
 357
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 3, December 2019

Exploiting Blockchains to improve Data Upload

and Storage in the Cloud

Yassine El Khanboubi1, Mostafa Hanoune2

1,2Faculty of Science Ben M’Sik, Hassan II University,Casablanca, Morocco

Abstract: Cloud computing is an information technology that

enables different users to access a shared pool of configurable

system resources and different services without physically

acquiring them. So, it saves managing cost and time for

organizations and can be rapidly provisioned with minimal

management effort. Most industries nowadays such as banking,

healthcare and education are migrating to the cloud due to its

efficiency of services especially when it comes to data security and

integrity. Cloud platforms encounter numerous challenges such as

Data de-duplication, Data Transmission, Data Integrity, Virtual

Machine Security, Data Availability, Bandwidth usage… etc. In

this paper, we have adopted the Blockchain technology - which is a

relatively new technology - that emerged for the first time as the

cryptocurrency Bitcoin and proved its efficiency in securing data

and assuring data integrity. It is mostly a distributed public ledger

that holds transactions data in case of Bit coin. In our work,

Blockchains are adopted in a different way than its regular use in

Bitcoin. Three of the major challenges in Cloud Computing and

Cloud services are Data De-duplication, Storage and Bandwidth

usage are discussed in this paper.

Keywords: Deduplication, Blockchain, Chunking, Cloud

Computing, Bandwidth, Execution Time, Genesis Block, Merkle

Hash Tree, Storage space.

1. Introduction

Since the beginning of the IT revolution, resources

management, security, data integrity and storage were (and

still) the main challenges and focus of researchers and

engineers. Cloud Computing was the pinnacle of years of

researches and efforts of hundreds of researchers and

engineers until it became the target of most regular users as

well as all size of companies.

The National Institute of Standards and Technology (NIST)

had classified Cloud Computing into four major patterns

described as follow [1]:

• Public Cloud: All cloud services available to the public

through the Internet. The resource offered in this type

might be free of charge (such as Google Drive, Dropbox

and so) or the services are offered to customers

according to their needs and customization.

• Private Cloud: Is similar to Public Cloud and delivers

similar benefits but through proprietary architecture,

private cloud resources are dedicated to fill the needs and

goals of a single organization.

• Hybrid Cloud: This type of cloud combines the

advantages of public and private cloud services.

• Community Cloud: this Cloud infrastructure is a

collaborative effort controlled, used and shared between

several organizations with common concerns (security,

compliance, policies, jurisdiction etc.).

Cloud Service Providers have to deal with a huge amount of

data in terms of storage, on-demand access, performance,

security and data integrity, which is a heavy task and a

challenge that all CSP confront. According to statista.com

data storage demand in the cloud has enormously increased

in the few past years and continues to grow while the supply

is struggling to catch up. The data storage supply and

demand worldwide from 2009 to 2020 is presented in

figure.1 below:

Figure 1. Data storage supply and demand worldwide from

2009 to 2020

Through time, many new concepts and researches helped

improve cloud services in different areas (compression, data

de-duplication, load balancing, etc.), a lot of work has been

and still need to be done in order to reach the desired results

in terms of security, strength and efficiency that every cloud

user is looking forward to, especially with the continuous

growth of cloud services and user needs.

According to RightScale.com, a survey conducted among

997 IT professionals, AWS (Amazon Web Service) remains

the leader among the major cloud infrastructure providers.

However, other cloud giants such as Google Cloud and IBM

Cloud are quickly catching up. The survey is illustrated in

the chart below:

Figure 2. Public cloud adoption in 2018

Blockchain is a new concept that has been implemented for

the first time in the cryptocurrency known as Bitcoin, and

the concept seemed to be beneficial for cloud services.

The main idea about Blockchains is that they are only used

in cryptocurrencies such as Bitcoin or Ethereum which is

wrong as it is used in many different areas such as

SmartContract, ID Systems …

 358
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 3, December 2019

Blockchains are mostly a public ledger or a distributed

database that holds every event or transaction and then

distributed to all participants, once received, most (or all)

participants can then verify the transaction and then if it’s

valid, they add it to their local ledger. The data added to the

Blockchain (called blocks) can never be erased or tempered

with, and the data integrity is verified on the client side.

