
496
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

Enhancing the Performance of the Advanced

Encryption Standard (AES) Algorithm

Using Multiple Substitution Boxes

Felicisimo V. Wenceslao, Jr.

Institute of Information and Computer Studies

Northern Iloilo Polytechnic State College, Estancia, Iloilo, Philippines

Abstract: This paper proposes for a modified version of the AES

algorithm using multiple substitution boxes (S-Boxes). While many

studies have been conducted specifically on modifying the S-Box,

these studies were made to replace the Rijndael S-boxes in the AES

cipher. We propose to implement two substitution boxes, where the

first S-Box is the Rijndael S-box and will be used as is. The second

S-Box was constructed through an XOR operation and affine

transformation and will replace the MixColumns operation within

the internal rounds in the cipher. Based on simulation testing

conducted, it was found out that there is a significant difference in

the speed performance between the two versions favouring the

proposed AES algorithm using multiple S-Box. The findings also

revealed that in both encryption and decryption processes, the AES-

2SBox performed more efficiently at 27.638% and 108.369%

respectively as compared to the original AES algorithm. However,

when tested using the avalanche effect, the changes in the output

bits were below the minimum expected rate.

Keywords: AES algorithm, S-box, Cryptography, Affine

Transformation

1. Introduction

In 1997, the National Institute of Standards and Technology

(NIST) started a process to identify a replacement for the

Data Encryption Standard (DES) which was generally

recognized to be not secured due to fast advances in

computer processing power. Unlike the selection process for

the DES, the Secure Hash Algorithm (SHA-1) and the

Digital Signature Algorithm (DSA), NIST had declared that

the AES selection process would be open and have invited

experts in the field of cryptography and data security from

around the world to participate. There were five encryption

algorithms that made to the final round of the screening

process.

Ultimately, the encryption algorithm proposed by the

Belgium cryptographers Joan Daeman and Vincent Rijmen

was selected. Prior to selection, Daeman and Rijmen used

the name Rijndael (derived from their names) for their

algorithm. After adoption, the encryption algorithm was

given the name Advanced Encryption Standard (AES) which

is in common use today[1].

In 2001, the NIST formally adopted the AES encryption

algorithm and published it as a federal standard under the

designation FIPS-197. It was chosen because of its security,

performance, efficiency, implementability, and low memory

requirements.

The AES algorithm relies on a substitution-permutation

network and operates quickly in both hardware and software

implementations. It uses a round function that is composed

of four different byte-oriented transformations namely

Substitution Bytes, Shift Rows, Mix Columns and Add

Round Key. The Substitution Bytes (S-Box) in AES

algorithm plays an important role as it provides confusion in

the cipher text. The basic function of S-Box is to transforms

the 8 bits input data into 8 bits secret data using a pre-

computed look-up-table. On the other hand, the Mix

Columns function provides strength against differential and

linear attacks due to the complexity of its mathematical

operations. These complex mathematical operations may

require computational resources in software implementation.

We assume that by replacing the Mix Columns function, the

speed performance of the AES algorithm will be improved.

It is in this context that this paper aims to propose for a

modified AES algorithm using multiple S-Boxes. With the

modified version of the AES algorithm, we expect

improvement in the speed performance in both the

encryption and decryption processes. Hence, we will also

compare the AES-Rijndael version and the modified AES

algorithm using multiple S-Boxes and evaluate their speed

performance properties during encryption and decryption.

2. Review of Related Studies

Modifying the AES cipher has been the subject of numerous

studies. Many of these studies were made to changing the

original S-Box using some other techniques or proposing

new structures.

For instance, [2] proposed for a modified AES algorithm by

changing the original structure where the Mix Columns

function was replaced with a Permutation function. Hence,

the rounds were managed by the IP Table borrowed from the

DES algorithm. The results of their investigation showed

that their proposed encryption scheme was fast while still

provided good security.

