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Abstract: This paper presents a new approach for indirect Active 

Queue Management (indirect AQM) technique called Acknowledge-

based Non-Congestion Estimation (ANCE), which employs end-to-

end queue management along a network instead to use Explicit 

Congestion Notification (ECN) bit or to drop packets in the queue. 

The ANCE performance was compared with Random Early 

Detection (RED), Control Delay (CoDel), Proportional Integral 

controller Enhanced (PIE), Explicit Non-Congestion Notification 

(ENCN), TCP-Jersey and E-DCTCP schemes in a daisy-chain and in 

a dumbbell scenario, with TCP flows and UDP-like Networked 

Control Systems (NCS) flow sharing the same network topology. On 

the other hand, this paper presents a method for modeling, simulation 

and verification of communication systems and NCS, using 

UPPAAL software tool, on which, all network components 

(channels, routers, transmitters, receivers, plants, and Controllers) 

were modeled using timed automata making easy a formal 

verification of the whole modeled system. Simulations and statistical 

verification show that despite using fewer resources (since ANCE 

does not need the ECN bit) ANCE presents a very close performance  

to ENCN overcoming Drop Tail, RED, CoDel, PIE and E-DCTCP in 

terms of Integral Time Absolute Error (ITAE) for NCS and fairness 

for TCP flows. ANCE also attains better performance than RED, PIE, 

TCP-Jersey and E-DCTCP in terms of throughput for TCP flows.  
 

Keywords: AQM, ENCN, NCS, TCP, Timed Automata Modeling, 

UPPAAL.  
 

1. Introduction 
 

Typically, the TCP protocol attains congestion control 

through an end-to-end algorithm which computes the 

appropriate sender congestion window by means of the 

estimated traffic conditions.  On the other hand, modern 

electronic devices allow to apply control algorithms in routers, 

so beyond the end-to-end window control schemes, other 

control techniques have been developed called Active Queue 

Management (AQM) [1], [2], [3].  

The most basic AQM approach is the Drop Tail (DT) scheme 

where packets arriving in a queue are dropped with probability 

one when the queue is full. However, in order to overcome 

inconveniences such as global synchronization [1] and 

bufferbloat problems [2], [4], several other AQM mechanisms 

have been proposed such as, Random Early Detection (RED) 

[1], Control Delay (CoDel) [2], and Proportional Integral 

controller Enhanced (PIE) [3]. 

These algorithms in addition to drop packets in the queue also 

support mark packets when the Explicit Congestion 

Notification (ECN) bit is enabled [5]. Other ECN-based 

protocols, such as, TCP-Jersey [6], DCTCP [7], E-DCTCP [8] 

and ENCN [9] also match AQM techniques implemented in 

routers with updates in the TCP window through the ECN bit 

information. 

In [9], it was observed that such notification dynamics can 

cause bufferempty phenomenon, which takes place when the 

AQM technique excessively refrains all TCP transmitters or 

when the transmitters overreact to congestion notification in 

such a way that the queues in routers can remain empty for 

several periods of time. Such bufferempty phenomenon can 

cause excessive reduction in TCP throughput. 

On the other hand, the growing development of automation in 

industry, automobiles, and more recently, in building 

automation, and other applications, such as smart grid and 

smart city, has lead to new challenges for manufacturing and 

research of advanced control systems. Aiming to meet these 

targets effectively, the current tendency is to use Networked 

Control Systems (NCS) [9, 10, 11, 12, 13, 14].  

On this kind of control architecture, the controller and the 

plant may be housed in separate locations and they can 

exchange data via a communication network forming a control 

loop on which controller, sensor, and process may be 

physically separated. Moreover, in some NCS applications, 

plant and controller may use the  Internet for exchange of data 

giving rise to many important research topics combining 

features of NCS and Internet. Nowadays, for example, 

Internet of Things (IoT) is a “super framework” where most 

of these new scenarios are jointly treated. Accordingly, new 

control strategies, packet drop and delay compensations, 

reliability and security of communications, and development 

of new data communication protocols are required [13, 14, 15, 

16, 17, 18]. 