According to statista.com, the number of Blockchain wallets

has been growing since the creation of the Bitcoin virtual

currency in 2009, at the end of March 2019; Blockchain

wallet users reached nearly 35 million. Blockchain is the

technology that made Bitcoin popular and trusted by many

major financial actors and it is a critical part of most

cryptocurrencies. A “block” in this case refers to a record of

the owners of all bitcoins, as well as the previous owners.

Since this “chain” of ownership is distributed globally, it is

extremely difficult to alter the ownership records.

A “wallet” in the digital sense defines a layer of security

known as “tokenization”. The user stores his private data

with the wallet provider in a digital wallet. This provider

sends payment information (in case of cryptocurrencies) to

vendors in the shaped as a token. This token, instead of

containing the personal information of the account owner,

only holds enough information for the wallet provider to

associate the transaction with the correct account, usually an

account number.

Figure3. Growth of Blockchain wallets from the first

quarter of 2016 until the 1st quarter of 2019

In our approach, we have implemented Blockchains beyond

the concept of its implementation in Bitcoin and other

cryptocurrencies, with other concepts introduced in different

papers such as Content-Aware Data chunking and Content

Naming that we will be using but not discussing.

2. Related Works

S. Ghoshal and G. Paul [2] introduced in their paper a new

model based on Blockchains similar to the approach de-

scribed in our work but the concepts are very different, they

proposed to split the original file into fixed-length file-

blocks to generate the Merkle tree, in their work, they used

block-chains to verify the integrity of a file, the described

model doesn’t manage the de-duplication files or upload, it

only focuses on auditing and data integrity.

In [3], Andrea Margheri, and Vladimiro Sassone proposed to

use a Third-Party Auditor, which operates as a gateway

between the user and the CSP. The TPA’s main role is to

verify the file’s integrity and decide whether to upload it or

not, also, it generates the new blocks that will be added to

the Blockchains. In comparison to our proposed work, this

model has several drawbacks:

- The upload process is executed in 2 steps, the file is

uploaded to the TPA and then the TPA uploads it to

the CSP.

- If the TPA is down or out of service, the whole

process is down.

- The TPA must be a trusted third party, if not; the data

might be stolen or tempered with.

- The use of one Blockchain for all users and all up-

loaded files.

- The model is not very beneficial in term of storage

space since it does not manage the de-duplication on

the server side.

3. Prerequisites

In this paper, we have adopted several concepts and models

proposed in various papers and researches, and also

technologies that were implemented to ensure our proposed

model efficiency, so before getting into the discussion about

our proposed model, here are the main concepts used in it.

3.1 Blockchain

 3.1.1 Definition

Blockchain is a relatively new technology that has been

introduced by Satoshi Nakamoto in 2008 [4] proved its

efficiency in ensuring data integrity and security; it is mostly

a public ledger or a distributed database that holds every

event or transaction that is distributed to all participants,

Blockchains can store any type of data, in our case we will

be storing only references of file chunks and not the chunk

itself, files will be stored in the file system, integrity will be

verified before adding a block to the Blockchain, and re-

verified during file read or update.

Figure4. Structure of a Blockchain used in our proposal

Each block in the Blockchain must have a reference to its

precedent; this reference is the hash of the previous block

[5].

The first block in a Blockchain is called Genesis Block

(block #0) which has no previous block hash, this block can

be very useful in our case, it will be used as a reference of all

transaction, new owners, updates (which will be discussed in

a future paper) … of a unique file on the server’s file system.

Blockchain could be considered as a form of distributed

databases. However, it is different from existing regular

distributed databases (such as HBase, MondoDB…) by two

main features:

1) Cryptography

Authenticity, user identity and the ledger integrity are

achieved using encryption.

2) Decentralization

Unlike regular databases and ledgers, the Blockchain

security and functionalities enforced in a public and

distributed way instead of relying on a centralized server or a

central authority.

 3.1.2 Proof of Work

The proof of Work concept has emerged in 1993, when

Cynthia Dward and Moni Naor published a paper where they

 359
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 3, December 2019

introduced a new method that tries to prevent spam emails.

A proof of work is a consensus algorithm in which it is

costly and time-consuming to produce a piece of data, but it

is easy for others to verify that the data is correct. Bitcoin is

using a proof of work system called “Hashcash”.

