
19
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

Acknowledge-Based Non-Congestion

Estimation: An Indirect Queue Management

Approach for Concurrent TCP and UDP-like Flows

Luciano Mauro Arley Sup1, Renato Mariz de Moraes2 and Adolfo Bauchspiess 1

1 Departamento de Engenharia Elétrica, Universidade de Brasília (UnB), Brasília, DF, Brazil
2 Centro de Informática (CIn), Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil

Abstract: This paper presents a new approach for indirect Active

Queue Management (indirect AQM) technique called Acknowledge-

based Non-Congestion Estimation (ANCE), which employs end-to-

end queue management along a network instead to use Explicit

Congestion Notification (ECN) bit or to drop packets in the queue.

The ANCE performance was compared with Random Early

Detection (RED), Control Delay (CoDel), Proportional Integral

controller Enhanced (PIE), Explicit Non-Congestion Notification

(ENCN), TCP-Jersey and E-DCTCP schemes in a daisy-chain and in

a dumbbell scenario, with TCP flows and UDP-like Networked

Control Systems (NCS) flow sharing the same network topology. On

the other hand, this paper presents a method for modeling, simulation

and verification of communication systems and NCS, using

UPPAAL software tool, on which, all network components

(channels, routers, transmitters, receivers, plants, and Controllers)

were modeled using timed automata making easy a formal

verification of the whole modeled system. Simulations and statistical

verification show that despite using fewer resources (since ANCE

does not need the ECN bit) ANCE presents a very close performance

to ENCN overcoming Drop Tail, RED, CoDel, PIE and E-DCTCP in

terms of Integral Time Absolute Error (ITAE) for NCS and fairness

for TCP flows. ANCE also attains better performance than RED, PIE,

TCP-Jersey and E-DCTCP in terms of throughput for TCP flows.

Keywords: AQM, ENCN, NCS, TCP, Timed Automata Modeling,

UPPAAL.

1. Introduction

Typically, the TCP protocol attains congestion control

through an end-to-end algorithm which computes the

appropriate sender congestion window by means of the

estimated traffic conditions. On the other hand, modern

electronic devices allow to apply control algorithms in routers,

so beyond the end-to-end window control schemes, other

control techniques have been developed called Active Queue

Management (AQM) [1], [2], [3].

The most basic AQM approach is the Drop Tail (DT) scheme

where packets arriving in a queue are dropped with probability

one when the queue is full. However, in order to overcome

inconveniences such as global synchronization [1] and

bufferbloat problems [2], [4], several other AQM mechanisms

have been proposed such as, Random Early Detection (RED)

[1], Control Delay (CoDel) [2], and Proportional Integral

controller Enhanced (PIE) [3].

These algorithms in addition to drop packets in the queue also

support mark packets when the Explicit Congestion

Notification (ECN) bit is enabled [5]. Other ECN-based

protocols, such as, TCP-Jersey [6], DCTCP [7], E-DCTCP [8]

and ENCN [9] also match AQM techniques implemented in

routers with updates in the TCP window through the ECN bit

information.

In [9], it was observed that such notification dynamics can

cause bufferempty phenomenon, which takes place when the

AQM technique excessively refrains all TCP transmitters or

when the transmitters overreact to congestion notification in

such a way that the queues in routers can remain empty for

several periods of time. Such bufferempty phenomenon can

cause excessive reduction in TCP throughput.

On the other hand, the growing development of automation in

industry, automobiles, and more recently, in building

automation, and other applications, such as smart grid and

smart city, has lead to new challenges for manufacturing and

research of advanced control systems. Aiming to meet these

targets effectively, the current tendency is to use Networked

Control Systems (NCS) [9, 10, 11, 12, 13, 14].

On this kind of control architecture, the controller and the

plant may be housed in separate locations and they can

exchange data via a communication network forming a control

loop on which controller, sensor, and process may be

physically separated. Moreover, in some NCS applications,

plant and controller may use the Internet for exchange of data

giving rise to many important research topics combining

features of NCS and Internet. Nowadays, for example,

Internet of Things (IoT) is a “super framework” where most

of these new scenarios are jointly treated. Accordingly, new

control strategies, packet drop and delay compensations,

reliability and security of communications, and development

of new data communication protocols are required [13, 14, 15,

16, 17, 18].