Thus, in order to overcome unwanted bufferempty 

phenomenon and to take advantage of the non-congestion 

state of the queue to further improve the TCP behavior without 

causing bufferbloat problems, and still meeting the NCS 

requirements, [9] proposed a new AQM technique called 

Explicit Non-Congestion Notification (ENCN). Results 

showed that ENCN outperforms RED, CoDel, and PIE 

techniques in terms of throughput and fairness for TCP flows 

and the Integral Time Absolute Error (ITAE) for UDP-like 

flow. However, ENCN as well as other protocols depend on 

the ECN bit to notify congestion or non-congestion in routers. 

Nevertheless, according to the RFC 3168 [19], ECN only may 

be used in two ECN-enabled endpoints when the underlying 

network infrastructure also supports it. Since the ECN bit is 

not available for use at common Internet routers, congestion 

or non-congestion notifications cannot be used in general. 

For the purpose of overcoming such limitations, in this paper, 

a new methodology is proposed to attain queue management 

based on queue end-to-end estimation instead of explicitly 

using congestion or non-congestion notifications coming from 

the routers. Accordingly, a new indirect queue management 
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technique called ANCE (Acknowledge-based Non-

Congestion Estimation) is developed whose performance is 

compared with previous related protocols. 

Moreover, aiming to evaluate the performance of these AQM 

techniques in applications oriented to networked control 

systems (NCS) whose performance depends fundamentally on 

network delays and features of the communication network, 

in this work the TCP and the AQM analysis are obtained using 

the UPPAAL tool which is widely employed in automation 

research [20]. Such modeling allows a detailed timing and 

modular description of the entire system. 

We used two basic benchmark network topologies for 

analysis: a daisy-chain topology (see Figure 1) and a dumbbell 

topology (see Figure 6). The daisy-chain topology considered 

here consists of one sender, one receiver and two routers 

interconnected by a bottleneck link. The dumbbell topology 

has several flows competing for bandwidth in a single 

bottleneck link. Such topologies have been used as benchmark 

basic test scenarios for network congestion analysis [1, 2, 3, 

21, 22, 23]. The bottleneck link can be wireless while the other 

links can be wired, for example. 

The rest of this paper is organized as follows. Section 2 

introduces the proposed new ANCE indirect AQM technique. 

Section 3 presents the network topology for single flow 

analysis and results. Section 4 details the dumbbell network 

topology analysis which employs concurrent TCP and NCS 

flows. Finally, Section 5 concludes the paper. 
 

2. Acknowledge-Based Non-Congestion 

Estimation (ANCE) 
 

ANCE is a new approach to attain indirect queue management 

by employing end-to end estimation instead of explicitly using 

congestion or non-congestion notifications coming from the 

routers. Accordingly, ANCE is executed at the TCP 

transmitter and is inspired by ENCN [9]; however, ANCE 

works with queue length estimation instead of using explicit 

non-congestion notification. Thus, as it can be observed in the 

pseudo-code for ANCE, given in Error! Reference source 

not found., when the estimated queue length (QE) is lower 

than a threshold Qmin, ANCE interprets that there is no 

congestion on the path between transmitter and receiver and 

adjusts its congestion window W. Accordingly, if the TCP 

transmitter is in Slow Start and      QE < Qmin, ANCE calculates 

its new congestion window as     W = min (rwnd; Ssthr), where 

rwnd is the receiver advertised window and Ssthr is a Slow 

Start threshold and the TCP transmitter will switch to 

Congestion Avoidance [24]. In the absence of (estimated) 

noncongestion, i.e. when QE >= Qmin, Slow Start works as in 

TCP-Reno protocol [24]. 

If the TCP sender is in Congestion Avoidance, ANCE 

employs a fairness mechanism in which the sender will 

increase its congestion window by one packet size per round 

trip time (RTT) if and only if a non-congestion is estimated, 

i.e. if, and only if, QE < Qmin. Otherwise, the transmitter will 

reduce its window by one packet size upon reception of BF 

acknowledgement packets (ACKs) in order to maintain the 

queue length around Qmin. BF (Balance Fairness) is a variable 

whose dynamics is given in Table 1, which implements a 

fairness mechanism for ANCE.  

