
563

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

BotCap: Machine Learning Approach for Botnet

Detection Based on Statistical Features

Mohammed S. Gadelrab1, Muhammad ElSheikh1, 2, Mahmoud A. Ghoneim1, 3 and Mohsen Rashwan4

1IT Metrology Lab, National Institute for Standards, Egypt
2 Institute for Information Systems Engineering (CIISE), Concordia University, Canada

3 Computer Science Department, School of Engineering and Applied Science, George Washington University, USA
4 Communication Engineering Department, Faculty of Engineering, Cairo University, Egypt

Abstract: In this paper, we describe a detailed approach to

develop a botnet detection system using machine learning (ML)

techniques. Detecting botnet member hosts, or identifying botnet

traffic has been the main subject of many research efforts. This

research aims to overcome two serious limitations of current botnet

detection systems: First, the need for Deep Packet Inspection-DPI

and the need to collect traffic from several infected hosts. To

achieve that, we have analyzed several botware samples of known

botnets. Based on this analysis, we have identified a set of statistical

features that may help to distinguish between benign and botnet

malicious traffic. Then, we have carried several machine learning

experiments in order to test the suitability of ML techniques and

also to pick a minimal subset of the identified features that provide

best detection. We have implemented our approach in a tool called

BotCap whose test results proved its ability to detect individually

infected hosts in a local network.

Keywords: Security, Botnet, Botware, Malware Analysis,

Malware Detection, Machine Learning.

1. Introduction

The Internet reflects both the good and the bad sides of the

physical world. With the emergence of the Internet, new

kinds of crime –namely cybercrimes– have been flourishing

and spreading. The new criminals have various goals and

tools. Malware “malicious software” is considered as the

main tool in the hands of cyber-criminals.

Today, new generations of malware are becoming multi-

faceted and more modular. Botnets are one of these

outcomes. Botnet – robot network – is a network of Internet-

connected, compromised hosts (also known as bots, bot-

clients, or zombies). Bots are remotely controlled by an

attacker called botmaster via a Command-and-Control

(C&C) channel. C&C channels often take place over existing

network protocols including Internet Chat Rely (IRC),

Hypertext Transfer Protocol (HTTP), or other Peer-To-Peer

protocols (P2P). Botnets can be categorized, based on C&C

system, into centralized and decentralized botnets. The

centralized botnet has a form of traditional client-server

network model. A bot acts as a client-side and connects to a

central C&C server. In decentralized botnets, any bot can act

as a C&C sever for some other bots instead of a central C&C

server. Bots serve as a proxy infrastructure and a launch base

for a wide variety of cyber attacks such as sending SPAM

emails, launching Distributed Denial-of-Service (DDoS),

performing identity theft, click frauds, etc.

In our research on botnets, we tackled the problem in

different ways: analysis, modelling, and detection. Firstly, we

have deeply analyzed various botware samples using several

analysis approaches (static, dynamic and network). As a

result, we managed to model bots life-cycle in a generic

model that improves our ability to both understand and

respond to botnet threats. Moreover, motivated by the lack of

public representative botnet dataset, we have created our

BoTGen platform. It is implemented from off-the-shelf open

source software to provide researchers with a flexible,

reliable and fully automated platform. This allows not only to

produce datasets but also to experiment with various and

complete botnet scenarios in a controlled environment [14].

The work described in this paper employs Machine Learning

techniques (Decision Tree and Support Vector Machine) to

build a botnet detection system: BoTCap. The goal is to

detect bots independently from their C&C structure and

protocol. The results showed that our tool can detect bot

infections with high detection rates up to 80% and 95 % for

HTTP and IRC based botnet respectively and very small

false positive rates of nearly 0.05% and 0.025% respectively.

Because of the shortcomings that we identified in several of

the previous work (Section 2), we had to design and

implement another approach to alleviate the following

limitations:

1. Detecting only well-known botnets based on signatures

extracted from binary codes of the malwares (host-based) or

extracted from network payloads of malicious activities

(network-based). These approaches often fail in detecting

bots that are infected by new botware or botware that uses

obfuscation techniques (host-based) and encrypted traffic

(network-based).

2. Being computationally expensive and violates the privacy.

For example, in case of network-based approaches that

perform deep packet inspection (DPI) for each packet.

3. Detecting some botnet types and ignoring others. For

example, detect http-based only or detect IRC-based only.

4. Detecting only bots that participate in massive malicious

activities such as DDoS, spamming and click fraud while it

cannot detect stealthy or dormant attacks. Such bots include

usually perform few activities over time to keep undetectable.

These could be dangerous because they are often employed

in spying and stealing sensitive data (e.g., credit cards or

login credentials).

5. Inability to detect individually infected hosts that belong to

botnets. In other words: it does not require data correlation

from several bots to be able to detect botnets.

The remaining of this paper is organized as follows: Section

2 presents the related work on ML-based botnet detection. In

Section 3, we describe our approach and the metrics we use

to measure detection quality. In Sections 4, we explain the

process to select a minimal set of distinctive features. Then,

we describe the design and the implementation of the

detection model in Section 5. Finally, Section 6 discusses the

results and Section 7 concludes the paper.

564

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

2. Related Work

Several research work focused on machine-learning-based

approaches for botnet detection. Livadas et al. [35] proposed one

of the first attempts to utilize ML algorithms to detect IRC-based

botnets. The authors evaluate several supervised ML algorithms

to classify IRC-based botnet traffic using a set of network

statistical features such as bits-per-second, packets-per-second,

flow duration, etc. The traffic classification is performed in two

sequential stages. The first stage classifies the traffic into chat-

like (IRC) and non chat-like classes. The second stage separates

the chat-like class into malicious and non-malicious sub-classes.

The authors proposed a novel botnet detector based on network

statistical features only.

BotMiner [21] detection system is independent of C&C protocol

and botnet structure. It can be considered as the extended and

complementary work of BotSniffer [22]. BotMiner performs the

horizontal behavioral correlation among the local hosts with

interest in differentiation between the concept of communication

activities “Who is talking to whom” and malicious activities

“Who is doing what”. BotMiner consists of three main parts. The

first part is responsible for the communication activities (C-

plane). It monitors the traffic flows between internal hosts and the

externals. Each group of flows (C-flows) that share the same 4-

tuple (SrcIP, DstIP, DstPort, and Protocol) are represented by a

vector of 52 elements extracted from four main network

statistical features named: the number of flows per hour (fph), the

number of packets per flow (ppf), the average number of bytes

per packets (bpp), and the average number of bytes per second

(bps). Then, it applies two-steps X-means clustering algorithm to

aggregate hosts that share the same communication activities.

The second part of BotMiner is responsible for malicious

activities (A-plane). By using the malicious activities detector

from BotSniffer, it detects the hosts that are involved in each of

scan activity, SPAM activity, and binary download activity. After

that, BotMiner applies two-step clustering algorithm to aggregate

the hosts involved in the same malicious activities. The final part

of BotMiner is a cross-plane correlation function. It combines the

results from C-plane and A-plane to calculate a score for each

host. Host scores depend on weighted clusters that indicate host

membership. A host is declared bot if its score is larger than a

threshold. The major weakness of BotMiner is the biased score

function; if a host is not involved in any malicious activities (or

undetectable), it will be classified as a benign whatever its

communication activities. Besides that, it requires multiple

infections by the same botware in the local network in order to be

detectable.

Traffic Aggregation for Malware Detection (TAMD) [23] aims

to detect infected hosts in local networks. TAMD uses the

collected traffic at the edge of the local network to aggregate

local hosts that share similar three characteristics: destination,

payload, OS platform. Each characteristic have its aggregation

function which utilizes ML algorithms. The results of the three

aggregation functions are then combined in a rule-based system

to detect bots. TAMD aggregation is similar to the horizontal

correlation in BotSniffer and BotMiner while the behavioral

characteristics are different.

Tegeler et al. [24] utilize ML algorithms to build network-based

signatures that can differentiates between botnet families. The

proposed system, named BotFinder, is used to detect HTTP-

based botnet using only five network statistical features.

BotFinder is based on the observation that the traffic between

C&C and bots in pulling mode botnet (e.g., HTTP-based botnets

follow that mode) often has regularity in contents and regularity

in time. It analyzes network traces to calculate five features: (1)

The average time interval between two sequential flows in the

trace, (2) The average duration of flows, (3, 4) The average

number of bytes per flow sent from source to destination and

from destination to source respectively, and (5) The most

significant frequency of Fast Fourier Transform (FFT) that uses

start time of flows as a time signal. BotFinder has low false

positive similar to signature-based systems however, its accuracy

is lower than traditional signature-based. It could be biased to

botnet configuration rather than botnet family itself.

