2018.

[15] I. Khan, "Performance analysis of 5G cooperative-NOMA for

IoT-intermittent communication," International Journal of

Communication Networks and Information Security, vol. 9,

no. 3, pp. 314-322, 2017.

[16] M. Qin, L. Chen, N. Zhao, Y. Chen, F. R. Yu, and G. Wei,

"Power-Constrained Edge Computing with Maximum

Processing Capacity for IoT Networks," IEEE Internet of

Things Journal, pp.4330-4343, 2018.

[17] B.G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,

"Clonecloud: elastic execution between mobile device and

cloud," presented at the Proceedings of the sixth conference

on Computer systems, pp. 301-314, 2011.

[18] Y. Mao, J. Zhang, and K. B. Letaief, "Dynamic computation

offloading for mobile-edge computing with energy harvesting

devices," IEEE Journal on Selected Areas in

Communications, vol. 34, no. 12, pp. 3590-3605, 2016.

[19] X. Chen, L. Jiao, W. Li, and X. Fu, "Efficient multi-user

computation offloading for mobile-edge cloud computing,"

107
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

IEEE/ACM Transactions on Networking, vol. 24, no. 5, pp.

2795-2808, 2016.

[20] K. Zhang et al., "Energy-efficient offloading for mobile edge

computing in 5G heterogeneous networks," IEEE access, vol.

4, pp. 5896-5907, 2016.

[21] Z. Ning, P. Dong, X. Kong, and F. Xia, "A cooperative

partial computation offloading scheme for mobile edge

computing enabled Internet of Things," IEEE Internet of

Things Journal,pp. 4804-4814, 2018.