Table 1. BF dynamics for fairness in ANCE. 

Upon W increase BF=BF/2 

Upon W decrease BF=BF+BF/2 

Therefore, the ANCE sender will reduce its BF variable, with 
increasing W, and consequently will reduce its congestion 
window more often than the other ANCE senders with smaller 
W values. On the other hand, since W does not increase more 
than once per RTT, i.e. not more than once per reception of W 
ACK packets, ANCE senders with greater W will increase 
their congestion windows less often than those with lower W. 
This fairness mechanism forces each sender to fairly adjust its 
congestion window. The queue length is estimated according 
to  

),min( RTTRTT nowBQE
−=  (1)  

Algorithm 1. Pseudo-code for ANCE technique 

Upon reception of an ACK packet; 
{ if (RTTnow < RTTmin) then 
  RTTmin  RTTnow 

 If (W==1) {   RTTmin  RTTnow  } 

 Estimate QE 

 
if(ANCE is in Slow Start) 
{ 

  if (QE<Qmin) {continue in slow start} 

  else { set W  min (rwnd, Ssthr); switch to 
congestion avoidance and set BF  W} 

 }  

} 
if (ANCE is in Congestion Avoidance) 
{  

 if (QE < Qmin)   
{ 

  Upon reception of W ACK packet (one RTT) 

  { 

   
set W  W+1 per RTT (linear increasing of 

W); 

   
} 

and set BF BF/2 once per RTT; 

 }   

 else  
{ 

  Upon reception of BF ACKs  
{ 

   W W-1 (linear decreasing of W) and 

   
set BFBF+BF/2 once per BF ACKs 
receptions; 

  }  

 }  

}   
 

where RTTnow is the current round-trip time, RTTmin is the 
minimum RTT observed by the ANCE sender since the 
beginning of operation. Because the delay between transmitter 
and receiver could increase by changes on the routing path, if 
W reaches the minimum value of one segment, the RTTmin is 
updated to the value of the RTTnow.  B is the bandwidth of the 
bottleneck link [25]. However, since in real applications the 
bandwidth is not known by the senders, in this paper it is used 
its end to end estimated value (BE) which is estimated 
according to 

𝐵𝐸 = 𝐴𝑐𝑘𝑙 . 𝑡𝑎𝑚𝑖𝑛,                                                       (2)  
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where tamin is the minimal time between arrival of two 
consecutive ACKs, observed from the beginning of the 
transmission up to the current time instant and Ackl  is the last 
received ACK packet length. 

3. Size Daisy-Chain Topology with Single Flow 
 

In order to test the ANCE approach, the benchmark daisy-

chain topology illustrated in Figure 1 is employed with a 

single transmitter-receiver flow on which a transmitter sends 

packets of 1 kbyte size to a receiver through a network with 

two routers. Each router can queue up to Q = 17 packets. The 

initial Ssthr is 30 packets and rwnd = 64 packets. The routers 

are connected to each other by a link of speed 1.5 Mbps and 5 

milliseconds (ms) delay, here called the bottleneck link. The 

transmitter is connected to router 1 by a link with speed of 10 

Mbps and 2 ms latency, while the receiver is connected to 

router 2 by a link of 10 Mbps speed and 33 ms latency. 

The network was modeled using timed automata through a 

language based on TCTL (Timed Computation Tree Logic) 

implemented in UPPAAL, which is a tool for verification of 

real-time systems jointly developed by Uppsala University 

and Aalborg University and supports integer variables, clocks, 

arrays and user defined functions. UPPAAL is free for 

academic use [20, 26]. 

For the UPPAAL simulation, transmitter, receiver, routers, 

and each channel link were modeled as timed automata, that 

is, modeled as finite-state machine extended with clock 

variables and the whole system works as a network of such 

timed automata in parallel. The detailed implementation in 

UPPAAL of the network model of Figure 1 is given in [9].  
 