Zhang et al. [25] proposed a new packet sampling and spatial-

temporal flow correlation approach to identify suspicious hosts

that are most likely bots. It applies packet sampling techniques to

adapt BotMiner and BotSniffer to work in a high speed network.

All the aforementioned approaches, except BotMiner, focus on

detecting centralized botnets. Approaches in [26, 27, 28, 29, 30]

aim to detect P2P botnet.

Yen et al. [26] proposed an algorithm to separate hosts that run

legitimate P2P file sharing applications from P2P bots. The

proposed system uses features related to traffic volume,

persistence of network connections, and differences between

human-driven and machine-driven traffic. The features are

extracted from traffic summaries without DPI. However, the

proposed system does not take into account other legitimate P2P

applications such as Skype rather than P2P file sharing

applications. It also misclassified hosts that are running P2P

botware and P2P file sharing together.

Zhang et al. in [29, 30] proposed a detection system capable of

detecting stealthy P2P botnets without dependency on any

malicious activities. First, the system separates the hosts that are

engaged in P2P communications. Then, it derives statistical

fingerprints of the P2P communications corresponding to

different P2P applications. Finally, the system distinguishes

between P2P benign hosts and P2P bots based on two

observations: (1) P2P bots expose persistent connection and the

active time of P2P connection is comparable to the active time of

the host, (2) bots belonging to the same P2P botnet have a high

overlap of their sets of contacted IPs (simple horizontal

correlation). This technique needs two or more hosts infected by

the same botnet to observe the overlap between their sets of

contacted IPs (i.,e., can not catch single infection). Moreover, it

needs to have fingerprints for all legitimate P2P application

which is infeasible.

J. Wang et al. [1] proposed a two-stage approach for botnet

detection. During the first stage, it statistically analyzes network

flow to detect anomalies that could be a sign of botnet. In the 2nd

stage, it analyzes network interactions between hosts to detect

highly co-related hosts using social correlation graphs. Although

this approach is protocol agnostic, it relies on the presence of

group activities to be able to detect botnets.

Tzy-Shiah Wang et al. [2] proposed a botnet detection

framework that analyzes DNS queries (DBod). It analyzes

NXDOMAIN queries (i.e., non-existing domain name) in DNS

traffic. The idea is that certain bots generate an unusual number

of these queries, and that DNS queries in botnets are typically

correlated in time and quantity. Therefor, using clustering

algorithm, and group identification DBod can find unusual and

highly correlated NXDOMAIN queries. Whereas this approach

does not require historical data, it is protocol specific and relies

on group activities.

565

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

Similar to our approach on feature selection, Nur Hidayah et al.

[3] have analyzed the influence of feature selection on the

detection of only HTTP-based botnets.

3. Approach and Basic Evaluation Metrics

The idea behind this approach stems from the basic

observation that common patterns in botnet traffic often have

some similarity in both traffic contents and the regularity in

time. Theoretically, botnet detection can be performed based

on the observation of several types of botnet interactions

between botnet elements: botmaster, C&C, individual bots

and the surrounding environment. Deciding which

interactions or activities to observe depends on several

factors such as botnet architecture, network protocols as well

as the ease of capturing or identifying some botnet

interaction.

Generally, botnet communication can be divided into three

segments: Botmaster<=>C&C segment (Seg1), C&C<=>Bot

segment (Seg2), and Bot<=>Bot or Bot<=>Other segment

(Seg3) as shown in Figure 1. C&C point may be single C&C

server in case of centralized botnet or it could be several

distributed points, where any bot can act as a C&C server for

its peer bots like in P2P-based botnet. Communications on

Seg1 are difficult to observe due to its sparse occurrence.

Bots are more frequently involved in interactions that occur

on Seg2 and Seg3. C&C and bots connects together either to

receive commands or to update status (Seg2). Bots also

interacts with each other in P2P botnets or with any other

node outside the botnet to carry out malicious activities on

Seg3. Thus, in case of centralized botnets (e.g., IRC or

HTTP), a detection method based on C&C activities in

Seg1&2 could be more appropriate because it may help in

discovering connected bots as well as their botmaster. In case

of P2P botnets, the concept of dedicated centralized C&C

server does not exist. Therefore, communications in Seg3 are

more appropriate where interactions and activities between

individual bots take place.

Figure 1. Botnet Communication Segmentation

The system that we describe hereafter uses network-flow

information. This choice eliminates the need to inspect

packet payloads, which has several advantages. First, no

processing overhead of deep packet inspection, which

improves system performance. Second, no inspecting packet

contents means implicitly no privacy violation. Finally, the

system becomes more resilient to encrypted traffic.

Besides that, our approach concentrates on botnet traffic that

is related to maintenance/control messages that may be

exchanged on segment Seg2 in case of centralized botnets or

Seg3, in case of peer-2-peer. This enables the detection of

dormant bots that do not send significant quantity of traffic,

for example to spam or to carry out DDoS attacks. More

precisely, we focus on TCP/IP network flow, which is a set

of packets between any communicating pair that have 5

features in common: ScrIP, ScrPort, DstIP, DstPort and

Protocol. Using this 5-tuple features as a flow identifier

makes each flow unique in the network segment. The flow

can be bidirectional like TCP flows or unidirectional like

UDP flows. Figure 2 illustrates a typical example of client-

server flow where the 5-tuples are: ScrIP=192.168.1.1,

SrcPort=2012, DstIP=173.194.116.112, DstPort=80 and

Protocol = TCP, HTTP application uses TCP as transport

layer protocol. TCP/IP Trace or traffic trace for simplicity, is

an aggregation of TCP/IP flows between any client-server

pair during a certain period of time. The flows are aggregated

based on their values of 3-tuple (SrcIP, DstIP, and DstPort).

The approach consists simply of analyzing a set of statistical

features of traffic traces to identify signs of bot

communication in terms of similarity and regularity or

repetitiveness. To implement this approach in BotCap, we

have to go through two essential stages:

1. Feature Selection: in this part, we analyzed a lot of

statistical features of traffic traces to pick up and define

an initial set of distinctive features that seems to be

helpful in botnet detection.

2. Building ML detection model: in this part, we deal with

ML model creation process. We employ J48, which is a

variation of C4.5 algorithm [5] and different SVM

kernels [6], [7] to identify a feature set that gives good

detection results for the same ML algorithm. Then, we

compare results of different algorithms to select the one

producing the best results.

This process requires a dataset that contains malicious and

benign traffic. It will be used for training and testing ML

algorithms, as well as feature set optimization and reduction.

For this purpose, we have created a diversified dataset as

described in [14]. In the following section we present the

metrics used in evaluating and comparing detection results

from various ML models/algoritms and feature-sets.

Figure 2. TCP/IP network flow

Our evaluation criteria is based on three basic metrics:

Precision, Recall and F1-Measure. These metrics are derived

to assess the quality of detection results. The following

concepts represent some definitions:

• TP: True Positive = the number of items correctly

classified as belonging to the positive (Malicious/Botnet)

class.

• FN: False Negative = the number of items that is actually

belonging to the (Malicious/Botnet) positive class but

misclassified as belonging to the negative (Benign) class.

• TN: True Negative = the number of items correctly

classified as belonging to the negative (Benign) class.

• FP: False Positive = the number of items that is actually

belonging to the negative (Benign) class but it is wrongly

classified as belonging to the positive (Malicious/Botnet)

class.

566

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

• Confusion matrix:

Actual class

Positive Negative
Classified

class
Positive TP FP
Negative FN TN

• Precision: From all items classified as a positive class,

which portion is actually belonging to a positive class?

 Eq. (1)

Recall: also known as True Positive Rate (TPR) or

sensitivity. From all items that actually belong to positive

class, which portion are correctly classified as positive class?

 Eq. (2)

F1-measure: a combined measure that assesses the Precision

and Recall trade-offs. It is equivalent to the weighted

harmonic mean of Precision and Recall

 Eq. (3)

4. Feature Selection

Botnet interactions can be observed from different view

points. For example, botnet manifestations may appear at

network level or system level where we can collect data

about their activities by recording network traffic or system

calls, respectively. It is worth to note that while both views

complement each other, the network view provides a more

comprehensive view of botnet activities. Due to the

multidimensional nature of botnets, we can obtain hundreds

of features, which complicates feature selection. To filter this

huge number of features and to obtain only botnet-relevant

features, we defined the following criteria to be satisfied in

the selected features:

(a) Be independent from packet payload contents.

(b) Be independent from botnet or botware type.

(c) Can capture regularity in botnet traffic contents.

(d) Can capture regularity or repetition in time (periodicity).