Thus, in order to overcome unwanted bufferempty

phenomenon and to take advantage of the non-congestion

state of the queue to further improve the TCP behavior without

causing bufferbloat problems, and still meeting the NCS

requirements, [9] proposed a new AQM technique called

Explicit Non-Congestion Notification (ENCN). Results

showed that ENCN outperforms RED, CoDel, and PIE

techniques in terms of throughput and fairness for TCP flows

and the Integral Time Absolute Error (ITAE) for UDP-like

flow. However, ENCN as well as other protocols depend on

the ECN bit to notify congestion or non-congestion in routers.

Nevertheless, according to the RFC 3168 [19], ECN only may

be used in two ECN-enabled endpoints when the underlying

network infrastructure also supports it. Since the ECN bit is

not available for use at common Internet routers, congestion

or non-congestion notifications cannot be used in general.

For the purpose of overcoming such limitations, in this paper,

a new methodology is proposed to attain queue management

based on queue end-to-end estimation instead of explicitly

using congestion or non-congestion notifications coming from

the routers. Accordingly, a new indirect queue management

20
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

technique called ANCE (Acknowledge-based Non-

Congestion Estimation) is developed whose performance is

compared with previous related protocols.

Moreover, aiming to evaluate the performance of these AQM

techniques in applications oriented to networked control

systems (NCS) whose performance depends fundamentally on

network delays and features of the communication network,

in this work the TCP and the AQM analysis are obtained using

the UPPAAL tool which is widely employed in automation

research [20]. Such modeling allows a detailed timing and

modular description of the entire system.

We used two basic benchmark network topologies for

analysis: a daisy-chain topology (see Figure 1) and a dumbbell

topology (see Figure 6). The daisy-chain topology considered

here consists of one sender, one receiver and two routers

interconnected by a bottleneck link. The dumbbell topology

has several flows competing for bandwidth in a single

bottleneck link. Such topologies have been used as benchmark

basic test scenarios for network congestion analysis [1, 2, 3,

21, 22, 23]. The bottleneck link can be wireless while the other

links can be wired, for example.

The rest of this paper is organized as follows. Section 2

introduces the proposed new ANCE indirect AQM technique.

Section 3 presents the network topology for single flow

analysis and results. Section 4 details the dumbbell network

topology analysis which employs concurrent TCP and NCS

flows. Finally, Section 5 concludes the paper.

2. Acknowledge-Based Non-Congestion

Estimation (ANCE)

ANCE is a new approach to attain indirect queue management

by employing end-to end estimation instead of explicitly using

congestion or non-congestion notifications coming from the

routers. Accordingly, ANCE is executed at the TCP

transmitter and is inspired by ENCN [9]; however, ANCE

works with queue length estimation instead of using explicit

non-congestion notification. Thus, as it can be observed in the

pseudo-code for ANCE, given in Error! Reference source

not found., when the estimated queue length (QE) is lower

than a threshold Qmin, ANCE interprets that there is no

congestion on the path between transmitter and receiver and

adjusts its congestion window W. Accordingly, if the TCP

transmitter is in Slow Start and QE < Qmin, ANCE calculates

its new congestion window as W = min (rwnd; Ssthr), where

rwnd is the receiver advertised window and Ssthr is a Slow

Start threshold and the TCP transmitter will switch to

Congestion Avoidance [24]. In the absence of (estimated)

noncongestion, i.e. when QE >= Qmin, Slow Start works as in

TCP-Reno protocol [24].

If the TCP sender is in Congestion Avoidance, ANCE

employs a fairness mechanism in which the sender will

increase its congestion window by one packet size per round

trip time (RTT) if and only if a non-congestion is estimated,

i.e. if, and only if, QE < Qmin. Otherwise, the transmitter will

reduce its window by one packet size upon reception of BF

acknowledgement packets (ACKs) in order to maintain the

queue length around Qmin. BF (Balance Fairness) is a variable

whose dynamics is given in Table 1, which implements a

fairness mechanism for ANCE.

Table 1. BF dynamics for fairness in ANCE.