 

 

Figure 1. Linear daisy-chain topology used as basic 

bottleneck configuration 

3.1 Simulation Results for Daisy-Chain Topology 

ANCE, RED, CoDel, PIE and ENCN techniques were 

modeled in UPPAAL employing TCP-Reno [24]. For RED, 

CoDel, PIE, and ENCN simulations, it was considered that the 

ECN bit is available, so the router may set a mark in the IP 

packet header upon congestion detection. 

In these simulations, the following values for RED parameters 

were used:  

,
4

min
Q

l
th =  ,

4

.3
max

Q
l

th =   ,1.0max =P  ,002.0=W q  

where Ql = 17 kbytes is the buffer size. Details about these 

RED parameters are given in [1]. For ENCN and ANCE,   Qmin 

= 3 kbytes and initial Ssthr = 16 packets were used. CoDel 

does not require any parameter setting [2], and PIE employs 

adaptive parameters [2, 3]. 

Figure 2 shows the queue dynamics in the bottleneck link for 

RED, CoDel, PIE, and ENCN, respectively. 

Figure 3 and Figure 4 show the growth of TCP-Reno 

congestion window and the queue dynamics in the bottleneck 

link for ANCE technique. Furthermore, the throughput for 

each of these AQM techniques with TCP-Reno 

implementation is illustrated in Figure 5. The throughput (T) 

is calculated as specified in [27], i.e. T = NP/Time, where NP 

is the number of packets transmitted and acknowledged, and 

Time is the simulation time. 

It is clear from Figure 2 that for the simulation scenario 

investigated here, RED, CoDel, and PIE working with TCP-

Reno have several periods where the queue in the bottleneck 

link remains empty, because these AQM techniques 

excessively refrain the TCP-Reno transmitter. 
 

 

Figure 2. Bottleneck queue for RED, CoDel, PIE and ENCN 

 
Figure 3. Sender congestion window for ANCE 

This bufferempty phenomenon causes performance loss in 

terms of throughput as shown in Figure 5, whereas ANCE 

(Figure 4) as well as ENCN [9], avoids bufferempty 

phenomenon and the router remains busy with queue length 

oscillating around the chosen Qmin value, as long as the source 

has data to send. Thus, compared with the other AQM 

techniques, ANCE and ENCN presents better throughput. 

Note from Figure 5 that the throughput curves for ENCN and 

ANCE are very similar. 

 

Figure 4. Bottleneck queue for ANCE 

 

Figure 5. Thoroughput for RED, CoDel, PIE, ENCN and 

ANCE 

4. Dumbbell Topology with NCS and Multiple 

Concurrent Flows 
 

The UPPAAL model presented in this work allows us to 

observe the performance of AQM techniques when TCP and 

NCS UDP-like flows share the same network. Accordingly, in 

Figure 6 three generic TCP-Reno flows A, B, C and one UDP-
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like NCS flow share the same network bottleneck with two 

routers. 
 

 
Figure 6. Dumbbell topology of three TCP-Reno flows (A, 

B and C Transmitter- Receiver pairs) and one UDP-like NCS 

flow (Controller-Plant pair). 
 

Figure 7 shows a simplified NCS arrangement for the 

controller and plant interconnected by the network where the 

plant with transfer function Gp and the remote controller with 

transfer function Gc are linked through the communication 

system. A sensor makes measurements of the plant output 

signal y(k) and transmits it to the controller every h seconds, 

where h is the sampling period. The controller receives these 

measurements and uses them as its input signal and thereby 

calculates the control law u(k), which is sent to the plant 

through the return communication channel.  
Then, the actuator module present in the plant receives this 
signal u(k) and uses it as its input signal in order to maintain 
(control) the state of the plant at a certain target value 
according to a reference, normally given (generated) by the 
controller module. The communication channel that connects 
the plant with the controller can incur delays and packet 
losses. So, 𝜏𝑘

𝑠𝑐, 𝜏𝑘
𝑐𝑎 and 𝜏𝑘

𝑐  represent the time delay between 
sensor and controller, controller and actuator, and controller 
processing time, respectively. The switches S1 and S2 model 
the possibility of packet losses from sensor and controller, 
respectively. Therefore, with closed switches, packets reach 
their destinations. Otherwise, they are lost. 