In [3], proposed a Key-Dependent S-Box (AES-KDS) to

make the AES algorithm stronger. The encryption and

decryption process AES-KDS is similar to the original AES

cipher as to the number of rounds, data and key size. Each

round functions in the modified version resembles that of

original AES, but is composed of 5 stages rather than 4

stages. The extra stage named Rotate S-box is introduced at

the start of each round function. The other four stages remain

the same. However, for the decryption process there are only

4 stages similar in the original cipher. But the InvSubBytes

operation is modified to reverse the effect of the

Rotate_Sbox operation previously performed in the

497
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

encryption process. This is followed by a description of key

expansion and generation of shift offset-matrix.

In [4], the authors successfully optimized the AES algorithm

by proposing a novel method that involved Shift Row and S-

Box modifications to map the Mix Column transformation.

This approached eliminated the Sub Bytes function. The

result of their experiments showed that both encryption and

decryption processes an improvement of 86.143% and

13.085% respectively.

In [5], proposed a substitution box that makes use of the RC4

key schedule algorithm (KSA). The resulting matrix is a

Key Dependent S-Box based that is dynamically generated

based from some key constructed using RC4. The RC4-

generated S-Box was used to replace the Rijndael S-Box

during the encryption and decryption processes.

In [6], proposed another Key Dependent S-Box aimed at

substituting the Rijndael S-Box. In their paper, they

modified the AES cipher by placing another phase in the

beginning of the round function. They call the extra phase as

the S-Box Rotation that rearranges by rotating the original S-

Box according to a round key. The round key was derived

using the key schedule algorithm. The rotation value is

dependent on the entire round key. Their experiments

showed that the enhancement on the original AES did not

violate the security properties while further introduced

confusion without violating the diffusion property.

In [7], proposed to increase the complexity and security of

AES S-box by modifying the affine transformation and

adding an affine transformation. Performance analysis

demonstrated that the improvement in the cryptographic

properties of the AES S-box. Moreover, the number of terms

in the improved AES S-box algebraic expression was

increased. Comparison results suggested that the improved

AES S-box has better performance and can readily be

applied to AES.

In [8], proposed an enhanced version of the AES-128

algorithm by reducing the number of rounds from 10 rounds

to 8 rounds. They assumed that with less number of rounds,

it will result in less processing time of the AES algorithm.

However, the reduction in the number of rounds to 8 is risky

in security attacks such as differential and distinguishing

attacks. To compensate such risk, they enhanced the AES

algorithm using a hash function to mitigate the attacks. Their

proposed AES algorithm, while less in the number of rounds,

was equipped with an extra phase called a hash function

using the SHA-256 in each round. The results revealed that

the hashing function improved the security aspects of the

cipher but required more number of operations.

In [9], proposed a modified algorithm of the AES known as

the E-AES where the input plaintext and encryption key are

mapped into various binary codes instead of giving plaintext

and encryption key directly to the AES algorithm. The E-

AES algorithm included two more steps to original AES

algorithm, which converts plain text into binary with logical

and strong XOR operation. Results of the experiments

showed that the performance of E-AES is significantly better

than AES algorithm. This result is achieved because the

cipher produced by E-AES has strong bit level dependence

and concluded that E-AES can produce cipher with high

avalanche effect in any binary code conversion as compared

to AES.

3. Basic Concept of the AES Algorithm

The AES algorithm is a block cipher with a block length of

128 bits. The key which is provided as the input is expanded

into an array of key schedule words. Each word has a size of

four bytes. The total key schedule for the 128-bit key is 44

words.

AES allows for three different key lengths: 128, 192, and

256 bits. A 128-bit key length will require the cipher module

with 10 rounds of substitutions and permutations to encrypt

data input (plaintext)[10], 12 rounds for 192-bit keys, and 14

rounds for 256-bit keys. The decryption process follows the

same number of rounds as well. All the computations in

AES algorithm are performed on bytes instead of bits.

Hence, the 128 bits of plaintext is treated as 16 bytes. These

16 bytes are positioned in a matrix of four rows and four

columns. During the encryption and decryption processes,

the 16 bytes of data will form a changeable (4*4) array

called the state array[11].

For the encryption, the state array consists initially of the

input data. This array will keep changing until the final

encrypted data is reach. To decrypt the text, the state array

start from the encrypted data and will keep changing until the

original data is produced. The encryption of AES is carried

out in blocks with a fixed block size of 128 bits each. The

AES algorithm performs the transformation from plaintext to

cipher text and vice versa based on a specified number of

repetitions as defined by the key. Figure 1 shows the AES

cipher structure.