Upon W increase BF=BF/2

Upon W decrease BF=BF+BF/2

Therefore, the ANCE sender will reduce its BF variable, with
increasing W, and consequently will reduce its congestion
window more often than the other ANCE senders with smaller
W values. On the other hand, since W does not increase more
than once per RTT, i.e. not more than once per reception of W
ACK packets, ANCE senders with greater W will increase
their congestion windows less often than those with lower W.
This fairness mechanism forces each sender to fairly adjust its
congestion window. The queue length is estimated according
to

),min(RTTRTT nowBQE
−= (1)

Algorithm 1. Pseudo-code for ANCE technique

Upon reception of an ACK packet;
{ if (RTTnow < RTTmin) then
 RTTmin  RTTnow

 If (W==1) { RTTmin  RTTnow }

 Estimate QE

if(ANCE is in Slow Start)
{

 if (QE<Qmin) {continue in slow start}

 else { set W  min (rwnd, Ssthr); switch to
congestion avoidance and set BF  W}

 }

}
if (ANCE is in Congestion Avoidance)
{

 if (QE < Qmin)
{

 Upon reception of W ACK packet (one RTT)

 {

set W  W+1 per RTT (linear increasing of

W);

}

and set BF BF/2 once per RTT;

 }

 else
{

 Upon reception of BF ACKs
{

 W W-1 (linear decreasing of W) and

set BFBF+BF/2 once per BF ACKs
receptions;

 }

 }

}

where RTTnow is the current round-trip time, RTTmin is the
minimum RTT observed by the ANCE sender since the
beginning of operation. Because the delay between transmitter
and receiver could increase by changes on the routing path, if
W reaches the minimum value of one segment, the RTTmin is
updated to the value of the RTTnow. B is the bandwidth of the
bottleneck link [25]. However, since in real applications the
bandwidth is not known by the senders, in this paper it is used
its end to end estimated value (BE) which is estimated
according to

𝐵𝐸 = 𝐴𝑐𝑘𝑙 . 𝑡𝑎𝑚𝑖𝑛, (2)

21
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

where tamin is the minimal time between arrival of two
consecutive ACKs, observed from the beginning of the
transmission up to the current time instant and Ackl is the last
received ACK packet length.

3. Size Daisy-Chain Topology with Single Flow

In order to test the ANCE approach, the benchmark daisy-

chain topology illustrated in Figure 1 is employed with a

single transmitter-receiver flow on which a transmitter sends

packets of 1 kbyte size to a receiver through a network with

two routers. Each router can queue up to Q = 17 packets. The

initial Ssthr is 30 packets and rwnd = 64 packets. The routers

are connected to each other by a link of speed 1.5 Mbps and 5

milliseconds (ms) delay, here called the bottleneck link. The

transmitter is connected to router 1 by a link with speed of 10

Mbps and 2 ms latency, while the receiver is connected to

router 2 by a link of 10 Mbps speed and 33 ms latency.

The network was modeled using timed automata through a

language based on TCTL (Timed Computation Tree Logic)

implemented in UPPAAL, which is a tool for verification of

real-time systems jointly developed by Uppsala University

and Aalborg University and supports integer variables, clocks,

arrays and user defined functions. UPPAAL is free for

academic use [20, 26].

For the UPPAAL simulation, transmitter, receiver, routers,

and each channel link were modeled as timed automata, that

is, modeled as finite-state machine extended with clock

variables and the whole system works as a network of such

timed automata in parallel. The detailed implementation in

UPPAAL of the network model of Figure 1 is given in [9].

Figure 1. Linear daisy-chain topology used as basic

bottleneck configuration

3.1 Simulation Results for Daisy-Chain Topology

ANCE, RED, CoDel, PIE and ENCN techniques were

modeled in UPPAAL employing TCP-Reno [24]. For RED,

CoDel, PIE, and ENCN simulations, it was considered that the

ECN bit is available, so the router may set a mark in the IP

packet header upon congestion detection.

