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Abstract: Different protocols have been developed for the 

Internet of things (IoT), such as the constrained application 

protocol (CoAP) for the application layer of the IPv6 over low-

power wireless personal area networks (6LoWPAN) stack model. 

Data transmitted over 6LoWPAN are limited by the throughput and 

the frame size defined by IEEE 805.14.5 standards. Choosing the 

best configuration for data transmission involves a tradeoff between 

the application requirements, the constrained network 

configuration, the constrained device specifications and IoT 

application protocols. This paper provides an analysis of message 

size and structure recommendations for the 6LoWPAN stack model 

for different network topologies using CoAP. CoAP is a promising 

application protocol for the 6LoWPAN stack model because it can 

effectively manage the transmission required functionality in small 

header UDP packets compared to TCP packets. However, a data 

model is also required to realize an effective IoT model. While 

fragmentation and reassembly are supported by CoAP, they should 

be avoided for this type of model. As for any conceptual model, a 

high configuration between layers is mandatory. Additionally, the 

proposed message format is useful for semantic web of things 

application development and for WSN design and management. 
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1. Introduction 
 

The number of constrained devices (CDs) connected to the 

Internet is expected to tremendously grow in the coming few 

years to approximately fifty billion devices [1]. To 

accommodate Internet growth, the Internet Protocol (IP) is 

moving from IPv4 towards IPv6. Consequently, different 

protocols are being developed in terms of supported data size 

or transmission criteria. Wireless sensor network (WSNs) 

have different components. CDs are the main components of 

the Internet of things (IoT). The IoT is effectively integrated 

with other Internet and web technologies and has opened a 

wide new domain of applications. For instance, the web of 

things (WoT) is a bridge model to connect things to the web. 

Additionally, the semantic web of things (SWoT) defines the 

connectivity between the semantic web and a WSN. For the 

IoT, different models have been developed, such as the IPv6 

over low-power wireless personal area networks 

(6LoWPAN) stack model in 2007. Since then, 6LoWPAN 

has gone through different research and industry analyses and 

implementations [2] [3] [4] [5]. One of the main components 

of the 6LoWPAN model is the adaptation layer to exchange 

data between the IPv6 and 6LoWPAN networks, where the 

IP is compressed to operate with constrained data size [6] [3] 

[7]. The adaptation layer of 6LoWPAN has been developed 

to support the IP in CDs [3]. To integrate 6LoWPAN with 

IPv4 networks, a connection could be made through a 

gateway node at an edge node. The main components of the 

6LoWPAN stack model, as shown in table 1, are IEEE 

802.15.4, the adaptation layer, 6LoWPAN and application 

protocols, such as the constrained application protocol 

(CoAP) or message queuing telemetry transport (MQTT) [1] 

[8] [9]. 

For effective functionality, IoT systems require CDs with 

efficient power, constrained processing capabilities, 

constrained storage size, effective network design and 

configuration, a defined data model and an IoT application 

model. The requirements are summarized in figure 1. The 

6LoWPAN stack model layers, as shown in table 1, should 

share a working configuration to work effectively to realize a 

defined quality of service (QoS) [10]. For example, CoAP 

should consider the mechanism of the 6LoWPAN adaptation 

layer and the data size defined by the data link layer (DLL) 

when sending data [3]. For CDs, the data memory and 

processing capabilities are limited. 
 

 
Figure 1.  IoT System 

 

One of the IoT application challenges is to deal with large 

data streams. As the data size increases, the required power 

and bandwidth also increase. In the IoT, generally the 

hardware and the network are constrained, however, its 

applications can go beyond the constrained environment 

through the integration of a system structure including 

advanced edge nodes or cloud capabilities. 

In the application layer, since CoAP is transmitted over UDP, 

CoAP has different features that allow its IoT functionality, 

such as resource discovery and observation [1] [8]. Each 

CoAP data payload should have structured data formats, 

which will be detailed later, for integration with other 
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frameworks, such as the WoT or SWoT. CoAP has two types 

of implementation, either as a client or as a server. For data 

exchange between the CoAP client and server, the data 

payload contains the application data and the CoAP header. 