For a block to be accepted by the network, miners have to

complete a proof of work that comes in the form of an

answer to a mathematical problem to verify all transactions

in the block which in order to solve this problem nodes must

run a long and random process. The difficulty of this work is

not always the same, it keeps adjusting so new blocks can be

generated every 10 minutes. There’s a very low probability

of successful generation, so it is unpredictable which worker

in the network will produce the next block.

3.2 Cloud service models

There are usually three models of cloud service to compare:

Software as a Service (SaaS), Platform as a Service (PaaS),

and Infrastructure as a Service (IaaS). Each model of these

three has its benefits according to your needs, as well as

variances, before choosing a model, it is necessary to under-

stand the differences between PaaS, Saas and Iaas:

o PaaS (Platform as a Service) delivers a computing

platform where the client can create, execute, deploy

and manage their applications.

o SaaS (Software as a Service) is a model of software

deployment where the software/applications are

provided to the customers as a service through a

program interface or a web browser. The Cloud's

client does not need to install IT infrastructure such as

network, servers, operating systems and application

software inside his company because they are hosted

and managed in supplier’s site.

o IaaS (Infrastructure as a Service) delivers computer

infrastructure, typically a platform virtualization

environment as a service. Rather than purchasing

servers, software, storage, memory, processor or

network equipment, clients buy those resources as

fully outsourced services.

3.3 Merkle Tree

In cryptography, a Merkle Tree - also called Binary Hash

Tree - [6]. It is a type of data structure that is used to verify

the integrity of a large amount of data. Technically speaking,

the Merkle tree is a binary tree where leaves are data blocks

hashes, and every non-leaf node is the hash of the

concatenation of two child blocks (using more than 2 child

nodes is also possible but the majority of Merkle tree

implementations are binary), the process is repeated several

times according to the number of starting leaves until it gets

a unique hash called MerkleRoot. Consider a file split into 4

parts P1, P2, P3 and P4.The hashes are computed as follow:

H1 = h(P1), H2 = h(P2), H3 = h(P3), H4= h(P4), H5 = h(H1

+ H2), H6 = h(H3 + H4), the Merkle root: H7 = h(H5 +

H6),where h() is a double-hash function defined as h(x) =

MD5(MD5(x)) and “+” means the concatenation hashes

strings, the process will generate a hash tree of 3 levels.

The main advantage of the Merkle tree is that the slightest

modification in one or more nodes will result in a whole new

tree and the Merkle root will change completely, which will

be very advantageous in verifying data integrity. A Merkle

tree needs an even number of nodes in every level according

to its depth in order to generate the hashes of a higher level

in the tree, if an odd number of nodes is found while

generating the tree, the last node is duplicated.

The tree depth is not (and can never be found) indicated by

the MerkleRoot, this way a "second-preimage attack"[13]

(where an attacker can create a file different than the original

one that has the same Merkle hash root) can never be

executed.

In our case, a file will be chunked into small parts and then

the Merkle tree will be generated based on the resulted

chunks (the number of levels in the Merkle tree depends on

the initial number of chunks generated by the Content-

Aware chunking algorithm) as shown in the figure bellow.

Any Hashing algorithm is applicable, we have decided to use

MD5 algorithm.

Figure5. Generation the Merkle tree based on the file

chunks

3.4 Content-Aware Chunking

In our study, chunking is a crucial step to achieve data de-

duplication and also to lighten the outgoing network traffic

during file upload, as described in various papers, chunking

is one of the main challenges in the de-duplication system

and can be achieved using different methods[8]:

- File-level chunking.

- Fixed-size chunking.

- Robin Chunking.

- Content-aware chunking.

- Two Threshold Two Denominators (TTTD).

- Bimodal chunking.

- …

In the proposed model, a file chunk can be part of one or

many files which will reduce the storage space needed; in

this case a simple binary chunking (also known as Fixed-

Size chunking that splits a file into equally sized chunks)

will reduce the probability of having two files that share the

same set of data. The chunks will be just a sequence of bits

and boundaries are based on offsets like 4, 8 or 16 kB, which

reduce the probability of using the same chunk in other files.

Instead, using a Content-aware chunking algorithm will split

the file based on its content, which will considerably

improve the chunk re-usage probability.