Figure 1. The AES Algorithm Structure.

Except for the last round in each case, all other rounds are

identical. Inside each round are four different stages. These

are:

498
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

3.1 Substitute Bytes (SubBytes) Function

The SubBytes function is a non-linear byte substitution that

operates independently on each byte of the State using a

substitution table (S-box)[12]. This is a major reason for the

security of the AES which is constructed using multiplicative

inverse and affine transformation. It provides nonlinearity

and confusion. With the help of this lookup table, the 16

bytes of the state are substituted by the corresponding values

found in the table. Figure 2 shows the SubBytes operation.

Figure 2. SubBytes Operation

3.2 Shift Rows (ShiftRows Operation)

The ShiftRows operation (figure 3) is a simple byte

transposition that provides inter-column diffusion where the

bytes in the last three rows of the states are shifted. In this

phase, the second row of the state is shifted by one byte

position to the left of the matrix; the third row of the state is

shifted by two bytes position to the left of the matrix; and the

fourth row of the state is shifted by three bytes position to the

left[12].

Figure 3. ShiftRows Operation

3.3 Mix Columns (MixColumns Operation)

Figure 4 shows the MixColumns operation that provides to

operate on the state column-by-column, treating each column

as a four-term polynomial over GF(28) and multiplied

modulo x4 + 1 with a fixed polynomial [12]. The bytes are

treated as polynomials rather than numbers.

Figure 4. MixColumns Operation

3.4 Add Round Key (AddRoundKey Operation)

The AddRoundKey operation is simple. In this

transformation, a round key is added to the State by a simple

bitwise XOR operation. Each round key consists of Nb

words from the key schedule[13]. It is performed by XOR-

ing each byte of the State and the round key. Figure 5 shows

the AddRoundKey operation.

Figure 5. AddRoundKey Operation

For encryption, the individual transformations consist of

SubBytes(), ShiftRows(), MixColumns() and

AddRoundKey(). These transformations play a role in

processing the state[13]. However, the final round is only

consists of three stages: SubBytes(), ShiftRows() and

AddRoundKey() in producing the final encrypted data or

cipher text.

The decryption process is essentially the same structure as

the encryption, following the nine rounds of Inverse

ShiftRows(), Inverse SubBytes(), Inverse AddRoundKey()

and Inverse MixColumns() transformation. In the final

round, the Inverse MixColumns() is no longer performed.

4. Proposed AES Algorithm Using Multiple S-

Boxes (AES-2Sbox)

Among the four functions within rounds of the AES

algorithm, the MixColumns function is perceive to be

requiring more computational resources in software

implementation as compared to the other functions. This is

due to the fact that the MixColumns function provides the

critical security properties of the cipher to avoid from linear

and/or differential attacks. Conceptually, replacing the

MixColumns function by an alternative process may increase

the speed performance of the AES algorithm.

In this paper, we propose for a modified version of the 128-

bit key length AES algorithm using two substitution boxes.

The first S-Box is the Rijndael S-Box that is the default in

the original structure of the cipher. It shall be implemented as

it is. The second S-Box is constructed using XOR operation

and affine transformation. It will replace the MixColumns

operations at each round as implemented in the original

algorithm.

In essence, the encryption process of the proposed AES-

2SBOX algorithm follows the sequence of SubBytes(),

ShiftRows(), SubBytesXOR() and AddRoundKey()

operations for nine rounds. In the final round, SubBytes(),

ShiftRows() and the AddRoundKey() operations will be

performed to produce the cipher text.

To decrypt, the proposed AES-2SBOX will transform the

ciphertext to plaintext using the sequence of Inverse

ShiftRows(), Inverse SubBytes(), Inverse AddRoundKey()

and Inverse SubBytesXOR() operations for nine rounds. In

the final round, the Inverse SubBytesXOR() is drop to

produce the plaintext. Figure 6 shows the proposed modified

AES algorithm structure using multiple S-Boxes.