In these simulations, the following values for RED parameters

were used:

,
4

min
Q

l
th = ,

4

.3
max

Q
l

th = ,1.0max =P ,002.0=W q

where Ql = 17 kbytes is the buffer size. Details about these

RED parameters are given in [1]. For ENCN and ANCE, Qmin

= 3 kbytes and initial Ssthr = 16 packets were used. CoDel

does not require any parameter setting [2], and PIE employs

adaptive parameters [2, 3].

Figure 2 shows the queue dynamics in the bottleneck link for

RED, CoDel, PIE, and ENCN, respectively.

Figure 3 and Figure 4 show the growth of TCP-Reno

congestion window and the queue dynamics in the bottleneck

link for ANCE technique. Furthermore, the throughput for

each of these AQM techniques with TCP-Reno

implementation is illustrated in Figure 5. The throughput (T)

is calculated as specified in [27], i.e. T = NP/Time, where NP

is the number of packets transmitted and acknowledged, and

Time is the simulation time.

It is clear from Figure 2 that for the simulation scenario

investigated here, RED, CoDel, and PIE working with TCP-

Reno have several periods where the queue in the bottleneck

link remains empty, because these AQM techniques

excessively refrain the TCP-Reno transmitter.

Figure 2. Bottleneck queue for RED, CoDel, PIE and ENCN

Figure 3. Sender congestion window for ANCE

This bufferempty phenomenon causes performance loss in

terms of throughput as shown in Figure 5, whereas ANCE

(Figure 4) as well as ENCN [9], avoids bufferempty

phenomenon and the router remains busy with queue length

oscillating around the chosen Qmin value, as long as the source

has data to send. Thus, compared with the other AQM

techniques, ANCE and ENCN presents better throughput.

Note from Figure 5 that the throughput curves for ENCN and

ANCE are very similar.

Figure 4. Bottleneck queue for ANCE

Figure 5. Thoroughput for RED, CoDel, PIE, ENCN and

ANCE

4. Dumbbell Topology with NCS and Multiple

Concurrent Flows

The UPPAAL model presented in this work allows us to

observe the performance of AQM techniques when TCP and

NCS UDP-like flows share the same network. Accordingly, in

Figure 6 three generic TCP-Reno flows A, B, C and one UDP-

22
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

like NCS flow share the same network bottleneck with two

routers.

Figure 6. Dumbbell topology of three TCP-Reno flows (A,

B and C Transmitter- Receiver pairs) and one UDP-like NCS

flow (Controller-Plant pair).

Figure 7 shows a simplified NCS arrangement for the

controller and plant interconnected by the network where the

plant with transfer function Gp and the remote controller with

transfer function Gc are linked through the communication

system. A sensor makes measurements of the plant output

signal y(k) and transmits it to the controller every h seconds,

where h is the sampling period. The controller receives these

measurements and uses them as its input signal and thereby

calculates the control law u(k), which is sent to the plant

through the return communication channel.
Then, the actuator module present in the plant receives this
signal u(k) and uses it as its input signal in order to maintain
(control) the state of the plant at a certain target value
according to a reference, normally given (generated) by the
controller module. The communication channel that connects
the plant with the controller can incur delays and packet
losses. So, 𝜏𝑘

𝑠𝑐, 𝜏𝑘
𝑐𝑎 and 𝜏𝑘

𝑐 represent the time delay between
sensor and controller, controller and actuator, and controller
processing time, respectively. The switches S1 and S2 model
the possibility of packet losses from sensor and controller,
respectively. Therefore, with closed switches, packets reach
their destinations. Otherwise, they are lost.

Figure 7. NCS representation for controller and plant

interconnected by the network in Figure 6

The control systems used here can be found in [28] where a
proportional-integral (PI) controller with Kp = 11.86 and Ki =
47.45 is used to control the position of a DC motor (Maxon
F2140), i.e. the plant, through the network. The motor transfer
function has been identified experimentally and is given by

𝐺𝑝(𝑠) =
36.3

𝑠2+36.17𝑠
. (3)

In our UPPAAL modeling, each step of the clock corresponds

to 1 s. All time events can be solved as multiples of this

reference step. UPPAAL has not an ordinary differential

equation native solver. However, discretized models that are

slow compared to 1µs are properly simulated. So, the discrete

equivalent of the plant can be represented with sufficient

precision as a finite automata in UPPAAL. The motor transfer

function was discretized with sampling period h = 14 ms and

time constant of the employed motor is 27.6 ms, so that it can

be represented as a finite automaton in UPPAAL.