Figure 6. Content-Aware chunking based on Char type

 360
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 3, December 2019

3.5 Content Addressing (Content Naming)

Filenames are used to access the content of a file that is

stored on the file system of a storage server, on a shared

platform, several files (with different content) can be

uploaded with the same name, in this case, the CSP must

provide a way to generate a unique identifier of each file,

hashing algorithms generates a unique string based on the

file content, a different file will generate a unique hash,

naming the files based on their hashes is called Content

Naming which will make the file access more fast and no

indexing is required, we have implemented this approach in

our study to reduce file access time and computational

power needed to retrieve the file.

4. Description of the Proposed Model

In this section we will describe our proposed model in which

all the listed prerequisites described earlier were

implemented as follow:

- Every user must be authenticated before submitting a file,

we have chosen to implement a public/private key

authentication to improve data security, password

authentication is less secure and passwords can be

bruteforced.

- Every file selected for upload in the client side is split

using a Content-Aware chunking algorithm[9], which will

generate a set of smaller files (chunks) of different sizes

according to their content, the Cloud Service Provider

defines a file size threshold based on the platforms

performance, if a chunk oversize the defined threshold, it

will be again chunked based on its content into smaller

chunks, the generated files are named after their hashes

which will enables an easy, fast and efficient access to the

file in the file system (knowing that we only store references

of the chunks in the Blockchain and not the whole file

chunks).

- The client generates a Merkle Tree based on the hashes of

all the chunks generated (hash of a chunk is called LEAF in

the Merkle Tree terminology), in our case we have decided

to use md5 hashing algorithm that generates a unique 32

chars string, our choice was based on the fact that MD5

algorithm is known to be much faster than SHAx algorithms

(42% faster than SHA1 according to a test we performed on

an Intel Core I5, 6th generation 2.53 GHz CPU), and the

hash string length produced is smaller than any other

hashing algorithm (32 chars for MD5, 40 chars for SHA1,

64 chars for SHA-256 and 128 chars for SHA-512).Also,

even though MD5 is known to be broken in terms of pre-

image resistance, it is still be very hard to perform such

attack according to “Yu Sasaki and Kazumaro Aoki”[10],

Other hashing algorithm may be applicable.

- Only the Merkle Root is sent to the CSP (which is

basically a 32 chars string) as well as the user’s unique ID

(16 Bytes for a standard UUID), in the server side we only

store a unique copy of each file (a Blockchain is generated

for each unique file), we can determine if a file is already

stored on the server by looking up his Merkle root knowing

that the MerkleRoot is stored only in the first block of the

Blockchain (Genesis Block) which will reduce the efforts

needed to find it since we don’t have to search the whole

Blockchain.

Figure 7. Server/Client communication and concept used in

our model

A reel experiment of the proposed approach is graphically

demonstrated in Figure 8 and Figure 9 below:

Figure8. Multi-file multi-user regular upload

Figure9. Multi-file, Multi-user uploads according to the

proposed model

4.1 Main Use Cases

Case 1: If the Merkle Root was found, then we verify

ownership using the UID

a. If the user already owns the file, the user is then notified

by his ownership and no further action is required, the file is

not uploaded.

b. If the user does not own the file, a new block is added to

the Blockchain containing the metadata of the new

ownership:

1. UID: the new owner’s ID which is a 16 Bytes long

Unique User ID (UUID)

 361
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 3, December 2019

2. Timestamp: time of ownership in UNIX format.

3. Filename: the filename can be different of the

original name.

4. Metadata: the user can add any metadata about the

file in this field.

5. Nonce: an arbitrary and unique number that can

only be used once.

6. The Previous Block hash: in Blockchains a new

added block must have the previous block hash.

7. The MerkleRoot: each new block must have the

MerkleRoot of the original file.

8. The Current Block Hash: after filling all fields in

the new block, the block itself is hashed and added

to the block, which will ensure the block’s integrity.

At the end of the process, the new block is sent to all the

users owning the same file (as described in the Blockchain

documentation), this allows decentralized integrity

verification; each user verifies the integrity of the file.

Case 2: If the Merkle Root was not found, it means that the

original file was never uploaded, but the original file may

share some of its parts with one or several files that were

already uploaded. So, to reduce the storage space needed,

reduce the bandwidth consumption and deal with de-

duplication the server request the leaves of the Merkle tree

from the client which sends the list of leaves hashes (32 x

the number of leaves Bytes).