499
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

Figure 6. Proposed AES Algorithm Using Multiple

S-Boxes

4.1 Construction of the New S-Box

The second S-Box is derived from the original S-Box as

designed in the AES (hereafter referred as AES-Rijndael). It

is constructed using the following process:

4.1.1 Exclusive OR Operation

The first step is to do an XOR operation to the AES-Rijndael

using some Key[i]. The Key[i] shall be any hexadecimal

value between 00 to FF. In this particular matrix, the key

used was 7F. Hence, the new S-Box shall be referred to as

AES-2SBOX7F. For the initial values of the AES-SBOX7F,

each cell in the AES-Rijndael will be XORed with 7F (AES-

Rijndael[x,y] 7F).

4.1.2 Affine Transform Operation

After creating the initial values of AES-2SBOX7F, each cell

will be subjected to affine transformation, as applied to the

S-Box-Rijndael, to avoid any fix points and to make the new

S-box invertible. The affine transformation multiplies each

plaintext value by another number and then adds a shift [14].

To scramble the bits in each byte value, we next apply the

following transformation to each bit bi as stored in the initial

AES-2SBOX7F:

b′i = bib(i+4) mod 8b(i+5)mod 8

b(i+6) mod 8b(i+7) mod 8 ci

where ci is the ith bit of a specially designated byte c whose

hex value is 0x63 (c7c6c5c4c3c2c1c0 = 01100011).

For the inverse AES-2SboxXOR, the following

transformation to each bit was used for bit scrambling:

b′i = b(i+2)mod 8 b(i+5) mod 8 b(i+7)mod 8 di

where di is the ith bit of a specially designated byte d whose

hex value is 0x05 (d7d6d5d4d3d2d1ddc0 = 00000101).

4.1.3 Matrix Mapping Operation

At the end of the affine transformation, the final values are

known. The next step is to map each value to the matrix as

appropriate to create the final lookup tables. Table 1 shows

the final AES-2SBOX7F while table 2 shows the final Inverse

AES-2SBOX7F.

Table 1. AES-2SBOX7F

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 13 0C 2D 32 6F 70 51 4E EB F4 D5 CA 97 88 A9 B6

1 E2 FD DC C3 9E 81 A0 BE 1A 05 24 3B 66 79 58 47

2 F0 EF CE D1 8C 93 B2 AD 08 17 36 29 74 6B 4A 55

3 01 1E 3F 20 7D 62 43 5C F9 E6 C7 D8 85 9A BB A4

4 D4 CB EA F5 A8 B7 96 89 2C 33 12 0D 50 4F 6E 71

5 25 3A 1B 04 59 46 67 78 DD C2 E3 FC A1 BE 9F 80

6 37 28 09 16 4B 54 75 6A CF D0 F1 EE B3 AC 8D 92

7 C6 D9 F8 E7 BA A5 84 9B 3E 21 00 1F 42 5D 7C 63

8 9C 83 A2 BD E0 FF DE C1 64 7B 5A 45 18 07 26 39

9 6D 72 53 4C 11 0E 2F 30 95 8A AB B4 E9 F6 D7 C8

A 7F 60 41 5E 03 1C 3D 22 87 98 B9 A6 FB E4 C5 DA

B 8E 91 B0 AF F2 ED CC D3 76 69 48 57 0A 15 34 2B

C 5B 44 65 7A 27 38 19 06 A3 BC 9D 82 DF C0 E1 FE

D AA B5 94 8B D6 C9 E8 F7 52 4D 6C 73 2E 31 10 0F

E B8 A7 86 99 C4 DB FA E5 40 5F 7E 61 3C 23 02 1D

F 49 56 77 68 35 2A 0B 14 B1 AE 8F 90 CD D2 F3 EC

Table 2. Inverse AES-2SBOX7F

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 7A 30 EE A4 53 19 C7 8D 28 62 BC F6 01 4B 95 DF