Note that only the TCP flows respond to ECN and ENCN

notifications, which do not cause any direct effect on the UDP-

like NCS flow. In this scenario, in addition to compare the

throughput for the TCP flows, the fairness among them was

also compared employing the fairness index of [29].

Moreover, in order to weigh up the performance in NCS, the

Integral Time Absolute Error (ITAE) was used. Accordingly,

the best control system is the one with lowest ITAE value.
Transmitters and receivers were modeled according to [9].
Next subsections present the plant and controller UPPAAL
modeling.

4.1 Plant UPPAAL Model

Figure 8 illustrates the UPPAAL plant simulation model
which consists of two locations called SamplingP and

SendingP. The automaton starts at SamplingP location. The

pseudo-code for this automaton is given in Algorithm 2. Table
2 describes all variables, functions and constants used in this
UPPAAL model.

Figure 8. UPPAAL automaton model for the plant

Algorithm 2. Pseudo-code for Plant Automaton

Start in SamplingP location;

{
if (tp >=h)
{ then

Go to SendingP location, reset tp and call

ComputePosition and ComputeITA functions;

In SendingP location wait for Tpsm time units, then

return to SamplingP location and call

SendMeasured function.

 }

 else

 {
 wait until tp >= h becomes true;

 }

}

Table 2. Variable, function and constant descriptions for the

plant automaton model

Name Descriptions

h Sampling period (14 ms).

tp Clock used in plant automaton.

Tpsm
Constant time threshold equal to the

time required to put a packet of 48

bytes in a 10 Mbps channel.

ComputePosition
Function called every h time units

It computes the plant output signal

y(k).

ComputeITAE
Function called every h time units. It

computes the ITAE value.

SendMesasured

Function called when the plant sends

a packet with y(k). It updates the

number of packets in the channel

located between the plant and the

router 1.

23
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

4.2 Controller UPPAAL Model

Figure 9 illustrates the UPPAAL controller model which
consists of two locations called SamplingCS and SendingCS.
The automaton starts at SamplingCS location. The pseudo-

code for this automaton is given in Algorithm 3, Table 3

describes the variables, functions and constants used in this
UPPAAL model.

Figure 9. UPPAAL automaton model for the controller

Algorithm 3. Pseudo-code for Controller Automaton

Start in SamplingCS location;

{
if (tc >=h)
{ then

Go to SendingCS location, reset tc and call the

functions ComputeControlSignal; In SendingCS

location wait for Tcsc time units, then return to

SamplingCS location and call SendControlSignal
function.

 }
 else

 {
 wait until tc >=h becomes true;

 }

}

Table 3. Variable, function and constant descriptions for the

controller automaton model

Name Descriptions

tc
Clock used in controller

automaton.

Tcsc
Constant time threshold equal to

the time required to put a packet

of 48 bytes in a 10 Mbps channel.

ComputeControlSignal

Function called every h time

units

It computes the controller output

signal u(k).

SendControlSignal

Function called when the

controller sends a packet with

u(k) It updates the number of

packets in the channel located

between the router 2 and the

controller

 4.3 Controller Simulation Results for Dumbbell

Topology

All simulation were run for 30 seconds Figure 10 to Figure 15

presents the TCP throughput for each of the three flows (A, B

and C) for DT, Red, CoDel, PIE, ENCN and ANCE,

respectively. The total throughput, i.e. the aggregate TCP

throughput of flows A, B and C, as a function of simulation

time for DT, RED, CoDel, PIE, ENCN and ANCE is

presented in Figure 16. As it can be observed, besides

requiring fewer resources for implementation, ANCE

provides a throughput close to ENCN and CoDel overcoming

RED and PIE techniques.

Figure 10. Throughput for DT

Figure 11. Throughput for RED

Figure 12. Throughput for CoDel

Figure 13. Throughput for PIE

Figure 14. Throughput for ENCN

Figure 15: Throughput for ANCE

Furthermore, the fairness mechanism used in ANCE makes

each flow to converge essentially to the same throughput.