After receiving the leaves hashes, the server side application

looks for each leave on the file system (chunks are named

after their hashes as described in the "Content Naming"

section) and generates a list of missing chunks hashes, the

hashes of the existing chunks are regenerated and then

compared to the leaves hashes to make sure that the file has

not been tempered with, the list of the missing chunks is

then sent to the client to be uploaded.

After uploading all the missing chunks, a new Blockchain is

created; this newly generated Blockchain starts with a

special type of blocks called The Genesis Block which holds

all the data about the new file as follow:

1. UID: owners User unique ID which is a 16 Bytes

long Unique User ID (UUID)

2. Filename: the name of the newly uploaded file

3. Filesize: the exact file size in Bytes of the original

file, the sum of all file chunks sizes must match the

original file size.

4. Timestamp: the Unix timestamp of the file upload

5. Nonce: an arbitrary and unique number that can

only be used once.

6. MerkleRoot: the Merkle Root of the file generated

by the client.

7. RefList: a list of all the chunks hashes that are part

of this file, this field will be used to access and

rebuild the original file.

8. Blockhash, after filling all fields in the new block,

the block itself is hashed and added to the block,

which will ensure the block’s integrity.

9. PreviousBlockHash: the Genesis Block is the first

block in the Blockchain therefore it has no previous

block; this field will hold an all zero hash

(00000000000000) as described in the

BitcoinBlockchain. For every other block in the

chain, it must contain the hash of the previous

block.

The workflow above is described in Figure 10:

Figure 10. Workflow of the proposed model

5. Implementation and Algorithms

The described model has been implemented and proven its

efficiency, using the following application architecture:

Frontend Application: it’s a JavaSE 8 implementation on

the client side which has the following functionalities:

- Authentication using a public/private Key

- Choose, split and generate the Merkle tree leaves out of

the chosen file.

Empty the temporary directory, generating chunks and

renaming chunks by their hashes

- Generating the Merkle Tree algorithm

Generating the Merkle Tree on the client side

- The upload process

intcpt = 1;

while (leaves.size() > 1) {

 leaves = lvlhash(leaves);

 if (leaves.size() == 1) {

 tree.put("root", leaves);

 }else{

 tree.put("Level "+cpt,

newArrayList<String>(leaves));

 }

 cpt++;

}

emptyTempDir();

GenChunks();

For(i=0; i<listOfChunks.length; i++){

 Checksum = getFileCheksum(listOfChunks[i]);

 renameChunk(listOfChunks[i].getName(),

Cheksum);

}

 362
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 3, December 2019

Perform an action based on whether a file exists on the

server or not, and file ownership.

Backend Application: it’s a PHP7/MySQL application

where Blockchains are implemented as tables, which runs on

the server side to perform the following tasks:

• Getting the Merkle Root from the client and checking if

it exists on the Blockchains.

• Deciding whether to upload the whole file, parts of the

file or nothing at all, the decision will be made based on

the existence of the file (or parts of the file) on the server.

• Deciding whether to create a new Blockchain or just

generate a new block and add it to an existing

Blockchain.

Checking the existence of a file completely or partially,

checking ownership, requesting upload and updating the

Blockchain.

The algorithms above has been summarized and simplified

for this paper.

6. Execution and Results

The implementation of the algorithms above has been tested

on the following setup:

The client side application:

- The application runs on a Laptop computer with an Intel

Core I5, 6th generation 2.53 GHz frequency CPU, 8 GBytes

of RAM and 120 GBytes SSD Hard Drive.

- Ubuntu 18.04 OS and JDK 8 as the software environment.

The server side application:

- The application runs on a Desktop computer with an Intel

Core I3 6th generation 3.70 GHz frequency, 4 GBytes of

RAM and 500 GBytes SATA Hard Drive.

- Ubuntu 18.04 OS and JDK 8 as the software environment.

The client and the server communicate through a 100Mbps

Ethernet network.

1- Use cases

• Regular upload (without the usage of the de-scribed

model) of an mp4 video file of 1.1GBytes of size.

• First test: a totally new mp4 video file of 1.1GByte of

size.

• Second test: an existing mp4 video file of 1.1GBytes

owned by the same user.

• Third test: a partially existing mp4 video file of

1.1GBytes that shares 300 MBytes of chunks with other

users.