1 DE 94 4A 00 F7 BD 63 29 8C C6 18 52 A5 EF 31 7B

2 33 79 A7 ED 1A 50 8E C4 61 2B F5 BF 48 02 DC 96

3 97 DD 03 49 BE F4 2A 60 C5 8F 51 1B EC A6 78 32

4 E8 A2 7C 36 C1 8B 55 1F BA F0 2E 64 93 D9 07 4D

5 4C 06 D8 92 65 2F F1 BB 1E 54 8A C0 37 7D A3 E9

6 A1 EB 35 7F 88 C2 1C 56 F3 B9 67 2D DA 90 4E 04

7 05 4F 91 DB 2C 66 B8 F2 57 1D C3 89 7E 34 EA A0

8 5F 15 CB 81 76 3C E2 A8 0D 47 99 D3 24 6E B0 FA

9 FB B1 6F 25 D2 98 46 0C A9 E3 3D 77 80 CA 14 5E

A 16 5C 82 C8 3F 75 AB E1 44 0E D0 9A 6D 27 F9 B3

B B2 F8 26 6C 9B D1 0F 45 E0 AA 74 3E C9 83 5D 17

C CD 87 59 13 E4 AE 70 3A 9F D5 0B 41 B6 FC 22 68

D 69 23 FD B7 40 0A D4 9E 3B 71 AF E5 12 58 86 CC

E 84 CE 10 5A AD E7 39 73 D6 9C 42 08 FF B5 6B 21

F 20 6A B4 FE 09 43 9D D7 72 38 E6 AC 5B 11 CF 85

5. Evaluation Results

5.1 Speed Performance

To test the speed performance of the proposed modified AES

algorithm using multiple S-Boxes, both versions were used

to encrypt and decrypt a file with a size of 50 kilobytes for

50 trials.

(1)

(2)

500
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

For the encryption, the AES-Rijndael version obtained a

mean of 175.86ms while the proposed AES-2SBox obtained

a mean of 137.78ms. The t-Test for independent samples

was used to statistically compute the significant difference in

the speed performance. Based from the result of the test, the

obtained P-value was 4.44365E-21. This is lower than the

0.05 level of significance, hence there is indeed a significant

difference in the speed performance favouring the proposed

AES-2SBox version. Table 3 shows the t-Test Statistics for

Independent Samples of the encryption process.

Table 3. Speed Performance Between the AES-Rijndael and

AES-2SBox During Encryption

t-Test: Two-Sample Assuming Unequal Variances

 AES-Rijndael AES-2SBox

Mean 175.86 137.78

Variance 284.4493878 208.4608163

Observations 50 50

Hypothesized Mean

Difference 0
Df 96
t Stat 12.12824712
P(T<=t) one-tail 2.22182E-21
t Critical one-tail 1.66088144
P(T<=t) two-tail 4.44365E-21
t Critical two-tail 1.984984312

For the decryption process, the AES-Rijndael obtained a

computed mean of 191.70ms while the AES-2SBox version

obtained yielded a mean of 92.00ms. Similarly, the t-Test for

Independent samples was used for statistical computation.

Based from the result of the test, the P value obtained was

6.5283E-64 which is lower than the 0.05 level of

significance. Hence, there is a significant difference in the

speed performance with the proposed AES-2SBox

performing better. Table 4 shows the t-Test statistics for

independent samples of the decryption process.

Table 4. Speed Performance Between the AES-Rijndael and

AES-2SBox During Decryption

t-Test: Two-Sample Assuming Unequal Variances

 AES-Rijndael AES-2SBox

Mean 191.70 92.00

Variance 141.6020408 148.0408163

Observations 50 50

Hypothesized Mean

Difference 0
Df 98
t Stat 41.42368676
P(T<=t) one-tail 3.26415E-64
t Critical one-tail 1.660551217
P(T<=t) two-tail 6.5283E-64
t Critical two-tail 1.984467455

5.2 Performance Efficiency Using the SpeedUp Test

Metric

The two versions were compared using the SpeedUp-Test

Metric to determine the difference in their performance

efficiency. The SpeedUp Test is a metric for relative

performance improvement when executing a task. The

execution time of a program can be seen as a latency

quantity type of the speedup comparison because it is in

seconds per program [15].

For latency values, speedup is defined by the following

formula:

()
()

1001%

−

new

old

TLatency

TLatency
=)SpeedUP((3)

where SpeedUp(%) is the performance efficiency in percent;

Latency(Told) is the old mean execution time (i.e., without

the improvement) and Latency(Tnew) is the new mean

execution time (i.e., with the improvement)[15][16].