For example, when CoAP is used to observe temperature, any 

change is sent to the client by the server. These features 

result in large amounts of data and application functionality 

for smart cities and home automation. CoAP is effectively 

compatible with the 6LoWPAN model in terms of the 

application layer requirement if the CoAP payload fits in one 

6LoWPAN frame; otherwise, different challenges arise, such 

as fragmentation and reassembly [10]. 
 

Table 1. Internet of Things Stack 
 

Layer OSI Layers TCP/IP 6LoWPAN 
7 Application 

Application CoAP, MQTT 6 Presentation 

5 Session 

4 Transportation Transportation UDP 

3 Network Internet 

IPv6 

6LoWPAN 

Adaptation Layer 

2 Data Link 
Network Access 

IEEE 802.15.4 MAC 

1 Physical IEEE 802.15.4 PYS 
 

The design and configuration of IoT applications requires 

consideration of the data size for QoS. The model can handle 

data of large sizes, which require data fragmentation. 

However, the model layers, such as the network layer and 

DLL, are designed to work with a small data frame size. 

Different transportation and application protocols have been 

developed to work with such frame sizes and the constrained 

environment [10]. The use of general protocols, such as  

HTTP and TCP, or large frames sizes is not useful for IoT 

applications [11]. Aqeel-ur-rehman et al [12], Had mentioned 

how different IoT protocol are used for different IoT 

applications. It has mentioned that Up uses CoAP for field 

area network with medium support for security. Additionally, 

the use of the general practices for data transportation and 

application development is not recommended for such an 

environment, such as sending large amounts of data over a 

limited data frame and using fragmentation [11]. 

The objective of the study is to define the requirement of an 

IoT device in different WSN topologies and the structured 

data configuration for IoT applications over the 6LoWPAN 

stack model using CoAP. The next section explains the 

features of constrained devices and their role in IoT 

applications. Then, the following section presents the 

constrained application protocol to show the role of the 

application layer in the 6LoWPAN model. After that, the 

reason why fragmentation should be avoided is discussed. 

The relationship between the CD and different network 

topologies is shown in the next section because, in the 

network layer, configuration and analysis are required to 

show the CD requirements in different networks. Then, the 

general model is presented. All notes and recommendation 

from earlier sections regarding setting up the model 

configuration are given. Then, related work is discussed in 

the next section to show the relationship between the 

proposed analysis and research activity in the field. Finally, 

concluding remarks are presented, followed by the 

references. 

 

2. Related Work 
 

This research mainly evaluates the application layer of the 

IoT stack model; other studies have evaluated different layers 

of the IoT stack model, such as the 6LoWPAN layer [25]. 

There are different studies that have analyzed the suitability 

of the 6LoWPAN model for IoT applications [26] [10]. In 

the application layer, CoAP and other IoT protocols are 

suitable for IoT applications using the push mechanism of 

messages from the server to the client [26]. There are 

different models for using IoT data in semantic web 

applications [28] implying that the integration between the 

IoT model and the semantic web application model could be 

at the application layer. Adding more complexity to the 

model will result in difficult application development. The 

research objective here is to analyze the data and application 

requirements of the 6LoWPAN model. Previous studies 

proposed various development methods for the different 

layers of the 6LoWPAN model, such as developing the 

congestion-aware routing protocol (CoAP) to deal with 

periodic sensor data [29]. According to the requirement of 

some applications, a software defined network (SDN) is used 

to enhance the application of 6LoWPAN; a study by Miguel 

et al. presented a model called the software-defined 

6LoWPAN wireless sensor network (SD6WSN) [30]. 