Thus, ANCE outperforms DT, RED, CoDel and PIE in terms

of fairness for TCP flows getting better Jain fairness index

than those other AQM techniques (see Figure 17).

On the other hand, for the UDP-like flow for controller and

plant, Figure 18 to Figure 23 shows the motor position

following a square wave reference (R) between 1 and 2

radians, with period 2 seconds for all considered methods.

Figure 24 to Figure 29 shows the corresponding queue length

dynamics.

Figure 16. Total (aggregate) TCP throughput

24
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

Figure 17. Index of Jain for fairness comparison of TCP

throughput

As it can be observed in Figure 29, ANCE also avoids

bufferbloat problems; consequently as depicted in Figure 30,

ANCE provides better performance than DT, RED, CoDel,

and PIE for the UDP-like NCS flows in terms of ITAE,

resulting in an ITAE behavior very close to the obtained with

ENCN. Notice that the ITAE depicted in Figure 30 is the result

of one simulation. But deterministic and random events occur

on the Internet, consequently one simulation captures only one

of the several possibilities. Then, we use the UPPAAL SMC

(Statistical Model Checking) to compare the performance of

different AQM techniques in terms of ITAE for NCS.

Accordingly, we calculate the probability of exceeding a

certain value of ITAE when different AQM techniques are

implemented in the routers.

Table 4 presents the estimated probability interval for ITAE

being greater than 8727 radians_seconds (rad.s) until 30

seconds with 95% confidence for DT, RED, CoDel, PI,

ENCN, and ANCE. As it can be observed, ENCN and ANCE

has the lowest probability interval.

Figure 18. Motor position for DT

Figure 19. Motor position for RED

Figure 20. Motor position for CoDel

Figure 21. Motor position for PIE

Figure 22. Motor position for ENCN

Figure 23. Motor position for ANCE

Figure 24. Queue length for DT

Figure 25. Queue length for RED

Figure 26. Queue length for CoDel

Figure 27. Queue length for PIE

Figure 28. Queue length for ENCN

Figure 29. Queue length for ANCE

25
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

Figure 30. ITAE for UDP-like NCS flow for each AQM

technique

Table 4. Probability intervals for ITAE being greater than

8727 rad.s until 30 seconds

AQM Technique Probability Intervals

DT 0.902 to 1

RED 0.649 to 0.749

CoDel 0.457 to 0.557

PIE 0.068 to 0.168

ENCN and ANCE 0 to 0.097

Figure 31 illustrates the Cumulative Probability Distribution
for the ITAE being greater than 8727 rad.s in up to 30 seconds
for RED, CoDel, and PIE. Note that there are no curves for
ENCN and ANCE because when these AQM techniques were
implemented in the routers the ITAE does not overcome 8727
rad.s until 30 seconds under any possible situation. On the
other hand, RED and DT are most likely to exceed this value,
which is a consequence of the bufferbloat phenomenon.

Figure 31. Cumulative Probability Distribution for ITAE

being greater than 8727 rad.s

 4.4 ANCE versus other TCP Protocols

In addition to comparisons with AQM techniques, we also
compared the ANCE performance with other TCP ECN-based
protocols, i.e. protocols that match AQM techniques
implemented in routers with updates in the TCP window
through the ECN bit [6, 7, 8]. Figure 32 and Figure 33
illustrate the total TCP throughput and the ITAE for the NCS
as a function of simulation time for TCP-Jersey, E-DCTCP
and ANCE, respectively. EDCTCP outperforms ANCE in
total throughput for TCP flows, but in compensation ANCE
provides better ITAE for the NCS UDP-like flow. It happens
because EDCTCP presents more bufferbloat phenomena than
ANCE, as it can be observed in Figure 29 and Figure 34.

Figure 32. Throughput for TCP-Jersey, E-DCTCP and

ANCE

On the other hand, TCP-Jersey presents poor performance in
terms of throughput for TCP flows, but the best ITAE for the
NCS UDP-like flow. It happens because TCP-Jersey presents
more bufferempty phenomena than E-DCTCP and ANCE, as
it can be observed in Figure 35, Figure 34 and Figure 29.