In order to provide network-wide botnet detection, we

decided to focus on network-based features. Besides that,

statistic-based features can be easily obtained or calculated

from packet headers or by counting transmitted/received

packets independently from both botnet/botware types and

packet contents. It can also capture similarities and

regularities in botnet traffic. Moore et al. [8] have identified

a lot of statistical features extracted from packet header fields

to help in network classification per flow. Riyad et al [9]

present another set of statistical features to classify encrypted

VOIP traffic. We have analyzed these features to eliminate

irrelevant features for botnet detection. To explain that, we

can divide statistical features extracted from network traffic

into three categories based on the characteristics of:

(a) the network itself (network configuration) such as number

of packets per second, number of bits per second, packet

inter arrival time.

(b) general botnet behavior: for example, flow rate, flow

duration, time interval between successor flows.

(c) particular botnet family: such as number of packets per

flow, packet size, window size, number of packets coming

from server/client.

In our case, candidate features should characterize general

botnet features and with less extent botnet family features;

because our goal is to detect bots not to identify botnet

families. Features that are network-dependent are completely

excluded to make our approach suitable for any type of

network regardless of its speed, bandwidth, topology, etc.

Regarding the regularity in contents or time, features of

individual packets cannot capture such properties and hence

are excluded. The regularity and repetition can be better

observed in aggregate traffic not individual packets. The

question that may arise now is about the aggregation level.

For example, should the features be calculated for traces or

flows? The desired set of features can be calculated per flow

or from aggregated set of flows (i.e., per trace). In general, an

individual flow provides a limited view about what happens

inside botnets or describes action/response on the C&C-bot

segment at certain instance of time. On the other hand, the

mean of observed features can reflect the regularity in

content and connections over time between C&C and each

bots. For this reason, we calculate features per trace during

certain time epoch.

4.1. Content-Regularity Features

Regularity in content arises from repeated command-

response patterns. Bots are often pre-programmed with

predefined hard-coded responses. They respond to the same

command in a similar manner. From start-up to shutdown

time, bot can be in two modes, active mode and idle mode.

The bot becomes in active mode when it receives a command

from C&C. After the bot executes a command, it returns back

to idle mode. In idle mode, the bot only connects to its C&C

to check for new commands and update its status. In

particular, regularity in traffic contents comes from:

• In idle mode, fixed format to check new commands and

fixed format to update its status.

• In active mode, same commands has similar reactions

with some variation in the response traffic.

Content regularity can be observed through statistical

features such as average number of packets per trace for both

source and destination. Table 1 summarizes candidate

features that initially satisfies our selection criteria.

4.2. Periodicity Features

Concerning time regularity (periodicity), for example HTTP-

based botnets have an explicit period where bots follow the

pulling mode. The botmaster sends new commands to C&C

server, then each bot periodically checks the C&C server for new

commands. On the other hand, IRC-based botnets demonstrate

different kind of periodicity where bots does not follow pulling

mode and follow instead the pushing mode. When the botmaster

sends new commands to C&C server, the C&C server instantly

re-sends these commands to the bots. The periodicity comes

from the C&C server itself where IRC protocol has a test

mechanism to detect the presence of active clients by sending

PING or REQUEST messages at regular intervals.

Dealing with periodicity needs each network trace represented as

a time-periodic signal. There are several time-periodic signals

that can characterize botnet traces, for example:

1. Impulse signal at each flow start time like in botfinder

[10]. However, it is suitable for HTTP-based but not

suitable for IRC-based because it consists of single flow

in most cases.

567

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

2. Throughput of down-link (bytes per second transfer from

C&C to bots)

3. Throughput of up-link (bytes per second transfer from

bots to C&C)

Table 1. Features extracted for traces
Feature
Number

Abbreviated Description

1-3 (Tot|avg|std)Pkts
(sum/avg/std)* of packet count of aggregated

flows per trace

4-6
(Tot|avg|std)
SrcPkts

(sum/avg/std) of packet count transmitted by

the source in aggregated flows per trace

7-9
(Tot|avg|std)

DstPkts
(sum/avg/std) of packet count transmitted by

the destination in aggregated flows per trace

10-12
(Tot|avg|std)Byte

s
(sum/avg/std) of byte count of aggregated

flows per trace

13-15
(Tot|avg|std)
SrcBytes

(sum/avg/std) of byte count transmitted by

the source in aggregated flows per trace

16-18
(Tot|avg|std)
DstBytes

(sum/avg/std) of byte count transmitted by

the destination in aggregated flows per trace

19-21
(Tot|avg|std)
AppBytes

(sum/avg/std) of application byte** count of

aggregated flows per trace

22-24
(Tot|avg|std)
SrcAppBytes

(sum/avg/std) of application byte count

transmitted by the source in aggregated flows

per trace

25-27
(Tot|avg|std)
DstAppBytes

(sum/avg/std) of application byte count

transmitted by the destination in aggregated

flows per trace

28-29
(Src|Dst)
MaxPktSz

Maximum packet size in traffic transmitted

by the (source/destination)

30-31
(Src|Dst)
MinPktSz

Minimum packet size in traffic transmitted

by the (source/destination)
32-34 (Tot|avg|std)Dur (sum/avg/std) of flow duration

35-37
(Tot|Src|Dst)
Pkts per Hr

(Total packets/source packets/destination

packets) per hour

38-40
(Tot|Src|Dst)
Bytes per Hr

(bytes/source bytes/destination bytes) per

hour

41-43
(Tot|Src|Dst)

AppBytes per Hr
(Total application bytes/source application

bytes/destination application bytes)per hour

44-45
(Src|Dst)Pkts/Tot

Pkts
percent of the (source/destination) packets

46
TotSrcPkts/TotD

stPkts
Ratio between the source and the destination

packets

47-48
Tot(Src|Dst)
Bytes/TotBytes

percent of the (source/destination) bytes

49
TotSrcBytes/Tot

DstBytes
Ratio between the source and the destination

bytes

50-51
Tot(Src|Dst)App

Bytes/TotAppByt

es

percent of the (source/destination)

application bytes

52
TotSAppBytes/T

otDAppBytes
Ratio between the source and the destination

application bytes
*sum=summation, avg=average, std=standard deviation
**Application Bytes mean payload of packets without any header

Periodicity features will be calculated for all traces; both

malicious and benign. Because bots reside in client side of

sever/client pairs, we can calculate the throughput over

seconds of up-link connections (in our case a = 5 second) for

each bot, as shown in Figure 3 (a), the throughput is

represented as semi-periodic impulse train. As a time signal,

it corresponds to a finite time impulse and noisy signal.

There are many techniques to check whether the time signal

is periodic or not. The most used method is to analyze the

signal in frequency domain and obtain the peaks to determine

the frequency. The power estimation is one of frequency

domain signals that characterizes the time signal. Welch's

method is an approach for spectral density estimation that

provides a method for estimating the power of time signal at

different frequencies [11]. the improvement of Welch's

method over the standard periodogram spectrum estimation

method is that it reduces noise in the estimated power

spectra. Due to the noise caused by imperfect and finite data,

the noise reduction from Welch's method is often desired.

Figure 3(a). Up-link Throughput in time domain, (b). Up-

link Throughput in frequency domain

We developed a simple algorithm (Code.1) using Welch's

method implemented in Numpy & SciPy package [12], [13]

to check the periodicity of the up-link traffic throughput per

trace. If periodic, it calculates the frequency. The algorithm

has three main steps. The first step is to transfer the up-link

throughput from time domain to frequency domain using

Welch's method. The next step is to check if the signal is

periodic or not by passing three check points as follows:

1- if trace duration is less than MIN_DURATION (in our

case = 60 minutes), this trace will be assigned as not periodic

(is_periodic = -2) because Welch's method is based on

window FFT calculation which depends on the number of

samples and the sampling rate of the signal.

2- Count the number of peaks in the power signal over

threshold, see Figure 3(b). If the number of peaks is less than

MIN_NUM_of_PEAKS (in our case = 3, arbitrarily

selected), this trace will be assigned as not periodic

(is_periodic = -1). The throughput in time domain is a noisy

impulse train and it will be so in frequency domain.

Therefore, the more number of peaks increase the probability

of periodicity.

3- Calculate the average (freq) and the standard deviation

(stdfreq) of frequency difference of the first three peaks, see

Figure 3(b). If stdfreq is larger than gamma percent from freq

(in our case gamma = 10%) then this trace will be assigned as

not periodic (is_periodic = 0) otherwise this trace will be

periodic (is_periodic = 1).

As a result, time regularity of a trace can be represented by

three features summarized in Table 2 that complements the

features in Table 1.

568

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

Code 1. Periodicity Detection Algorithm.