Intrusion detection and prevention (IDC) has been developed 

for integration in the 6LoWPAN model to protect CoAP 

traffic against security threats, such as denial of service 

(DoS) attacks [31]. Amanowicz and Krygier proposed a 

solution for the expected high traffic in the 6LoWPAN 

network, called the inter-session network coding mechanism, 

to reduce the traffic and consequently reduce energy 

consumption [32]. Another study proposed a framework for 

IoT system adaptability for application development and 

implementation, considering the 6LoWPAN mode [33]. 

Araújo et al. proposed a methodology to decrease device 

power consumption and consequently increase network live 

time by adapting a routing algorithm [34]. Abeele et al. 

implemented a proxy at the edge of the network to enhance 

WoT application over an IoT environment of limited 

resources [35]. Chen et al. presented a routing protocol for 

agricultural low-power and lossy networks (RPAL) using a 

scalable context-aware objective function (SCAOF) to adapt 

low-power and lossy networks (RPL) to the environmental 

monitoring of agricultural low-power and lossy networks (A-

LLNs) [36]. Ludovici et al. presented a technique for 

forwarding and routing 6LoWPAN fragmented packets [36]. 

While in this research, fragmentation is not recommended, 

analysis and enhanced methodology is always helpful in the 

changing environment of new and continuously evaluated 

models in both industry and research. 

One of the studies proposed by Ludovici et al. showed that 

6LoWPAN fragmentation is suitable for a constrained 

environment; however, in a congested network, a proposed 

methodology called block wise outperforms the default 

fragmentation methodology of the 6LoWPAN model [38]. 

Oliveira et al. presented a security framework to enhance the 

6LoWPAN model [39]. Finally, another study showed a 

model to interconnect CoAP with web applications using a 

web socket in CoAP [40]. 
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3. Constrained Devices 
 

Three classes of constrained devices are defined to work with 

low bandwidth and energy and lightweight protocols, as 

listed in table 2 [13]. Class 0 devices have limited connection 

capability and data storage. These devices can connect to the 

Internet and perform some functionalities by connecting to 

other devices, proxies, gateways, or servers. In some cases, 

Class 0 devices can use an OS for the IoT, such as by using 

the RIOT OS or customizing an OS to fit its specification. 

Class 1 devices can communicate in an IP network with 

security supported by constrained protocols, such as the 

constrained application protocol (CoAP) over UDP. Class 2 

devices support Class 1 protocols and a full protocol stack 

because they have more code and data storage. Class 1 

devices can replace Class 2 devices in cases where the 

developer can customize the OS or the protocol stack used. 

Each CD can have several resources, such as a few sensors, 

which depends on the application and its capability. 
 

Table 2. Classes of Constrained Devices 
 

Name                 

data (RAM) 
code (ROM) IP Support Name                 

data (RAM) 
Class 0, C0  10 KB  100 KB No 

Class 1, C1 ∼ 10 KB ∼ 100 KB Yes 

Class 2, C2 ∼ 50 KB ∼ 250 KB Yes 
 

CDs will have very limited RAM and ROM [14] [15]. The 

RAM or flash memory size should be sufficient for the OS 

and application data. The RAM size calculation considers the 

OS and the application data requirements as shown in Eq. 

(1). A CD has a RAM of APPRAM and OSRAM bytes reserved 

for code and the OS. The data sources are assumed to send 

data messages, limited to 127 bytes each [14]. The total data 

size is measured by Eq. (2), where n1 is the number of 

connections to the CD, and n2 is the number of cached 

messages. The CD should be ready to store and process the 

number of other connected CDs based on its location in the 

WSN as defined by n1. The CD can cache message from 

connected sensors, or another CD as defined by n2. Thus, the 

RAM required is the number of bytes required by the OS; the 

data shown in Eq. (2) define APPRAM in Eq. (1).  
 

MRAM = OSRAM +APPRAM (1) 

APPRAM = 127 ∗ (n1+n2) (2) 

The maximum total size of data a CD can handle is x∗127 

bytes, where x is the number of data messages the CD is 

sending or caching at a time. For example, for a 10 KB 

storage, the CD can have a maximum of 78 messages; for a 

50 KB storage, the CD can have a maximum of 400 

messages at a time. 