Figure 33. ITAE for TCP-Jersey, E-DCTCP and ANCE

Note that unlike TCP-Jersey and E-DCTCP, ANCE does not
require the ECN bit, and despite of using fewer resources, it
achieves practically the same and even better performance
than those protocols.

Figure 34. Queue Length for E-DCTCP

Figure 35. Queue Length for TCP-Jersey

5. Conclusions

This work presents a new queue management methodology

which consists of an end-to-end indirect queue control through

queue length estimation employed by TCP transmitters

instead of using explicit congestion or non congestion

notifications from routers. Accordingly, a new queue

management called Acknowledge-based Non-Congestion

Estimation (ANCE) was developed, which, unlike ECN

schemes, instead of notifying congestion in the router, it

estimates non-congestion on the path. The ANCE algorithm

was compared with DT, RED, CoDel, PIE and ENCN AQM

techniques in a basic daisy-chain scenario and TCP-Jersey and

E-DCTCP in a dumbbell network topology in which three

generic TCP flows share the same network bottleneck with

two routers using UDP-like NCS flow. In this scenario, ANCE

presented close throughput performance to ENCN

overcoming RED, PIE and TCP-Jersey, as well as better

fairness in terms of Jain’s fairness index for the generic TCP

flows and better ITAE performance for the UDP-like NCS

flow than DT, RED, CoDel, PIE, and E-DCTCP.

Another contribution of this paper is to model TCP and

indirect queue management techniques using the UPPAAL

software tool as timed automata systems. Accordingly, timed

automata modeling facilitates the study of network

26
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

communication, as well as UDP networked control systems

(NCS) jointly simulated with other TCP flows, and reveals

influences of Internet traffic features in NCS through

simulations and statistical verification. In the context of

Internet of Things, the sharing of networks has growing

relevance and future network protocols may take care of

communication along with NCS data. Future work can extend

the analysis to other traffic conditions and scenarios (such as

more complex dumbbell topologies).

6. Acknowledgement

This work was supported by Fundação de Amparo à Ciência

e Tecnologia de Pernambuco (FACEPE), by Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and

by Conselho Nacional de Desenvolvimento Científico e

Tecnológico (CNPq), Brazil.

References

[1] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Networking, Vol. 1, No. 4,
pp. 397-413, 1993.

[2] K. Nichols and V. Jacobson, “Controlling queue delay: a modern AQM
is just one piece of the solution to bufferbloat,” ACM Queue - Networks,
Vol. 10, No. 5, pp. 1-15, 2012.

[3] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian, F.
Baker, and B. VerSteeg, “PIE: A lightweight control scheme to address
the bufferbloat problem,” IEEE International Conference on High
Performance Switching and Routing (HPSR), Taipei-Taiwan, pp. 148-
15, 2013.

[4] Y. Narasimha Reddy, P. V. S. Srinivas, “A Routing Delay Predication
Based on Packet Loss and Explicit Delay Acknowledgement for
Congestion Control in MANET,” International Journal of
Communication Networks and Information Security (IJCNIS), Vol 10,
No 3, pp. 447-453, 2018.

[5] S. Floyd, “TCP and explicit congestion notification,” ACM Computer
Communications Review, Vol. 24, No. 5, pp. 8–23, 1994.

[6] K. Xu, Y. Tian, and N. Ansari, “TCP-Jersey for wireless IP
communications,” IEEE Journal on selected areas in comunications,
Vol. 22, No. 4, pp. 747-756, 2004.

[7] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP DCTCP,”
in Proc. of ACM SIGCOMM International Conference, New York, NY,
USA, pp. 63-74, 2010.

[8] Y. Huang and B. Hu, “Enhanced DCTCP to explicitly inform of packet
loss,” IEEE International Conference on Communications (ICC),
London,UK, pp. 5511-5516, 2015.

[9] L. M. A. Sup, R. M. de Moraes, and A. Bauchspiess, “Simultaneous
TCP and NCS flows in a UPPAAL framework with a new AQM
technique,” IEEE International Conference on Industrial Informatics
(INDIN), Poitiers, France, pp. 80-85, 2016.