Table 2. Periodicity features for traces

Feature

Number
Name Description

53 is_periodic

{1,0,-1,-2}
1: uplink throughput is periodic
0: not periodic due to stdfreq > 10% of freq
-1: not periodic duo to # of peaks less than 3
-2: not periodic due to trace duration < 60

minutes

54 freq
average of frequency difference of the first

three peaks of Welch's spectral

55 stdfreq
standard deviation of frequency difference of

the first three peaks of Welch's spectral

5. Detection Model Design and Implementation

In this section, we describe the process that we followed to

create and test the suggested botnet detection mechanism

using machine learning algorithms, namely J48 and different

SVM kernels. As shown in Figure 4, this process includes:

(1) creating datasets (malicious dataset and benign dataset)

which is used in training and testing the model, (2) selecting

candidate feature subsets from the primary set of features that

were identified in the previous section, (3) tuning the

parameters of the suggested ML algorithms, (4) creating a

detection model using selected feature subsets from step 2

and using the parameters of ML obtained from step 3, (5)

selecting the model that gives the highest detection results,

and (6) testing that model using another dataset, that neither

used in training nor in tuning phases.

The output of this process is three detection models: HTTP-

only to detect HTTP-based botnets, IRC-only to detect IRC-

based botnets, and TOTAL to detect both IRC and HTTP-

based botnets. The remaining of this section describes these

six steps in more details.

Figure 4. Creating and testing botnet detection mechanism

5.1. Dataset Creation

The dataset consists of two components: malicious and benign.

To construct the training and tuning dataset, we use six botware

families: (Aryan [15], [16], Ngr [17]–[19], Rxbot [20]) as IRC-

based and (Blackenrgy [31], [32], Zeus [33]–[34], Vertexnet

[36]–[38]) as HTTP-based to create the malicious part of the

dataset. Our decision to include these botwares was based on a

detailed analysis of several botware samples where we take into

account the diversity of the dataset. More details about our

analysis results can be found in [14]

By using BoTGen, we run 6 botware variations from each family

for 6 hours separately on 10 virtual machines (VMs). Variations

differ from each other in botnet and network configuration such

as (PING/PONG IRC rate, HTTP request rate, start-up/shutdown

of VMs) and the executed scenario (number of commands, order

of commands, etc.).

Regarding the benign dataset, we have analyzed a lot of benign

datasets that were created by academic and industrial

organizations. Among the analyzed datasets, we selected the

UNIBS-2009 dataset [39] as it fits our goal. This dataset was

created by the telecommunication network group of the

university Brescia in Italy. It was captured from the edge router

of the university campus network that serves (20) workstations

running the GT client daemon -the Ground Truth (GT) system

[39]. The traffic includes wide range of protocols such as Web

(HTTP and HTTPS), Mail (POP3, SMTP, IMAP4), Skype,

traffic generated by P2P applications, and other protocols (FTP,

SSH, and MSN). To construct the benign part of the training

dataset, we include 6-hours traffic from UNIBS-2009 dataset.

Table 3 summarizes the number of traces included in the entire

training dataset.

As shown in Table 4 for testing dataset, it was similarly created

using botware samples that were unseen previously in the

training dataset. Two botware samples: Athena [40] as IRC-

based and Citadel [41], [42] as HTTP-based to create the

malicious part of the testing dataset. Two variations from each

botware run for 6 hours on 10 VMs. The benign part was created

in the same way using another 6-hours from UNIBS dataset.

Table 3. Summary of training dataset contents.

Dataset Part # of trace
Aryan 55
Ngr 55
Rxbot 54
Blackenergy 55
Zeus 55
Vertexnet 54
Benign(Training) 3211
Benign(Tuning) 2788

Input: throughput_trace, ratio

Output: is_periodic ∈ {−2,−1,0,1}, freq, stdfreq

begin

 getTraceDuration(throughput_trace)

 if trace_duration < Min_DURATION then

 Set is_periodic = -2, freq = 0, stdfreq = 0

 else

 /* Calculate Welch power spectral density of

throughput_trace */

 /* P: Power spectral density component corresponds to

(f) frequency component */

 f, P = Welch(throughput_trace)

 global_peak = max(P)

 threshold = ratio *(0.5 * global_peak) + (1- ratio)*

average(P)

 peaks, peaks_val = find_peaks(P, threshold)

 if number_of_peaks < MIN_NUM_OF_PEAKS then

 Set is_periodic = -1, freq =0 stdfreq = 0

 else

 freq = average(f(peaks))

 stdfreq = std(f(peaks))

 if stdfreq > gamma * freq then

 set is_periodic = 0

 else

 set is_periodic = 1

 end

 end

 end

end

569

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

Table 4. Summary of testing dataset contents

Dataset Part # of trace

Athena 20

Citadel 20

Benign 3994

5.2. Feature-Set Reduction and Optimization

As explained in Section 4, the primary feature set consists of 55

features that may have some redundant or interdependent

features. To enhance the performance, we had to reduce the

number of features and select candidate subsets of the primary

set. To achieve that, we have applied two selection methods: ML

algorithm for attribute selection as implemented in Weka [4] and

manual selection based on J48-ML experimental results.

Consequently, we obtained 9 feature subsets as shown in Table 5.

The features are represented as an absolute value

(NotNormalized) or normalized value (Normalized). The

normalization process aims to scale feature values in the range

[0, 1]. Weka applies “BestFirst” as a search algorithm and

“CfsSubsetEval” (Correlation-based Feature Subset Selection) as

an evaluation method.

Table 5. Summary of candidate feature subsets.

ID Feature set # of

features Note

1 {Primary} 55

2

{stdDur,

TotBytes/hour,

TotSrcPkts/TotPkts,

is_periodic,

Frequency,

avgTotPkts}

6
Using “select attributes” machine

learning algorithm on IRC-only

dataset

3

{avgSrcPkts,

SrcMinPktSz,

is_periodic,

Frequency,

TotSrcBytes,

SrcMaxPktSz}

6
Using “select attributes” machine

learning algorithm on HTTP-only

dataset

4
{3} –

{SrcMaxPktSz}
5

Manual selection by removing

SrcMaxPktSz from set-3

5 {4} – {Frequency} 4
Manual selection by removing

Frequency from set-4

6 {2} – {Frequency} 5
Manual selection by removing

Frequency from set-2

7
{6}–

{TotSrcPkts/TotPkts}
4

Manual selection by removing

“TotSrcPkts/TotPkts“ from set-6

8 {6} – {avgTotPkts} 4
Manual selection by removing

avgTotPkts from set-6

9

{SrcMinPktSz,

is_periodic,

Frequency,

TotDstPkts}

4
Using “select attributes” machine

learning algorithm on combined

(HTTP+IRC) datasets

5.3. Parameter Selection

In general, ML can be considered as an optimization problem

[43]. There are many factors that may affect the performance of

ML algorithms such as features, quality and quantity of dataset

used in training. Moreover, the ML algorithm itself may have

parameters that control its function (hyper-parameter). To

optimize ML learning algorithms, their parameters should be set

appropriately. In the following, we explain various parameters of

the two ML algorithms that we use (i.e., J.48 and SVM). Then

we present parameter values that produce best results during our

experiments on each feature subset according to F1-measure as a

performance indicator. There are several methods for hyper-

parameter optimization problem such as [43], [44], [45]. Grid-

search is a simple mechanism that scans all or subset of values in

the parameter space of a ML algorithm to obtain the optimized

value. Grid-search is performed in two sequential steps: coarse-

grained to enclose the optimized value in a small region on the

parameter space, then fine-grained where the search is preformed

in this small region to determine the optimized value. The grid-

search algorithm must be guided by some performance metric,

typically measured by cross-validation (CV) on the training set.

Normally, botnet datasets contain a number of positive instances

“malicious instances” much less than the number of negative

instances “benign instances”. In other words, botnet datasets are

some kind of imbalanced dataset. Therefore, F1-measure could

be a good performance metric to assess the detection model and

to guide grid search algorithm [46]. Our version of grid-search

algorithm performs a 5-fold cross-validation (CV) on the training

dataset and selects the hyper-parameter values that give the

highest F1-measure. In the following, we present the hyper-

parameters for both J48 and different kernels of SVM and the

corresponding optimal values for each candidate feature subset

based on our training dataset. The optimization has been carried

out on both the Normalized and the NotNormalized values of the

features.

• J48 has two parameters:

1. confidenceFactor – C: The confidence factor is used for

pruning (smaller values incur more pruning). It reduces

the size of the tree (or the number of nodes) to avoid

unnecessary complexity and to avoid over-fitting of the

dataset when classifying new data. C-parameter can be

assigned values in the range of [0, 1], therefore we test C

in the range from 0.05 to 1.0 by an increment step of 0.05.

2. minNumObj – M: The minimum number of instances per

leaf, M ≥ 1. We test M in the range from 1.0 to 20 by an

increment step of 1.0.

For each feature subset, Table 6 presents C and M values that

produce best results for 18 candidate feature subsets (nine

NotNormalized + nine Normalized).