Memory or ROM is the part of the CD that hosts the 

operating systems (OS) or the boot loader and application 

codes, as shown in table 3. The ROM size calculation 

consider the OS and the application data requirements as 

shown in Eq. (3). Different applications require different CD 

specifications. For example, the Contiki OS for constrained 

devices requires approximately 10 KB of RAM and 

approximately 30 KB of ROM, similar to a Class 1 device. 

CoAP implementation with the RIOT OS requires 

approximately 200 KB of ROM and 100 KB of RAM, 

similar to a Class 2 device. Each IoT OS can be customized 

to smaller memory and thus applied to a lower class. 

 

MROM = OSROM +APPROM (3) 

Table 3. Oss for CDs 

OS RAM ROM Constrained 

Contiki 10 KB 30 KB Y 

TinyOS [15] < 1 kB <4 KB Y 

RIOT 1.5 KB 5 kB Y 

mbed OS 512 KB 64 KB Y 

Android >>n GB >>n GB N 

Linux 

(Raspbian) 
>>n GB >>n GB N 

iOS >>n GB >>n GB N 
 

Table 3 shows different operating systems (OSs) that can be 

used in IoT ecosystems. However, the table shows that some 

types of OSs are mainly IoT OSs for different kinds of 

boards and architectures. The table shows that constrained 

OSs are useful for IoT devices in general ubiquitous and 

pervasive computing. Other OSs could be useful for edge 

nodes [17] [18] [19]. 
 

4. Constrained Application Protocol 
 

This section analyses the data payload of the application 

protocol of the 6LoWPAN model. Based on table 1, the 

match between the model and the message structure is as 

shown in table 4. In the model, the IPv6 header is 

compressed to either 2, 12 or 20 bytes when the two devices 

are in the same network, a different network with a known 

prefix or a different network with an unknown prefix, 

respectively [7] [4] [14] [20].  

The IP layer payload of the 6LoWPAN consists of the UDP 

header and payload, containing the CoAP header and 

payload. Application data are expected to be between 0 and 

55 bytes in size for each frame, as shown in table 5. The 

CoAP header is assumed to be 11 bytes. The CoAP header 

has 4 bytes of a fixed header. Then, a token between 0 and 8 

bytes is included. The option delta, length and value are 

between 0 and 5 bytes in size, and their sizes increase as the 

number of options increases. Then, a one-byte marker (0xFF) 

and the payload are included. The total size is assumed to be 

11 bytes on average plus the payload. 

Eleven bytes is enough to send the reading of, for example, a 

sensor along with its variables. If the CD is sending the 

temperature of a room or a location, then the payload should 

have enough bytes to send the temperature along with 

variables to define the specific location of the sensor. In 

general, the overhead is high because the maximum size is 

127 bytes. However, the underlying protocol is designed for 

a constrained environment. Additionally, CoAP may require 

more than 11 bytes if data are required to have a specific 

structure, along with some metadata. 

As shown in table 5, different cases are used to configure the 

CoAP data size. The IEEE 802.15.4 frame is 127 bytes, of 

which the MAC header takes up the first 25 bytes, followed 

by 21 bytes of link layer security, leaving approximately 81 

bytes. An IPv6/6LoWPAN header requires 40/20/12/2, bytes 

leaving approximately 28/48/56/66 bytes. For UDP, there are 

some cases in which only 11 bytes are left when a 

6LoWPAN mesh header is used. Additionally, there is a case 

in which only 53 bytes are left when no fragmentation or 

mesh headers are used for the 6LoWPAN header stack. For 

CoAP, there are from 0 to 55 bytes left. 
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Different implementations of CoAP in constrained devices 

are shown in table 6. Each CoAP implementation is suitable 

for either regular or edge nodes. Some implementations are 

designed for regular client nodes. The CoAP 

implementations are available in different varieties of OSs 

and support different types of hardware. There also as well 

some implementations to manage the IoT network data in the 

cloud and it is commercial solution as shown in the end of 

the table. Some implementations are developed by specific 

Hardwar developer, which is an advantage of specific 

hardware users. In general, having too many implementations 

will require a design consistency when two different 

implementations exchange messages. 