[10] K. J. Åström and B. Wittenmark, “Computer-Controlled Systems:
Theory and Design, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1997.

[11] W. Zhang, M. S. Brannicky, and S. M. Philips, “Stability of networked
control systems,” IEEE Control Systems Magazine, Vol. 21, No. 1, pp.
84–99, 2001.

[12] Z. Taferra, “Process control over wireless sensor networks,” Master’s
thesis, Kungliga Tekniska Högskolan (KTH), Stockholm, Sweden,
2013.

[13] F. Janabi-Sharifi and I. Hassanzadeh, “Experimental analysis of mobile-
robot teleoperation via shared impedance control,” IEEE Trans. on
Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 41, No. 2,
pp. 591-606, 2011.

[14] X. Ge, F. Yang, and Q.-L. Han, “Distributed networked control systems:
A brief overview,” Information Sciences, Vol. 380, No. 1, pp. 117-131,
2017.

[15] J. M. Llopis, J. Pieczerak, and T. Janaszka, “Minimizing latency of
critical traffic through SDN,” IEEE International Conference on
Networking, Architecture, and Storage (NAS), Long Beach, CA, USA,
pp 1-6 2016.

[16] H. Lin, S. Hongye, and S. Zhan, “Optimal estimation in UDP-Like
networked control systems with intermittent inputs: Stability analysis

and suboptimal filter design,” IEEE Trans. on Automatic Control, Vol.
61, No. 7, pp. 1794-1809, 2016.

[17] T. Samad, “Control systems and the internet of things,” IEEE Control
Systems Magazine, Vol. 36, No. 1, pp. 13-16, 2016.

[18] Ali M. A. Abuagoub, “IoT Security Evolution: Challenges and
Countermeasures Review,” International Journal of Communication
Networks and Information Security (IJCNIS), Vol 11, No 3, pp. 342-
351, 2019.

[19] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” RFC 3168, pp. 1-63, September
2001.

[20] H. B. Mokadem, B. Bérard, O. D. Smet, and J.-M. Roussel,
“Verification of a timed multitask system with uppaal.” IEEE Trans. on
Automation Science and Engineering, Vol. 7, No. 4, pp. 921–932, 2010.

[21] F. Jäger, T. C. Schmidt, and M. Wählisch, “How dia-shows turn Into
video flows: adapting scalable video communication to heterogeneous
network conditions in real-time,” IEEE Conference on Local Computer
Networks (LCN), Edmonton, Canada, pp. 218-226, 2014.

[22] C. Parsa and J. Garcia-Luna-Aceves, “Improving TCP congestion
control over internets with heterogeneous transmission media,” IEEE
International Conference on Network Protocols (ICNP), Toronto,
Canada, pp. 213-221, 1999.

[23] N. Kuhn, P. Natarajan, N. khademi, D. Ros et al., “Characterization
guidelines for active queue management (AQM),” RFC 7928, pp. 1-37,
July 2016.

[24] V. Jacobson, “Modified TCP congestion avoidance algorithm,”
Technical Report 30, 1990.

[25] P. Sreekumari and S.-H. Chung, “TCP NCE: A unified solution for
noncongestion events to improve the performance of tcp over wireless
networks,” EURASIP Journal on Wireless Communications and
Networking, Vol. 2011, No. 1, pp. 1–20, 2011.

[26] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Pettersson, W.
Yi, and M. Hendriks, “UPPAAL 4.0,” QEST, Riverside, CA, USA, pp.
1-48, 2006.

[27] R. Oliveira and T. Braun, “A smart TCP acknowledgment approach for
multihop wireless networks,” IEEE Trans. on Mobile Computing, Vol.
6, No. 2, pp. 192–205, 2007.

[28] L. F. d. C. Figueredo, E. D. S. Alves, J. Y. Ishihara, G. A. Borges, and
A. Bauchspiess, “Stability of networked control systems with
dynamic controllers in the feedback loop,” IEEE Mediterranean
Conference on Control and Automation (MED), Marrakech, Morocco,
pp. 99-104, 2010.

[29] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness and
discrimination for resource allocation in shared computer systems,”
DEC-TR-301 Research Report, pp. 1-37, 1984.