The obtained mean values of the AES-Rijndael and the AES-

2SBox during encryption with 175.86ms and 137.78ms

respectively. Thus, the performance efficiency showed that

the AES-2SBox is 27.638% better than the original version.

Similarly, the obtained mean values of the AES-Rijndael and

the AES-2SBox during decryption were at 191.70ms and

92.00ms respectively, the performance efficiency also

revealed that the AES-2SBox is 108.369% more efficient that

the AES-Rijndael version. Table 5 shows the data.

Table 5. Performance Efficiency Using the

SpeedUp Test Metric
Algorithm Mean SpeedUP

(%) Latency(Told)

(AES-Rijndael)

Latency(Tnew)

(AES-2SBox)

Encryption 175.86 137.78 27.638%

Decryption 191.70 92.00 108.369%

5.3 Security Performance Through Avalanche Effect

The avalanche effect refers to a desirable property of

cryptographic algorithms. The avalanche effect is evident if,

when an input is changed slightly (for example, flipping a

single bit) the output changes significantly with at least half

the output bits will be flip[17].

In [18], the avalanche effect can be derived by using

equation:

Avalanche Effect (%) = (NC/TN) * 100

where NC is the number of changed bits in ciphertext and TN

is the total number of bits in the ciphertext.

Here, we start to calculate the avalanche effect of the AES-

2Sbox. The tests were performed by changing the plaintext

bit from “11” to “10” and from “FF” to “F0”. The results

obtained were 25.000% with 32 bits that were changed and

19.531% with a flip of 25 bits respectively. The following

table shows the result of the test for avalanche effect for

AES-2Sbox.

Table 5. Avalanche Effects of the AES-2SBox

Plaintext Ciphertext Avalanche

Effect

111111111111111111

11111111111111

FE88B9C6D624C203A

4345796445320E4

25.00%

(32)

111111111111111111

11111111111110

40A3CFC6D624C2D97

2345796B15320A4

0011223344556677

8899AABBCCDDE

EFF

9E53C352DBDF8A4F1

034CABEAC05B1FB

19.531%

(25)

0011223344556677

8899AABBCCDDE

EF0

37F1B112DBDF8A221

034848DAC05B1FB

6. Conclusion

This paper presents a proposed AES algorithm using multiple

S-Boxes. The first Sbox (AES-Rijndael) stand as is in the

(4)

501
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

cipher structure. Meanwhile, a new S-Box was constructed

using XOR operation and affine transformation. The second

S-Box, which we call AES-2SBOX, replaced the

MixColumns phase in the AES cipher rounds.

Two set of tests were conducted to compare the original

version and the proposed AES-2SBOX algorithm. In the

speed performance test, where the two versions, through a

software implementation, encrypted and decrypted a file with

a size of 50Kb ran for 50 trials. The t-Test statistics set at

0.05 level of significance revealed that in both encryption

and decryption, there is a significant difference in the speed

performance favouring the proposed AES-2SBox version

with the obtained P-values 4.44365E-21 and 6.5283E-64

respectively.

When compared using the SpeedUp Test Metric to determine

the difference in their performance efficiency, it was found

out that in both encryption and decryption processes, the

AES-2SBox performed more efficiently at 27.638% and

108.369% respectively as compared to the original AES

algorithm version.

We also performed the test of avalanche effect on the

proposed AES-2SBox algorithm. The results of the

simulation revealed that the avalanche effect is slightly lower

than the minimum expected output of at least 50% bit flip

when 1 bit input is altered. The obtained changes in the bit

sequence were computed at 25.000% and 19.351% for two

set of plaintext.

From these results, we observed that the speed performance

greatly increased in the modified AES algorithm using

multiple S-Boxes, while the security side has slightly

weakened.

References

[1] TownSendSecurity.com. “Introduction to AES

Encryption: White Paper”, 2016. (online) Available at

https://townsendsecurity.com/sites/default/files/AES_Int

roduction.pdf.

[2] P. Kawle, A. Hiwase, G. Bagde, E. Tekam, R. Kalbande,

“Modified Advanced Encryption Standard”,

International Journal of Soft Computing and

Engineering, Vol. 4, No. 1, pp. 21-23, 2014.