The application layer should have optimization and 

synchronization between the different layers of the IoT 

model. When the data frame is more than 127 bytes, data 

fragmentation is used [11]. When fragmentation is needed in 

CoAP, each fragment header requires an additional 5 bytes, 

except for the first fragment, which is 4 bytes [8] [22] [23]. 

Although fragmentation is supported by the DLL in IEEE 

802.15.4, it is better to avoid fragmentation to save power 

and bandwidth and prevent wasted overhead [11]. 

The protocol overhead is the percentage of the header bytes 

in the total message bytes. IoT packets are small, so the 

overhead percentage is expected to be high in comparison 

with other network packets. Although fragmentation is 

supported by the model, the IoT application generally has 

small amounts of data to send, such as the temperature or air 

quality in a room. 
 

5. Model based on Constrained Network 
 

The WSN topology is usually either a star, tree or mesh 

topology. In any network topology, the CD is also resending 

the data of other sources. Consequently, the project cost may 

be affected by the network topology. In a star network, the 

main node requires some bytes of RAM as shown in Eq. (4), 

where n is the number of network connections. The required 

RAM for a mesh network is as shown in Eq. (5), where x is 

the number of nodes. In a tree network, the deeper the tree is, 

the higher the requirements. For a tree WSN, the amount of 

RAM required is as shown in Eq. (6), where g is the depth of 

the tree. In a tree WSN, as shown in figure 2, the edge node 

connects the nodes to outer connections. However, the WSN 

nodes are connected to the edge node using internal node  

connections. A WSN node should have more than one 

connection to the edge node using one of the hybrid WSN 

topologies, such as a partial mesh network topology, which is 

a mix between tree and mesh topologies. In this case, nodes 

in the tree topology have multiple connections to other nodes 

in the tree; consequently, the node has more than one option  

 

 

 

 

 

 

 

 

 

 

 

 

to connect to the edge node. 

The design of a WSN involves different considerations; 

however, for the constrained model of the IoT, the location 

of the CD and the network design directly affect the CD 

specifications. The CD requires a specific RAM size 

depending on its application, its location and the topology of 

the WSN. 

127 ∗ n (4) 

127 ∗ (x− 1) (5) 

OS+ 127 ∗ (2g+1− 1) (6) 

 

 
Figure 2.  WSN Example 

After defining the topology, the recommended configuration 

of the 6LoWPAN model detailed earlier is presented. The 

recommendations presented are mainly for the configuration 

of application data, CD specifications and the network 

topology. For the application data, CoAP is recommended as 

the application protocol for the model. Data fragmentation is 

not recommended when using CoAP. IoT application data 

should be small enough to fit in one CoAP data payload, 

between 0 and 55 bytes. 

Regarding the CD specifications, the CD should have enough 

specifications to support the 6LoWPAN model. The OS 

selected should support the transportation, Internet and 

network access requirements with enough RAM and ROM in 

the CD. Based on the node location, the specifications can be 

defined, either for a regular node or a gateway node. The 

main node features for the model are the power, storage, 

processing unit and connectivity. The connectivity should 

support the IEEE 802.15.4 standard. A gateway node is used 

for forwarding and processing data. Since the gateway node 

is an intermediate node between regular nodes and the 

Internet, it should have an unlimited power source and 

reasonable processing capabilities. The gateway should have 

cached value, i.e., a CoAP client observer, of all the 

resources connected to the nodes, which will help increase 

the system performance. 