 

Figure 7.  NCS representation for controller and plant 

interconnected by the network in Figure 6 

The control systems used here can be found in [28] where a 
proportional-integral (PI) controller with Kp = 11.86 and Ki = 
47.45 is used to control the position of a DC motor (Maxon 
F2140), i.e. the plant, through the network. The motor transfer 
function has been identified experimentally and is given by 

𝐺𝑝(𝑠) =
36.3

𝑠2+36.17𝑠
.                                                  (3) 

In our UPPAAL modeling, each step of the clock corresponds 

to 1 s. All time events can be solved as multiples of this 

reference step. UPPAAL has not an ordinary differential 

equation native solver. However, discretized models that are 

slow compared to 1µs are properly simulated. So, the discrete 

equivalent of the plant can be represented with sufficient 

precision as a finite automata in UPPAAL. The motor transfer 

function was discretized with sampling period h = 14 ms and 

time constant of the employed motor is 27.6 ms, so that it can 

be represented as a finite automaton in UPPAAL. 

Note that only the TCP flows respond to ECN and ENCN 

notifications, which do not cause any direct effect on the UDP-

like NCS flow. In this scenario, in addition to compare the 

throughput for the TCP flows, the fairness among them was 

also compared employing the fairness index of [29]. 

Moreover, in order to weigh up the performance in NCS, the 

Integral Time Absolute Error (ITAE) was used. Accordingly, 

the best control system is the one with lowest ITAE value. 
Transmitters and receivers were modeled according to [9]. 
Next subsections present the plant and controller UPPAAL 
modeling. 

4.1 Plant UPPAAL Model 
 

Figure 8 illustrates the UPPAAL plant simulation model 
which consists of two locations called SamplingP and 

SendingP. The automaton starts at SamplingP location. The 

pseudo-code for this automaton is given in Algorithm 2. Table 
2 describes all variables, functions and constants used in this 
UPPAAL model. 

 
Figure 8. UPPAAL automaton model for the plant 

Algorithm 2.  Pseudo-code for Plant Automaton 

Start in SamplingP location; 

{ 
if (tp >=h) 
{ then 

  

Go to SendingP location, reset tp and call 

ComputePosition and ComputeITA functions; 

In SendingP location wait for Tpsm time units, then 

return to SamplingP location and call 

SendMeasured function. 

 } 

 else 

 { 
  wait until tp >= h becomes true; 

 } 

} 

Table 2. Variable, function and constant descriptions for the 

plant automaton model 

Name Descriptions 

h Sampling period (14 ms). 

tp Clock used in plant automaton. 

Tpsm 
Constant time threshold equal to the 

time required to put a packet of 48 

bytes in a 10 Mbps channel. 

ComputePosition 
Function called every h time units 

It computes the plant output signal 

y(k). 

ComputeITAE 
Function called every h time units. It 

computes the ITAE value. 

SendMesasured 

Function called when the plant sends 

a packet with y(k). It updates the 

number of packets in the channel 

located between the plant and the 

router 1. 
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4.2  Controller UPPAAL Model 

Figure 9 illustrates the UPPAAL controller model which 
consists of two locations called SamplingCS and SendingCS. 
The automaton starts at SamplingCS location. The pseudo-

code for this automaton is given in Algorithm 3, Table 3 

describes the variables, functions and constants used in this 
UPPAAL model. 

 

Figure 9. UPPAAL automaton model for the controller 

Algorithm 3. Pseudo-code for Controller Automaton 

Start in SamplingCS location; 

{ 
if (tc >=h) 
{ then 

  

Go to SendingCS location, reset tc and call the 

functions ComputeControlSignal; In SendingCS 

location wait for Tcsc time units, then return to 

SamplingCS location and call SendControlSignal 
function. 