Table 6. J48 Hyper-parameter values for HTTP-only, IRC-

only, and TOTAL

Feature

set ID

HTTP-only IRC-only TOTAL
NotNormaliz

ed
Normalized

NotNormali

zed
Normalized

NotNormali

zed
Normalized

C M C M C M C M C M C M

1 0.55 9 0.45 2 0.55 5 0.55 5 0.35 2 0.35 1

2 0.55 3 0.05 1 0.4 2 0.1 1 0.05 1 0.05 1

3 0.55 8 0.05 1 0.55 1 0.55 1 0.1 1 0.25 1

4 0.05 8 0.05 1 0.55 1 0.55 1 0.05 1 0.05 1

5 0.05 8 0.2 1 0.05 2 0.55 2 0.5 1 0.5 1

6 0.55 3 0.1 1 0.05 1 0.5 1 0.05 1 0.1 1

7 0.05 9 0.05 1 0.2 3 0.05 1 0.5 1 0.1 3

8 0.55 4 0.05 1 0.4 1 0.55 1 0.05 1 0.05 1

9 0.05 1 0.05 1 0.05 1 0.05 1 0.05 1 0.05 1

• SVM-K0 (linear kernel): K(Xi,Xj) = Xi
TXj

SVM algorithm has several variations. LibSVM [6] is a soft

margin version of SVM that allows misclassified instances to

reduce the over-fitting of the hyperplane. Therefore it adds a

new hyper-parameter: regularization cost– C, to manage the

error penalty of the misclassified instance. Linear kernel

(SVM-K0) has only single parameter: the regularization cost

C > 0. It has no limits therefore, we estimate its range

570

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

manually by increasing C, from soft margin to hard margin.

We test C with exponentially growing sequences as C = 1 ×

10e , where e ranges from 0.0 to 10.0 by an increment step of

1.0. For each feature subset, Table 7 presents C values of

SVM-K0 that produce the best results.

Table 7. SVM-K0 Hyper-parameters values for HTTP-only,

IRC-only, and TOTAL.

Feature

set ID

HTTP-only IRC-only TOTAL

NotNormali

zed Normalized NotNormalized Normaliz

ed
NotNorm

alized
Normaliz

ed

e e e e e e

1 0 2 0 3 0 3

2 0 6 0 2 0 2

3 0 0 0 5 7 4

4 0 6 0 0 5 4

5 0 5 1 0 1 1

6 0 2 0 5 0 4

7 0 9 0 3 0 2

8 0 6 0 1 0 5

9 0 5 0 0 0 1

• SVM-K1 (polynomial kernel): K(Xi,Xj) = (mXi
TXj)D, m

>0

SVM Kernel 1 has three parameters:

1. D: degree of the polynomial, we test values in the range

from 3.0 to 5.0 by an increment step of 1.0.

2. m: scaling factor of the polynomial, we test in the range

from 0.0 to 1.0 by an increment step of 0.1. (if m = 0,

Weka use it as m = 1/number of features).

3. regularization cost – C, we test C as C = 1 × 10e, where

e ranges from 0.0 to 10.0 by an increment step of 1.0.

For each feature subset, Table 8 presents the parameter

values of SVM-K1 that produce best results.

Table 8. SVM-K1 Hyper-parameters values for HTTP-only,

IRC-only, and TOTAL

Feature

set ID

HTTP-only IRC-only TOTAL

NotNormaliz

ed Normalized NotNormali

zed Normalized NotNormaliz

ed Normalized

D e m D e m D e m D e m D e m D e m

1 3 0 0 4 4 0.3 3 0 0 3 0 1 3 0 0 4 2 1

2 3 0 1 4 5 0.9 4 0 1 4 5 0 3 0 0.7 5 5 0.9

3 3 4 0.1 3 4 0.7 3 0 0.9 4 10 0.7 3 10 0.1 3 5 0.7

4 3 5 0.1 5 6 1 3 4 0.8 3 6 0 3 4 0.3 5 5 0.9

5 3 3 0.1 4 8 0.8 3 0 0.8 5 7 0.8 3 2 0.3 4 6 0.8

6 4 0 0.9 4 10 0.1 5 2 0.4 3 0 0.9 3 0 0.1 5 6 0.8

7 3 0 0.9 5 10 0 5 5 0.4 4 6 0.4 5 0 0.1 4 6 1

8 4 0 0.4 5 9 0.3 3 1 0.1 3 0 0.9 3 1 0.1 5 7 0.6

9 3 3 0.2 4 6 1 4 2 0.2 3 5 0.6 3 5 0.1 4 6 0.7

• SVM-K2 (radial basis function- RBF- kernel):

K(Xi,Xj) = exp(−γ||Xi − Xj||2),γ >0

SVM-K2 has two parameters:

1. regularization cost – C, we test C as C = 1 × 10e ,where

e ranges from 0.0 to 10.0 by an increment of 1.0.

2. γ : scaling factor of Gaussian exponential function, we

test in the range from 0.0 to 1.0 by an increment of 0.1.

(if γ = 0, Weka use it as γ = 1/number of features)

For each feature subset, Table 9 presents the parameter

values of SVM-K2 that produce best results.

Table 9. SVM-K2 Hyper-parameters values for HTTP-only,

IRC-only, and TOTAL

Feature

set ID

HTTP-only IRC-only TOTAL

NotNormali

zed Normalized NotNormaliz

ed Normalized NotNormaliz

ed Normalized

e γ e γ e γ e γ e γ e γ

1 1 0 6 0 0 0 1 0.5 1 0 3 0.6

2 1 0.1 7 0.3 1 0.1 8 0.5 1 0.1 7 0.7

3 1 0.1 3 0.5 1 0.1 3 0.4 1 0.1 6 0.1

4 1 0.1 10 0.7 1 0.1 8 0.3 1 0 6 0.9

5 1 0.1 6 0.4 1 0.1 8 0.3 1 0.1 6 0.7

6 1 0.1 7 0.9 1 0.1 9 0.9 1 0.1 8 1

7 1 0.1 10 1 1 0.1 7 0.1 1 0.1 10 1

8 1 0.1 8 0.9 3 0.1 6 0.9 4 0.1 7 1

9 3 0.1 5 1 1 0.1 3 0.5 1 0.1 6 0.8

5.4. Model Creation

After getting the optimized hyper-parameter values for both

J48 and different SVM kernels, the next step is to create the

detection model using those hyper-parameters by

experimenting with each candidate feature set. The final

objective is to determine which feature subset produces best

detection results.

During parameter selection step, an initial model is already

created with 5-fold cross-validation (CV) performance

estimation. In 5-fold cross-validation (CV), the training

dataset (malicious + benign) is randomly partitioned into 5

equal size datasets. Each dataset is used once to validate the

model that was created using the remaining 4 datasets. Then,

all 5 F1-measure values are combined in a single value that is

used in hyper-parameter optimization as described in next

section. In addition to the above splitting mechanisms, which

is completely random, we applied two other mechanisms

(combination and split 64-36%) to split the malicious dataset

between training and validation phase:

• In combination mechanism, traces from two botware

families (IRC or/and HTTP) are used in training phase and

the third family is kept for validation. For example, in

HTTP-only model, if the two families (Blackenergy and

Zeus) are used in training phase, Vertexnet family will be

used in validation phase. This step is repeated for all

family pairs, and then a combined F1-measure is

calculated from F1-measure of all combinations. We can

consider the combination mechanism as a concrete

partitioned 3-fold cross-validation. The advantage of this

method is to ensure that our model is more generic and

independent on botware families.

• In split 66-34% mechanism, all botware families will be

used in training and validation phase. However, only

traces of 4-runs are used in the training phase out from the

6-run samples. This makes 66% of dataset size dedicated

571

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

for training and the other %34 dedicated for validation.

The advantage of this method is to ensure that the

detection model is more generic and independent on

botnet configuration because each run of the botware

sample is different from the others with regard to botnet

and network configuration.

5.5. Model Selection

In our experiments, we create three different models to detect

HTTP-based botnet (HTTP-only), IRC-based botnet (IRC-

only) and both HTTP and IRC botnet (TOTAL). For each of

these models, there are 18-candidates features subsets (9-

normalized features subsets + 9-not normalized features

subsets). For each of these features subset, we applied the

three split mechanisms (Cross Validation-CV, Combination,

and split 66%-34%) to divide the dataset between training

and validation phase. As mentioned before, we use J48 and

three different kernels in SVM as machine learning

algorithm. The goal now is to answer the question of which is

the best performing feature-subset with which model and

which machine learning algorithm?.