 

 CoAP Header CoAP Data  Application layer 

 UDP Header UDP Data UDP 

 IP Header IP Data IP 

Frame Header Frame Data Frame Footer  IEEE 802.15.4 

Table 4. Message Format of the IoT Model 

Edge 
Node 

n1 

n2 

n3 

n4 

n5 

n6 n7 

n8 

n9 n10 
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Table 5, IEEE 802.15.4 Packet of 127 bytes 
 

 

scenario F H/D  SH Mesh H  Fragment H  6LoWPAN H/D  UDP H/D  CoAP H/D 

worst case 0  

 
25/102  21/81  0/64  5/76  40/36  8/28  11/17 

worst case 1  

 
25/102  21/81  17/64  5/59  40/19  8/11  11/0 

same network  
25/102  

 
21/81  0/64  5/76  2/74  8/66  11/55 

known 

network  
25/102  21/81  0/64  5/76  12/64  8/56  11/45 

unknown 

network  
25/102  

 
21/81  0/64  5/76  20/56  8/48  11/37 

case 1  

 
25/102  21/81  0/64  0/81  20/61  8/53  11/43 

scenario F H/D  SH Mesh H  Fragment H  6LoWPAN H/D  UDP H/D  CoAP H/D 

  

The network topology should be a partial mesh network 

topology. The data are routed in the network all the way to 

the gateway nodes using the routing protocol for low-power 

and lossy networks (RPL) [24]. The throughput in 

IEEE802.15.4 is limited to 250 kbps [4] [8]. A basic mode is 

shown in figure 3, Where nodes are connecting to the 

Internet and advanced information processing is done 

through an Edge Node. 
 

 
Figure 3. IoT Basic Model 

 
Table 6. Implementation of CoAP in Constrained Devices 

 

For CoAP, there are four kinds of messages, including 

confirmable, non-confirmable, acknowledgement, and reset. 

Each message is either GET, POST, PUT or DELETE. The 

non-confirmable format is used for repeated values from a 

resource, such as sensor data [8]. Reset is sent to check the 

availability of the resources. If a resource is an actual 

resource, then GET is the suitable method to get the value of 

the resource. On the other hand, when the resource is virtual, 

then POST is used to set the resource value. CoAP and 

HTTP integration can close the gap between CoAP and web 

applications, which enables real applications for the WoT 

and SWoT. A piggybacked response is recommended to save 

bandwidth and energy. A CoAP server has the feature of 

responding to a "resource discovery" request with its list of 

resources. Hence, CoAP can be used for sharing resources 

over the web. 

 

 

 

 

 

Implementation Client Server Language Con. OS Note 

Erbium √ √ C √ Contiki 
official CoAP for the Contiki 

OS 

libcoap √ √ C √ All  

tinydtls √ √ C √ LWIP/Contiki/TinyOS/RIOT 
adds security to other 

implementations 

TinyCoAP √ √ C √ TinyOS  

LibNyoci √ √ C √ LWIP/Contiki/TinyOS/RIOT 
spun off from the SMCP 

project 

microcoap x √ C √ Arduino - 

cantcoap √ √ C √ Linux  

Lobaro CoAP √ √ C √ All  

MR-CoAP [20] √ √ Java √ VM using IBM Mote Runner  

Wakaama √ √ C √ All LWM2M implementation 
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coap-node √ x JavaScript √/x Windows/Linus/macOS LWM2M implementation 

coap-shepherd x √ JavaScript √/x Windows/Linus/macos LWM2M implementation 

Californium √ √ Java x JVM  

nCoAP √ √ Java x JVM  

Leshan √ √ Java x JVM built on top of Californium 

CoAP.NET √ √ C# x Windows  

CoAPSharp √ √ C# x Windows  

gen_coap √ √ Erlang x Windows/Linux  

go-coap √ √ Go x Linux/Windows  

node-coap √ √ JavaScript x Windows/Linux/macOS (node.js) 

txThings √ √ Python x All  

Aiocoap √ √ Python x All  

Ruby-gem √ x Ruby x Linux/Windows/macOS  

David x √ Ruby x Linux/Windows/macOS  

coap-rs √ √ Rust √/x All  

Copper √ x 
Browser-

based 
 Linux/Windows/macOS  

iCoAP √ x 
Objective-

C 
x iOS, OSX  

SwiftCoAP √ √ Swift x iOS, OSX  

SPITFIREFOX √ √ Java x Android  

Aneska √ x Python x Android works with txThings 

mbed client √ √ C √ mbed OS 
ARM mbed, commercial and 

support IoT management 

oneMPOWER x x non x All 
Commercial, Support IoT 

management 

thethings.io x x non x All 
Commercial, Support IoT 

management 
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Figure 4. CoAP Model 
 