 } 
 else 

 { 
  wait until tc >=h becomes true; 

 } 

} 

Table 3. Variable, function and constant descriptions for the 

controller automaton model 

Name Descriptions 

tc 
Clock used in controller 

automaton. 

Tcsc 
Constant time threshold equal to 

the time required to put a packet 

of 48 bytes in a 10 Mbps channel. 

ComputeControlSignal 

Function called every h time 

units 

It computes the controller output 

signal u(k). 

SendControlSignal 

Function called when the 

controller sends a packet with 

u(k) It updates the number of 

packets in the channel located 

between the router 2 and the 

controller 

 4.3  Controller Simulation Results for Dumbbell 

Topology 

All simulation were run for 30 seconds Figure 10 to Figure 15 

presents the TCP throughput for each of the three flows (A, B 

and C) for DT, Red, CoDel, PIE, ENCN and ANCE, 

respectively. The total throughput, i.e. the aggregate TCP 

throughput of flows A, B and C, as a function of simulation 

time for DT, RED, CoDel, PIE, ENCN and ANCE is 

presented in Figure 16. As it can be observed, besides 

requiring fewer resources for implementation, ANCE 

provides a throughput close to ENCN and CoDel overcoming 

RED and PIE techniques. 
 

 
Figure 10. Throughput for DT 

 
Figure 11. Throughput for RED 

 
Figure 12. Throughput for CoDel 

 
Figure 13. Throughput for PIE 

 
Figure 14. Throughput for ENCN 

 

Figure 15: Throughput for ANCE 

Furthermore, the fairness mechanism used in ANCE makes 

each flow to converge essentially to the same throughput. 

Thus, ANCE outperforms DT, RED, CoDel and PIE in terms 

of fairness for TCP flows getting better Jain fairness index 

than those other AQM techniques (see Figure 17). 

On the other hand, for the UDP-like flow for controller and 

plant, Figure 18 to Figure 23 shows the motor position 

following a square wave reference (R) between 1 and 2 

radians, with period 2 seconds for all considered methods. 

Figure 24 to Figure 29 shows the corresponding queue length 

dynamics. 

 
Figure 16. Total (aggregate) TCP throughput 
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Figure 17. Index of Jain for fairness comparison of TCP 

throughput 

As it can be observed in Figure 29, ANCE also avoids 

bufferbloat problems; consequently as depicted in Figure 30, 

ANCE provides better performance than DT, RED, CoDel, 

and PIE for the UDP-like NCS flows in terms of ITAE, 

resulting in an ITAE behavior very close to the obtained with 

ENCN. Notice that the ITAE depicted in Figure 30 is the result 

of one simulation. But deterministic and random events occur 

on the Internet, consequently one simulation captures only one 

of the several possibilities. Then, we use the UPPAAL SMC 

(Statistical Model Checking) to compare the performance of 

different AQM techniques in terms of ITAE for NCS. 

Accordingly, we calculate the probability of exceeding a 

certain value of ITAE when different AQM techniques are 

implemented in the routers. 

Table 4 presents the estimated probability interval for ITAE 

being greater than 8727 radians_seconds (rad.s) until 30 

seconds with 95% confidence for DT, RED, CoDel, PI, 

ENCN, and ANCE. As it can be observed, ENCN and ANCE 

has the lowest probability interval. 

 
Figure 18. Motor position for DT 

 
Figure 19. Motor position for RED 

 
Figure 20. Motor position for CoDel 

 
Figure 21. Motor position for PIE 

 
Figure 22. Motor position for ENCN 

 
Figure 23. Motor position for ANCE 

 
Figure 24. Queue length for DT 

 
Figure 25. Queue length for RED 

 
Figure 26. Queue length for CoDel 

 
Figure 27. Queue length for PIE 

 
Figure 28. Queue length for ENCN 

 
Figure 29. Queue length for ANCE 
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Figure 30. ITAE for UDP-like NCS flow for each AQM 