As explained earlier, the botnet dataset is an imbalanced

dataset where the number of positive instances is far less than

the number of negative instances. F1-measure is a trade off

between Precision and Recall metrics to assess the detection

quality. It is recommended as a performance metric for such

imbalanced datasets [46]. However, in our case, there are

three different F1-measure values coming form Cross

Validation, Combination, and split 66%-34% results.

Therefore, we need a method to combine or average these

different values. There are mainly two methods for this

purpose; either by calculating the micro-average or the

macro-average.

• Micro-average Method: we first calculate the total of

TP, FP, and FN which are the summation of their values

for different datasets (or folds). Then calculate F1-

measure using the formula in Equation (4):

 Eq. (4)

• Macro-average Method: Instead of calculating F1-

measure based on overall TP, FP and FN, we calculate the

F1-measure for different datasets (or folds), Equation (5).

Then, we take the average of these F1-measures, Equation

(6):

 Eq. (5)

 Eq. (6)

Based on previous research in [47], [48], the micro-average

method is less biased and more precise than the macro-average

method for equally sized datasets (or folds). Therefore we

decided to use the micro-average method in 5-fold cross-

validation and combination mechanisms. Then to equally

weight the results from all experiments (i.e., cross-validation,

combination, and split 66%-34% mechanisms), the macro-

average method is used to calculate a single F1-measure for the

whole experiment. This single value of F1-measure will be the

performance metric upon which we can determine the best

model created over 18 feature subsets using J48 and three

different SVM Kernels.

The final output of model selection process is three models for

HTTP-only, IRC-only and TOTAL. These models will be

integrated into BoTCap as explained in next section. To

evaluate the performance of BoTCap, we test these models

using the unseen dataset that was described in Section 5.1 (i.e.,

neither used in training nor in hyper-parameter optimization

phase).

5.6. Implementation

In this section, we present a prototype of BoTCap detection

system that we implemented in Python. BoTCap is designed

and implemented to detect local infected hosts by comparing

a set of statistical features, extracted per trace, through a pre-

trained machine learning model. As shown in Figure 5,

BoTCap consists of four main components: Preprocessing,

Trace Extractor, Feature Extractor, and Model Matcher.

Figure 5. BoTCap component

Preprocessing: The input for BoTCap is a network traffic

capture that normally consists of a wide range of internet

protocols. Preprocessing module filters out botnet-irrelevant

traffic and keeps only TCP and UDP traffic.

Trace Extractor: the captured traffic is in the form of

sporadic packets. BoTCap reassembles flows from the

captured packet data. After that, it aggregates the flows that

have the same 3-tuple (SrcIP, DstIP, DstPort) as a trace.

Feature Extractor: For each trace, a set of statistical

features are extracted. Feature extraction is performed in

three steps. Firstly, it extracts statistical features per flow

using Argus (Audit Record Generation and Utilization

System) [49]. After that, we calculate the features in Table 1

per trace based on the trace's flows. Regarding the periodicity

features (Table 2), we modified CAPTCP [50] to be

applicable for both TCP and UDP traffic. It calculates the

throughput of the up-link traffic. Then, it extracts the

periodicity features using the algorithm described in (Code

1). The output of feature extractor is represented as a vector

of features.

Model Matcher: To check whether a trace is a botnet trace,

BoTCap compares the trace's vector of features to HTTP-

only, IRC-only or TOTAL models. If the trace matches any

model, BoTCap produces a detailed report that includes the

internal host IP (bot) that produced this trace and the remote

server IP which may be the C&C server of centralized botnet

or another bot in the P2P botnet.

6. Results and Discussion

In the first part of this section, we report and discuss the

output of model selection step. After that, we evaluate the

Networ

k Traffic

Preprocessing

Report

Trace

Extractor

Feature

Extractor

Model

Matcher

572

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

performance of BoTCap using the test dataset. The results of

the evaluation step will be reported in the second part.

6.1. Model Selection Results

The next sets of figures present a histogram of F1-measure

values calculated as described in Section 5.5. In each figure,

the X-axis represents the ID of the feature set that were

presented in Table 5. In the left half (NotNormalized), it

shows the absolute values of the features while the right half

(Normalized) shows the normalized values of the features.

The columns of the histogram corresponds to F1-measure

values for 5-fold CV, Combination, and split 64-36

respectively. Numbers in the top of the columns present the

macro-average of F1-measure values as calculated by

Equation (6).

6.1.1. J48 Algorithm

Figures I-(a, b, c), in Appendix A, display J48 results for

HTTP-only, IRC-only and Total respectively. In Figure I-(a),

we notice that the feature set with ID (5)-Normalized

produces the best results (i.e., Highest F1-measure). When

we examine the results of IRC-only shown in Figure I-(b), we

find that feature set with ID (6)-NotNormalized has the

highest F1-measure value. Finally, the results of TOTAL,

indicates that feature set with ID (5) – NotNormalized has the

highest F1-measure value, Figure I-(c). Over all, we observed

that J48 results have more variations between the different

feature sets in the case of HTTP-only regardless of being

normalized or not where combined F1 measures (macro

average) ranges from 0.667 to 0.957. By contrast, almost all

J48 results of the IRC-only are more than 0.85 whereas all

TOTAL results are approximately near 0.9.

6.1.2. SVM-K0

Figures II-(a, b, c) display the results obtained from SVM-K0

algorithm “linear kernel”. As shown in Figure II-(a), HTTP-

only detection models using feature sets with IDs (2, 6, 7) –

NotNormalized have the highest and the same value of F1-

measure (0.903). By reference to Table 5, feature set-6 is

subset from set-2 and set-7 is subset form set-6. We believe

that is the reason why three sets give the same F1-measure

value. This also means that the set with smallest number of

features eliminates the need for extra features in the other

two sets that seem to be redundant and have no effect.

Therefore, we select feature set with ID-7-NotNormalized.

Referring to Figures II-(b) and II-(c), the normalization

process generally enhances the performance of IRC-only and

TOTAL detection models. In IRC-only normalized feature

set, F1-measure starts from 0.625 up to 0.958 but the highest

F1-measure value 0.972, using feature set with ID (1)-

NotNormalized. In TOTAL model, feature set with ID (1)–

Normalized has the highest F1-measure value.

6.1.3. SVM-k1

As shown in Figures III-(a, b, c), the normalization process

have a significant impact on the performance of the models

that use SVM-K1 algorithm “polynomial kernel”. As shown

in Figure III-(a), all feature sets that are Normalized, for

HTTP-only models have more than 0.60 F1-measure value.

Despite that the macro-average of F1-measure for 5-fold CV,

Combination and split experiments in some sets such as sets

(1, 3, 6, 8) can reach more than 0.75, but the result of the

three experiments are not consistent. Feature set with ID-5 –

Normalized produces the highest and more consistent F1-

measure (0.947) for HTTP-only. Referring to Figures III-(b)

and III-(c) respectively, feature set with ID (1) – Normalized

have the highest F1-measure (0.993) for IRC-only and

feature set with ID (5) – Normalized have the highest F1-

measure (0.941) for TOTAL model.

6.1.4. SVM-k2

Figures IV-(a, b, c) illustrate the results of using SVM-K2

algorithm “radial kernel”. Like SVM-K1, the normalization

process have a significant impact on the performance of the

models that use SVM-K2 algorithm. As shown in Figures IV-

(a), and IV-(c), feature set with ID (5)–Normalized has the

highest F1-measure value for HTTP-only model (0.937) and

for TOTAL model (0.951) respectively. In Figure IV-(b), the

model that uses feature set with ID (1)- NotNormalized

cannot classify correctly any actual IRC malicious trace as a

positive class “malicious class”. In contrast, the same feature

set with ID (1) but 'Normalized' produces the highest F1-

measure (0.997) for IRC-only.

6.1.5. Final Selection

Table 10 summarizes the results that leads to answer the first part

of the question that was raised in Section 5.5, “which is the best

performing feature-subset?”. The remaining part of the question

is which ML algorithm gives the highest detection performance?

In order to be integrated in BoTCap.

As shown in Table 10, both J48 and the three different kernels of

SVM are performing well in terms of F1-measure. Therefore, a

good compromise is to combine these ML algorithms in multi-

stage detection (voting majority rule or weighted models) or

simply pick up the one that gives the highest performance; as we

did hereafter in “Selection” column.