• Last test: an existing file of 1.1GBytes owned by

another user

2- Results (Splitting, hashing and renaming chunks are

recalculated in each test)

The tests focus on three performance results, Bandwidth

usage, storage space usage and execution time as described

in Table.1:

Table 1. Results after performing 4 different tests on the

proposed platform

Tests Bandwidth (B) Storage (MB) Exec. Time(S)

1st Test 1181116054,4 1126.4 134,847

2nd Test 48 0 31,967

3rd Test 866610166,4 826.4 54,132

Last Test 48 0 22,053

The results are graphically represented bellow:

Figure 11. Comparison of data transferred over the network

for different cases (ru: regular upload)

Genesis_block = FindGenesisBlockByMerkleRoot();

If(Genesis_block != empty){

 If(Genesis_block.UID = PostedUID){

 callback = "yours";

 }else{

 addNewSimpleBlockToBlockchain();

 callback = "exists";}

}else{

 leaveHashes = getLeaves();

 List missingChunksList = findMissingChunks();

 sendMissingList();

 foreach(uploadedChunks as chunk){

 storeUploadedChunk();

}

 If(checkExistingChunksIntegrity()){

 updateRefList();

 createGenesisBlock(PostedUID);

}else{

 Message = "Integrity Violation";}

}

response = sendMerkleRoot();

If(response == exists){

 confirmUpload();

 saveNewBlock();

}else if(response == ‘yours’){

 notifyUserOwnership();

}else of(response == ‘empty’){

 Response = sendMerkleLeaves();

 If(response == ‘empty’){

 confirmUpload();

 saveNewBlock();

 }else{

 List parts = getMissingParts();

 Foreach(parts as part){

 Upload(part);

 }

 confirmUpload();

 saveNewBlock();

}

}

 363
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 3, December 2019

Figure 12. Comparison of the amount of data stored on the

cloud (ru: regular upload)

Figure 13. Comparison of the time needed for each case to

execute the upload process (ru: regular upload)

After the analysis of the results obtained by executing four

use cases and a regular upload we deduce the following:

1. In terms of bandwidth usage, the regular upload and

the first test (a whole new file) uploads the same

amount of data, but for all the other tests the

amount of data upload is considerably reduced or

not uploaded at all.

2. In terms of storage, the regular upload and the first

test store the same amount of data, this is due to the

inexistence of the original file (or parts of it) on the

server, but for the rest of the tests the storage space

needed is considerably reduced (or not stored at

all).

3. In term of execution time, we notice that the first

test takes more time than the regular upload, this is

due to the chunking, hashing, renaming and

generating the Merkle Tree, the time needed for the

process to complete depends on the file size and the

chosen hashing algorithm.

7. Conclusion and Future Work

At this stage, we have demonstrated the feasibility of using

Blockchain technology to reduce bandwidth usage during a

large file upload, storage space after upload, and a huge

improvement of execution time, the numerical results has

proven the efficiency of the proposed model and it can be

more beneficial for big cloud platforms, the main

improvements can be summarized as follow:

Bandwidth and Storage space usage: If a file already exists

on the server, we only need to send the userID (16 Bytes for

a standard UUID) and the Merkle root (32 Bytes).

If one or more chunks of a file already exist on the server,

we only upload the non existing chunks

Execution Time: If a file is neither totally nor partially exists

on the server, the time needed for the process to be

completed is slightly greater than the time needed for a

regular upload process; this is due to the chunking, hashing,

renaming and generating the Merkle tree processes. In case

of a file that is partially uploaded (one or more parts of the

original file are already stored on the server), the time

needed for the process to complete is considerably reduced

compared to regular upload, the more parts exists on the

server the less the upload time is needed.

In case of a file that was fully uploaded to the server before,

the time needed for the whole process to complete is only

the time needed on the client side to generate the Merkle

Tree, for big files, we consider the duration of the process as

negligible.

De-duplication: We only store 1 copy of each file (or chunk

of file); multiple upload of the same file is managed by the

ownership chain in the Blockchain. A chunk can be reused

in many files based in its content, the probability of having

chunks of files with the same content is considerably higher

using a Content-Aware chunking algorithm instead of a

Fixed-Size chunking algorithm (which is mostly binary).

Security and Integrity: The process starts with an

authentication system based on Public/Private key, the whole

network communication is encrypted.

The Blockchain and the Merkle Tree make sure that a file

has not been tempered with and the integrity is then verified

by all the owners the same file, this is due to the fact that the

Blockchain is distributed to all users and every new added

block is also distributed. The Blockchain does not allow

deletion or modification of a block, in our case, a block

references an ownership relationship between a user and a

file.