The model provides semantic structured data, as shown in 

figure 4, where the data are presented using the resource 

description framework (RDF). The data are delivered in 

either request or response messages according to CoAP 

specifications. The resource can have more than one RDF 

triple in one transmission if the available CoAP payload is 

sufficient. If for each of the subjects, the predicate object will 

require a minimum of 3 bytes, then one triple will require a 

minimum of 16 bytes each. Two triples will require 32 bytes , 

etc. In this case, one message will not be able to have more 

than approximately 4 RDF triples. One example of an RDF 

triple is the temperature degree response message, which 

could be "temp""is""22.5◦C". 

 More triples will be involved if required for location or other 

parameters. In table 5, worst case 1 will accommodate no 

triples. If the CoAP header is the minimum size with only 6 

bytes, meaning 4 bytes of the basic header, a 1-byte token 

and a 1-byte marker, then only 5 bytes are left, which will not 

be sufficient to send any structured data or meaningful 

parameters unless not stated in the response but taken from 

the request.  

The purpose of the model is to enable utilization of 

structured response application data. Worst case 1 can have 

only one triple. The presented model cannot work without 

IPv6 compression unless carefully configured and tuned for 

the frame sections mentioned in table 5. 

Referring to the previous argument, despite the high 

configuration requirements, CoAP is a promising application 

protocol for the IoT. CD specifications, OS requirements, 

6LoWPAN stack model header compression and the 

structure data model are the main things to consider when 

using CoAP over the 6LoWPAN stack model. 
 

6. Conclusion 
 

IoT data are constrained data sent using a CD and a 

constrained network. The optimum specifications of a CD 

can be defined according to the performance evaluation of 

the constrained model. The objective of this study is to define 

the amount of CoAP data a CD can handle in each 

transmission. CoAP messages of the type observe requests 

consume large amounts of memory. However, the request 

size in bytes is unknown. In general, the RAM size as has 

been shown in different studies to directly affect the 

processing power and power consumption. This research 

shows the relationship between the memory requirements and 

data size, functionality and CD location.  

The data generated from CDs in total are big data; however, 

each individual data frame has a few tens of bytes, as 

mentioned earlier. The data generated from a single CD are 

considered constrained because of their limited size 

according to the application protocol used, such as CoAP 

over 6LoWPAN. The data should be limited to the available 

CoAP payload. Further studies are required to consider an 

analysis of the trade-off between energy, processing and 

bandwidth. When the processing or throughput increases, the 

power consumption increases.  

Hence, the application should design a system such that the 

processing is maintained at the gateway node. Nodes should 

only be used for reading and forwarding data. The resource 

data can be taken from the gateway rather than from a 

connection to the CD node. Additionally, the retransmission 

time out (RTO) and round-trip time (RTT) will be computed 

for general congestion control algorithms of CoAP. 

The model is suitable for smart cities, home automation and 

any other applications where the data size is expected to be in 

the range mentioned earlier. Most smart city and home 

automation data are a type of reading or a signal of different 

sensors or parameters, such as temperature, average traffic 

wait time or expected time for events or resources. 

The network topology should be a partial mesh network 

topology. The adaptation layer is the key element for network 

connectivity in the model because of the IP adaptation 

process and compression [7]. CoAP has been receiving much 

attention in the research community and from application 

developers for different OSs. Finally, this article gives 

recommendations for CoAP implementation in the 

6LoWPAN stack mode. 
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