Table 10. Summary of Model Selection

Model
ML

Algorithm
Feature-Set F1-measure Selection

HTTP-

only

J48 5 Normalized 0.957
Algorithm: J48,
Feature-Set: (5-

Normalized)

SVM-K0 7 NotNormalized 0.903
SVM-K1 5 Normalized 0.947
SVM-K2 5 Normalized 0.937

IRC-

only

J48 6 NotNormalized 0.981
Algorithm: SVM-K2,

Feature-Set: (1-

Normalized)

SVM-K0 1 NotNormalized 0.972
SVM-K1 1 Normalized 0.993
SVM-K2 1 Normalized 0.997

TOTAL

J48 5 NotNormalized 0.95
Algorithm:J48,
Feature-Set: (5-

NotNormalized)

SVM-K0 1 Normalized 0.922
SVM-K1 5 Normalized 0.941
SVM-K2 5 Normalized 0.941

6.2. BoTCap Evaluation result

To evaluate BoTCap, another dataset different from the training

and the testing dataset was employed. We compare the values of

the three metrics: F1-measure, TPR, and FPR. F1-measure is the

metric that we have used during all design steps due to the

imbalance of the botnet dataset. TPR and FPR provide more

detailed results and fine-grain perspective about the performance

of BoTCap. Moreover, they are most frequently used in

evaluating previous works, which enables the comparison of the

performance of our approach with other previous research work.

The TPR – True Positive Rate, known also as the “recall” or the

“sensitivity measure” reflects the capability of BoTCap to

capture correctly the malicious traces. On the other hand, FPR –

False Positive Rate – reflects the total number of misclassified

573

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

benign traces that are classified as malicious. TPR and F1-

Measure are already defined by Equations (2 and 3), while FPR

is defined in Equation (7):

 Eq. (7)

As shown in Table 11, BoTCap can achieve 80% TPR with

0.05% of FPR in HTTP botnet detection, and 100% TPR

with 0.025% of FPR in IRC botnet detection. Regarding the

TOTAL model, it achieves 65% TPR with 0.15% FPR,

which is an acceptable performance in botnet detection

research field.

Table 11: BoTCap performance

Model
ML

Algorithm
Feature-set

Training

Dataset
Testing Dataset

F1-

measure
F1-

measure
TPR FPR

HTTP-only J48 5-Normalized 0.957 0.842 0.8 0.000501

IRC-only SVM-K2 1-Normalized 0.997 0.976 0.95 0.00025

TOTAL J48
5-

NotNormalized
0.95 0.722 0.65 0.001502

It is worth to note that we have also evaluated our BoTCap

against a portion of CTU dataset that contains botnet traffic

[51]. CTU-10 was selected for two reasons: Firstly, it is well

described and annotated bot-C&C trace and secondly the

number of bots and duration of traffic are satisfying our

conditions (more than one bot and duration ~ 6 Hours).

Unfortunately, after using the dataset as it is, BoTCap gets

100% FNR. By analyzing the CTU-10 dataset, we discovered

the bad detection result is due to the fast-flux domain

communication. This why the traffic between each bot and

the C&C server was extracted in separate traces and are not

included in the same trace. Having a closer look into the

evaluation dataset revealed that the scenario of the dataset

creation experiment contains 4 runs (i.e., start-up/shutdown

actions) of the VMs. The duration of the first run is one and

half hour while the other three runs are less than one hour.

Besides that, the C&C url "irc.freenode.net" is resolved by

DNS query every time the VMs start-up. Therefore, each

start-up C&C url is resolved with a different IP which creates

new trace. Consequently, the duration of extracted traces

between each bot and C&C server are:

• one and half hour (only 4 traces) ==> Is_periodic = 0:

not periodic due to std of freq. more than 10% of the

freq.

• less than one hour (other 40 traces) ==> Is_periodic = -2:

not periodic due to duration.

In what concerns the fast-flux communication where bots can

be assigned several varying IPs instead of having fixed IPs.

In this case, bots do not connect to known IPs but rather they

connect to domain names that can be mapped to frequently

changing IPs. This can deceive botnet detection systems

because each time the bot connects to C&C using different

IP. We solved this problem by identifying the trace in term of

"Source IP, Destination domain instead of Destination IP,

Destination Port" and the Destination domain can be resolved

to one or more IPs. The procedure that implements fast-flux

complements the main BoTCap analysis. It extracts DNS

queries and arrange results in a dictionary. Then, it creates

the flows using dest. IPs (as before) but while doing reverse

lookup for each dest. IP in DNS dictionary. If there is a dest.

domain matching the dest. IP, replace the dest. IP by the dest.

domain in flows. Otherwise, it keeps the dest. IP as it is and

BoTCap continues its normal routine.

Accordingly, BoTCap algorithm and code was modified to

overcome fast-flux technique where the results given in Table

11 are produced by the improved BoTCap.

7. Conclusion and Future work

This paper, presents our approach for machine learning-

based botnet detection and its implementation (BoTCap). It

aims to detect individual bots based on ML algorithm by

using a set of distinctive statistical features extracted per

trace.

During our research we have met several problems. The lack

of botnet datasets, the lack of botware samples, fast-flux and

encrypted botnet communications are just examples of

challenging problems in botnet research. We have partially

solved the botnet dataset problem by creating our own. We

have deployed and operated some botnet samples locally

within our laboratory. However, this solution is effort

consuming as we should find botware samples from the wild

and be able to render it functional, which is intrinsically

difficult. This was obvious in the dataset that we have

constructed, which does not contain peer to peer datasets

because we couldn’t find functioning P2P botware samples

during the research time window. This is the main reason

why we decided to focus on centralized botnets (IRC and

HTTP). Another shortcoming of the dataset is that it does not

cover the latest trends in botnet communications. For

example, employing social networks such as Facebook and

Twitter as communication channels between bots and C&C.

Regarding the encrypted traffic, we argue that the statistical-

based trace feature can solve this problem where the

detection is independent of traffic contents, which was

verified by including encrypted botnet traffic in the dataset

(both learning and testing datasets).

We addressed all ML approach steps to find the set of

features that give the highest F1-measure using J48 and three

different kernels of SVM. A botnet dataset was created in

laboratory from real botware samples of two types: HTTP

and IRC. Based on this dataset, separate ML models were

created: HTTP-Only, IRC-Only and TOTAL that contains

both http and IRC. The models were tested against a

“foreign” dataset: CTU-10. Unfortunately, it showed some

glitches related to fast-flux problem. Accordingly, we

modified the trace extraction part in BoTCap to be able to

deal with botware that employ fast-flux. Then the trained ML

models were integrated in a tool called BoTCap.

The results showed that our tool can detect bot infections

with high detection rates up to 80% and 95 % for HTTP and

IRC based botnet respectively and very small false positive

rates of nearly 0.05% and 0.025% respectively.

The main contribution of our approach is its ability to detect

and identify individual bots without the need to collect

massive data from several infected machines. Besides that,

our approach is based on statistics features of botnet traffic,

which means that it is independent of traffic contents. This

has two advantages: first, it is supposed to detect a wide

range of botnets not only the ones that were included in the

training dataset. Second, it is immune to encrypted botnet

traffic that could hinder bot detection. Additionally, the paper

presents a detailed description of the design, the

574

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

experimentation and the implementation in order to help

other researchers (especially juniors) to reproduce this work

and avoid the mistakes.

Several avenues for the future work have been already

identified for future improvements of the approach and the

BoTCap tool. The most important task is to extend the

approach to be able to detect new generations of botnet. In

particular, P2P botnets and new bots that use new

communication channels such as social media.

References

[1] J. Wang , I. C. Paschalidis, "Botnet detection based on

anomaly and community detection," IEEE Transaction on

Control Network Systems, Vol.4 No. 2, pp392–404, 2017.
[2] Tzy-Shiah Wang, Hui-Tang Lin, Wei-Tsung Cheng, Chang Yu

Chen, “DBod: Clustering and Detecting DGA-based Botnets

Using DNS Traffic Analysis” International Journal on

Computer Security, Elsevier, Vol. 64, pp 1–15, 2017.
[3] Nur Hidayah Mohd Saudi, Faizal M. A, Siti Rahayu Selamat,

Rudy Fadhlee M. D, Wan Ahmad Ramzi W. Y, "Revealing

the Feature Influence in HTTP Botnet Detection,"

International Journal of Communication Networks and

Information Security (IJCNIS), Vol. 9, No. 2, pp 274-281,

2017.
[4] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,

and I. H. Witten, “The WEKA data mining software: an

update”, ACM SIGKDD Explor. Newsl., Vol. 11, No. 1, pp.

10–18, 2009.

[5] J. R. Quinlan, “C4.5: Programs for Machine Learning”,

Morgan Kaufmann Publishers Inc., 1993.

[6] C. C. Chang and C.-J. Lin, “LIBSVM: A Library for

Support Vector Machines”, ACM Transaction

Intelligent System Technology, Vol. 2, No. 3, pp. 1–27,

2011.

[7] C. W. Hsu, C. C. Chang, C. J. Lin, “A practical guide to

support vector classification”, Technical Report,

Department of Computer Science, National Taiwan

University, 2003.

[8] A. Moore, D. Zuev, M. Crogan, “Discriminators for use

in flow-based classification”, Technical Report,

Department of Computer Science, Queen Mary and

Westfield College, 2005.