technique 
 

Table 4. Probability intervals for ITAE being greater than 

8727 rad.s until 30 seconds 

AQM Technique Probability Intervals 

DT 0.902 to 1 

RED 0.649 to 0.749 

CoDel 0.457 to 0.557 

PIE 0.068 to 0.168 

ENCN and ANCE 0 to 0.097 
 

Figure 31 illustrates the Cumulative Probability Distribution 
for the ITAE being greater than 8727 rad.s in up to 30 seconds 
for RED, CoDel, and PIE. Note that there are no curves for 
ENCN and ANCE because when these AQM techniques were 
implemented in the routers the ITAE does not overcome 8727 
rad.s until 30 seconds under any possible situation. On the 
other hand, RED and DT are most likely to exceed this value, 
which is a consequence of the bufferbloat phenomenon. 

 

Figure 31. Cumulative Probability Distribution for ITAE 

being greater than 8727 rad.s 

   4.4  ANCE versus other TCP Protocols 
 

In addition to comparisons with AQM techniques, we also 
compared the ANCE performance with other TCP ECN-based 
protocols, i.e. protocols that match AQM techniques 
implemented in routers with updates in the TCP window 
through the ECN bit [6, 7, 8]. Figure 32 and Figure 33 
illustrate the total TCP throughput and the ITAE for the NCS 
as a function of simulation time for TCP-Jersey, E-DCTCP 
and ANCE, respectively. EDCTCP outperforms ANCE in 
total throughput for TCP flows, but in compensation ANCE 
provides better ITAE for the NCS UDP-like flow. It happens 
because EDCTCP presents more bufferbloat phenomena than 
ANCE, as it can be observed in Figure 29 and Figure 34.  

 
Figure 32. Throughput for TCP-Jersey, E-DCTCP and 

ANCE 

On the other hand, TCP-Jersey presents poor performance in 
terms of throughput for TCP flows, but the best ITAE for the 
NCS UDP-like flow. It happens because TCP-Jersey presents 
more bufferempty phenomena than E-DCTCP and ANCE, as 
it can be observed in Figure 35, Figure 34 and Figure 29. 

 
Figure 33. ITAE for TCP-Jersey, E-DCTCP and ANCE 

 

Note that unlike TCP-Jersey and E-DCTCP, ANCE does not 
require the ECN bit, and despite of using fewer resources, it 
achieves practically the same and even better performance 
than those protocols. 

 

Figure 34.  Queue Length for E-DCTCP 

 
Figure 35. Queue Length for TCP-Jersey 

 

5. Conclusions 
 

This work presents a new queue management methodology 

which consists of an end-to-end indirect queue control through 

queue length estimation employed by TCP transmitters 

instead of using explicit congestion or non congestion 

notifications from routers. Accordingly, a new queue 

management called Acknowledge-based Non-Congestion 

Estimation (ANCE) was developed, which, unlike ECN 

schemes, instead of notifying congestion in the router, it 

estimates non-congestion on the path. The ANCE algorithm 

was compared with DT, RED, CoDel, PIE and ENCN AQM 

techniques in a basic daisy-chain scenario and TCP-Jersey and 

E-DCTCP in a dumbbell network topology in which three 

generic TCP flows share the same network bottleneck with 

two routers using UDP-like NCS flow. In this scenario, ANCE 

presented close throughput performance to ENCN 

overcoming RED, PIE and TCP-Jersey, as well as better 

fairness in terms of Jain’s fairness index for the generic TCP 

flows and better ITAE performance for the UDP-like NCS 

flow than DT, RED, CoDel, PIE, and E-DCTCP. 

Another contribution of this paper is to model TCP and 

indirect queue management techniques using the UPPAAL 

software tool as timed automata systems. Accordingly, timed 

automata modeling facilitates the study of network 
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communication, as well as UDP networked control systems 

(NCS) jointly simulated with other TCP flows, and reveals 

influences of Internet traffic features in NCS through 

simulations and statistical verification. In the context of 

Internet of Things, the sharing of networks has growing 

relevance and future network protocols may take care of 

communication along with NCS data. Future work can extend 

the analysis to other traffic conditions and scenarios (such as 

more complex dumbbell topologies). 
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