[3] G. N. Krishnamurphy, V. Ramaswamy, “Making AES

Stronger: AES with Key Dependent S-Box”,

International Journal of Computer Science and Network

Security, Vol. 8, No. 9, pp. 388-398, 2008.

[4] R. Riyaldhi, Rojali and A. Kurniawan, “Improvement of

Advanced Encryption Standards Algorithm with Shift

Row and S.Box Modification Mapping in Mix

Column”, 2nd International Conference on Computer

Science and Computational Intellegence 2017, 13-14

October 2017, Bali, Indonesia, 2017.

[5] I. Abd-ElGhafar, A. Rohiem, A. Diaa and F.

Mohammed, “Generation of AES Key Dependent S-

Boxes using RC4 Algorithm”, 13th International

Conference on Aerospace Sciences & Aviation

Technology (ASAT- 13), May 26 – 28, 2009, Military

Technical College, Kobry Elkobbah, Cairo, Egypt,

2009.

[6] J. Juremi, R. Mahmod, S. Sulaiman and J. Ramli,

“Enhancing Advanced Encryption Standard S-Box

Generation Based on Round Key”, International

Journal of Cyber-Security and Digital Forensics

(IJCSDF) Vol. 1, No. 3, pp. 183-188, 2012.

[7] J. Cui, L. Huang, H. Zhong, C. Chang, W. Yang, “An

Improved AES S-Box and its Performance Analysis”,

International Journal of Innovative Computing,

Information and Control Vol. 7, No. 5(A), pp. 2291-

2302, 2011.

[8] S. Manasa, P. Mullaimalar, G. B. Gnanaprakash Singh

and Prof. S. S. Manivannan, “Reducing the Key

Generation Time Using Enhanced AES-128 Algorithm

to Secure the Data over Wireless Networks”,

International Journal of Applied Engineering Research

Vol. 8, No. 19, pp. 2453-2456, 2013.

[9] A. Singh, “A New Approach to Enhance Avalanche

Effect in AES to Improve Computer Security”, Journal

of Information Technology & Software Engineering,

Vol. 5, No. 1, 2015.

[10] S. D. Putra, A. S. Ahmad, S. Sutikno, Y. Kurniawan,

“Attacking AES-Masking Encryption Device with

Correlation Power Analysis”, International Journal of

Communication Networks and Information Security

(IJCNIS) Vol. 10, No. 2, pp. 397-401, 2018.

[11] V. Pachori, G. Ansari and N. Chaudhary, “Improved

Performance of Advance Encryption Standard using

Parallel Computing”, International Journal of

Engineering Research and Applications, Vol. 2, No. 1,

pp. 967-971, 2012.

[12] Federal Information Processing Standards Publication

197, Announcing the Advanced Encryption Standard,

2001. (online) Available at http://csrc.nist.gov/

publications/fips/fips197/fips-197.pdf.

[13] Man Young Rhee, “Internet Security: Cryptographic

Principles, Algorithms and Protocols”, John Wiley &

Sons Ltd, The Atrium, Southern Gate, Chichester, West

Sussex PO19 8SQ, England, 2003.

[14] D. Bishop, “Introduction to Cryptography with Java

Applet”, Jones and Barlette Publishers, Inc.

Massachusetts, USA. p. 111, 2003.

[15] SpeedUp, 2005. (online) Available at

http://en.wikipedia.org/w/index.php?title=Speedup&old

id=648990695

[16] Martin, M., Performance and Benchmarking, Retrieved

from: http://www.cis.upenn.edu/ ~milom/cis501-

Fall12/lectures/ 04_performance.pdf

[17] Avalanche Effect, 2014. (online) Available at

http://en.ikipedia.org/wiki/Avalanche_effect.

[18] G. Patidar, N. Agrawal and S. Tarmakar, “A block based

Encryption Model to Improve Avalanche Effect for Data

Security”, International Journal of Scientific and

Research Publications, Vol. 3, No. 1, pp. 1-4, 2013.

https://townsendsecurity.com/sites/default/files/AES_Introduction.pdf
https://townsendsecurity.com/sites/default/files/AES_Introduction.pdf