Despite of all the issues improved by the proposed model,

other issues and weaknesses emerged that need to be taken

in consideration in order to achieve the desired efficient

results of this work, some of the issues that emerged are

described bellows:

File update and deletion: most of Cloud Service Providers

allow users to delete update or change a file’s metadata, in

our case, a file (or parts of a file) can be owned by multiple

users and the Blockchain doesn’t allow any update or

deletion once a block is added or created.

Computational Power: Chunking, Hashing, Renaming and

generating the Merkle root of a file uses a lot more

computational power than a regular upload process,

especially in the client side which generally has limited

hardware resources.

The described issues will be discussed in a future work.

References

[1] NIST, “NIST Definition of Cloud Computing,” The National

Institute of Standards and Technology (NIST), 2016. [Online].

http://www.nist.gov/itl/cloud/.

[2] S. Ghoshal and G. Paul, “Exploiting BlockChain Data Structure for

Auditorless Auditing on Cloud Data,” Information Systems Security

Lecture Notes in Computer Science, pp. 359–371, 2016.

[3] E. Gaetani, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and V.

Sassone, “Blockchain-based database to ensure data integrity in

cloud computing environments,” CEUR Workshop Proc., vol. 1816,

pp. 146–155, 2017.

[4] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system.

[Online]. http://www.bitcoin.org/bitcoin.pdf, 2008

[5] Mohamed El Ghazouani, Moulay Ahmed El Kiram and LatifaEr-

Rajy, “Blockchain& Multi-Agent System: A New Promising

Approach for Cloud Data Integrity Auditing with Deduplication,”

IJCNIS, Vol. 11, No. 1, pp. 175–184, 2019.

[6] M. S. Niaz and G. Saake, “Merkle hash treebased techniques for data

integrity of outsourced data,” CEUR Workshop Proc., vol. 1366, pp.

66–71, 2015.

 364
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 3, December 2019

[7] J.-Y. Ha, Y.-S. Lee, and J.-S. Kim, “De-duplication with Block-

Level Content-Aware Chunking for Solid State Drives (SSDs),”

2013 IEEE 10th International Conference on High Performance

Computing and Communications & 2013 IEEE International

Conference on Embedded and Ubiquitous Computing, 2013.

[8] A. Venish and K. S. Sankar, “Study of Chunking Algorithm in Data

De-duplication,” Proceedings of the International Conference on

Soft Computing Systems Advances in Intelligent Systems and

Computing, pp. 13–20, Aug. 2015.

[9] X. Nie, L. Qin, and J. Zhou, “A content-awarechunkingscheme for

data de-duplication in archival storage systems,” High Technol. Lett.,

vol. 18, no. 1, pp. 45–50, 2012.

[10] I. Zikratov, A. Kuzmin, V. Akimenko, V. Niculichev, and L.

Yalansky, “Ensuring data integrity using Blockchain technology,”

2017 20th Conference of Open Innovations Association (FRUCT),

2017.

[11] J. L. Shawn Wilkinson, “Metadisk: Blockchain-Based Decentralized

File Storage Application,” Liq. Cryst., vol. 14, no. 2, pp. 573–580,

1993.

[12] Y. Xu, “Section-Blockchain: A Storage Reduced Blockchain

Protocol, the Foundation of an Autotrophic Decentralized Storage

Architecture,” 2018 23rd International Conference on Engineering of

Complex Computer Systems (ICECCS), 2018.

[13] Y. Sasaki and K. Aoki, “Finding Preimages in Full MD5 Faster Than

Exhaustive Search,” Advances in Cryptology - EUROCRYPT 2009

Lecture Notes in Computer Science, pp. 134–152, 2009.

[14] Y. Yu, L. Xue, M. H. Au, W. Susilo, J. Ni, Y. Zhang, A. V.

Vasilakos, and J. Shen, “Cloud data integrity checking with an

identity-based auditing mechanism from RSA,” Future Generation

Computer Systems, vol. 62, pp. 85–91, 2016.

[15] L. González-Manzano and A. Orfila, “An efficient confidentiality-

preserving Proof of Ownership for de-duplication,” Journal of

Network and Computer Applications, vol. 50, pp. 49–59, 2015.