[9] A. N. Z.-H. Riyad Alshammari, “Identification of VoIP

Encrypted Traffic Using a Machine Learning

Approach,” Journal of King Saud University on

Computer Information Science, Vol. 55, No. 1, 2015.

[10] F. Tegeler, X. Fu, G. Vigna, C. Kruegel, “BotFinder:

Finding Bots in Network Traffic Without Deep Packet

Inspection”, in Proceedings of the 8th International

Conference on Emerging Networking Experiments and

Technologies, pp. 349–360, 2012.

[11] P. D. Welch, “The use of fast Fourier transform for the

estimation of power spectra: A method based on time

averaging over short, modified periodograms”, IEEE

Trans. Audio Electroacoustics, Vol. 15, No. 2, pp. 70–

73, Jun. 1967.

[12] S. van der Walt, S. C. Colbert and G. Varoquaux, "The

NumPy Array: A Structure for Efficient Numerical

Computation", in Computing in Science & Engineering,

Vol. 13, No. 2, pp. 22-30, 2011.

[13] E. Jones, T. Oliphant, P. Peterson, and others, “SciPy:

Open source scientific tools for Python”, 2001.

[14] Muhammad ElSheikh, Mohammed S. Gadelrab,

Mahmoud Ghoneim, Mohsen Rashwan, “BoTGen: A

New Approach for In-Lab Generation of Botnet

Datasets”, 9th IEEE International Conference on

Malicious and Unwanted Software (MALCON), 2014.

[15] “Analysis and treatment of Aryan bot”, Technical

Report, Reverse Lab-Malware analysis and reversing

stuff, 2013.

[16] “SonicALERT: AryaN IRC Botnet – Part1”, Technical

Report,DELL Sonic WALL, 2012.

[17] C. Rong Hwa, “NGR Rootkit”, Technical Report,

InfoSec Institute, 2016.

[18] N. Jayanand, “Update: NGRBot Posing as Skype Drops

Ransomware With Fake McAfee Logo”, Technical

Report, McAfee, 2012.

[19] “SonicALERT: Gone with the wings ngrBot dropper”,

Technical Report, DELL-SonicWALL, 2013.

[20] E. Patil, “Analysis of Rxbot”, Master Thesis, San Jose

State University, 2009.

[21] G. Gu, R. Perdisci, J. Zhang, W. Lee, et al. “BotMiner:

Clustering Analysis of Network Traffic for Protocol-and

Structure-Independent Botnet Detection”, In

Proceedings of the 17th USENIX Security Symposium,

pp. 139–154, 2008.

[22] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting

Botnet Command and Control Channels in Network

Traffic”, Proceedings of the 15th Annual Network and

Distributed System Security Symposium, 2008.

[23] T.-F. Yen and M. K. Reiter, “Traffic aggregation for

malware detection,” in the proceeding of Detection of

Intrusions and Malware, and Vulnerability Assessment

(DIMVA'08), Springer, pp. 207–227, 2008.

[24] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel, “Botfinder:

Finding Bots In Network Traffic Without Deep Packet

Inspection,” In Proceedings of the 8th International

Conference on Emerging Networking Experiments and

Technologies, pp. 349–360, 2012.

[25] J. Zhang, X. Luo, R. Perdisci, G. Gu, W. Lee, and N.

Feamster, “Boosting The Scalability Of Botnet

Detection Using Adaptive Traffic Sampling,” In

Proceedings of the 6th ACM Symposium on

Information, Computer and Communications Security,

pp. 124–134, 2011.

[26] T.-F. Yen and M. K. Reiter, “Are Your Hosts Trading

Or Plotting? Telling P2P File-Sharing and Bots Apart”,

In Proceeding of IEEE 30th International Conference

on Distributed Computing Systems (ICDCS), pp. 241–

252, 2010.

[27] N. Kheir and C. Wolley, “Botsuer: Suing Stealthy P2P

Bots In Network Traffic Through Netflow Analysis”, In

Poceeding of Cryptology and Network Security.

Springer, pp. 162–178, 2013.

[28] B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li,

“Peerrush: Mining For Unwanted P2P Traffic,” Journal

of Information Security and Applications, Vol. 19, No.

3, pp. 194–208, 2014.

[29] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, and X. Luo,

“Detecting Stealthy P2P Botnets Using Statistical

Traffic Fingerprints,” In the Proceeding of IEEE/IFIP

41st International Conference on Dependable Systems

& Networks (DSN), pp. 121–132, 2011.

[30] J. Zhang, R. Perdisci, W. Lee, X. Luo, and U. Sarfraz,

“Building A Scalable System for Stealthy P2P-Botnet

Detection”, IEEE Transactions on Information

Forensics and Security, Vol. 9, No. 1, pp. 27–38, 2014.

575

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

[31] J. Nazario, “Blackenergy DDoS Bot Analysis”,

Technical Report, Arbor, p. 11, 2007.

[32] C. Shah, “Evolving DDoS Botnets: 1. BlackEnergy”,

Technical Report, McAfee, 2011.

[33] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A.

Youssef, M. Debbabi, and L. Wang, “On The Analysis

of The Zeus Botnet Crimeware Toolkit,” In the

Proceeding of the 8th Annual International Conference

on Privacy Security and Trust (PST), pp. 31–38, 2010.

[34] C. Shah, “Zeus Crimeware Toolkit”, Technical Report,

McAfee, 2010.

[35] C. Livadas, R. Walsh, D. Lapsley and W. T. Strayer,

"Usilng Machine Learning Technliques to Identify

Botnet Traffic", Proceedings of the 31st IEEE

Conference on Local Computer Networks, pp. 967-974,

2006.

[36] D. Danchev, “A Peek Inside the Vertex Net Loader,”

Dancho Danchev’s Blog - Mind Streams of Information

Security Knowledge, 2011.

[37] “Malware Intelligence Blog: VertexNet Loader

crimeware timeline, popular functions and marketing

schene. A division of Malware Intelligence,” 02-Jan-

2014.

[38] “Web Attack: VertexNet Bot Activity : Attack

Signature”, Technical Report, Symantec, 2011.

[39] F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F.

Risso, and k. c. claffy, “GT: Picking Up the Truth from

the Ground for Internet Traffic”, SIGCOMM Review of

Computer Communication, Vol. 39, No. 5, pp. 12–18,

2009.

[40] Athena IRC Bot Description:

https://www.botnets.fr/wiki.old/index.php/Athena

[41] J. Milletary, “Citadel Trojan Malware Analysis”,

Technical Report, DELL SecureWorks, 2012.

[42] A. Rahimian, R. Ziarati, S. Preda, and M. Debbabi, “On

the Reverse Engineering of the Citadel Botnet,” in

Foundations and Practice of Security, Springer, pp.

408–425, 2014.

[43] K. P. Bennett and E. Parrado-Hernández, “The interplay

of optimization and machine learning research,”

Journal of Machine Learning Research, Vol. 7, pp.

1265–1281, 2006.

[44] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-

Brown, “Auto-WEKA: Combined Selection and

Hyperparameter Optimization of Classification

Algorithms,” in Proceedings of the 19th ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, pp. 847–855, 2013.

[45] J. Bergstra and Y. Bengio, “Random Search for Hyper-

Parameter Optimization,” Journal of Machine Learning

Research, Vol. 13, No. 1, pp. 281–305, 2012.

[46] N. V. Chawla, “Data mining for imbalanced datasets: An

overview,” in Data mining and knowledge discovery

handbook, Springer, pp. 853–867, 2005.

[47] G. Forman and M. Scholz, “Apples-to-apples in Cross-

validation Studies: Pitfalls in Classifier Performance

Measurement”, SIGKDD Explor Newsl, Vol. 12, No. 1,

pp. 49–57, 2010.

[48] V. Van Asch, “Macro-and micro-averaged evaluation

measures [[BASIC DRAFT]]”, 2013.

[49] ARGUS- Auditing Network Activity:

http://qosient.com/argus/

[50] CAPTCP - TCP Analyzer:

http://research.protocollabs.com/captcp/

[51] Garcia, Sebastian. Malware Capture Facility Project:

https://stratosphereips.org

576

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

Appendix A

Figure I. F1-measure for J48 algorithm: (a) J48-HTTP, (b) J48-IRC, (c) J48-TOTAL

577

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

Figure II. F1-measure of SVM-K0 algorithm for: (a) HTTP-only, (b) IRC-only and (c) TOTAL

578

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

Figure III. F1-measure of SVM-K1 algorithm for: (a) HTTP-only, (b) IRC-only and (c) TOTAL

579

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

Figure IV. F1-measure of SVM-K2 algorithm for: (a) HTTP-only, (b) IRC-only and (c) TOTAL

