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Abstract: Wireless Sensor, Actuator and Robot Networks 

(WSARNs) are made of mobile and static sensor nodes that interact to 

perform specific tasks, such as supporting assisted navigation for 

mobile robotic nodes that carry out requested operations in hostile 

environments, where the human presence is impracticable. In this 

regard, it is worth noting that assisted navigation algorithms have a 

highly dynamic nature, and are implemented by sensor nodes 

characterized by limited transmission power and lean autonomy in 

terms of computing and memory capacity. This paper presents an 

improved version of the assisted navigation algorithm based on the 

concept of “credit field”. The main aim of the proposed algorithm is to 

reduce and balance the energy consumption among the static sensor 

nodes when running the algorithm to manage the presence of obstacles 

and adversary areas, thus extending the lifetime of WSARNs. The 

algorithm has been tested on a hybrid sensor network that employs 

Mica2 Motes as static sensor nodes and Lego Mindstorms robots 

integrated with a Stargate board developed by Crossbow as mobile 

robotic nodes. 
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robot networks, assisted navigation, energy consumption. 
 

1. Introduction 
 

Wireless Sensor Networks (WSNs) are collections of 

micro-devices, called sensor nodes, provided with wireless 

communication and sensing capability. Such nodes are tiny and 

low cost devices, which can be spatially distributed in a given 

area of interest for sensing or monitoring purposes. The main 

aim is the implementation of networks of collaborative nodes 

being able to gather information about different physical 

phenomena within unstructured, dynamic or even hostile 

environments for a wide spectrum of applications ranging from 

wildlife and habitat monitoring to health care or battlefield 

surveillance [1, 2, 3, 4, 5, 6]. 

Although sensor nodes are affected by limited communication 

and computing resources, the new trends characterizing WSNs 

are towards the development of fully-autonomous networks that 

can adapt to complex situations and react to unpredictable 

events within their coverage area. Such networks can augment 

their perceive-and-report capabilities by employing actuator 

nodes, so as to become perceive-and-react networks, also called 

Wireless Sensor and Actuator Networks (WSANs) [ 7 , 8 ]. 

These capabilities enable WSANs to better control processes 

and events in complex applications, such as home automation, 

city lighting, traffic control, precision agriculture, etc. 

A further improvement of WSAN consists in replacing the 

stationary actuators with “actor” nodes, such as mobile robotic 

nodes, in order to act upon the environment. In fact, the 

introduction of such nodes makes it possible to build the 

so-called Wireless Sensor, Actuator and Robot Networks 

(WSARNs), which can accomplish a lot of tasks besides 

actuating, such as autonomous nodes deployment or 

redeployment, batteries recharging, etc [9, 10]. 

In WSARNs, mobile robotic nodes can both assist the network 

in order to enhance its capabilities beyond its initial design goal 

based on the power of mobility, and exploit the network to carry 

out specific operations in hostile environments, where, for 

example, the human presence is impracticable [11]. In the latter 

instance, a relevant role of WSARNs is played in applications in 

which mobile robotic nodes, characterized by limited on-board 

resources or acting in constrained environments, have to be 

guided using the distributed sensing and computing capabilities 

of static sensor nodes. In such networks, when an event occurs 

in a particular location, static sensor nodes collaborate to create 

an optimal path that has to be followed by one or more mobile 

robotic nodes to reach the designated location. In this regard, it 

is worth noting that the collaboration among static sensor nodes 

is managed according specific algorithms that nodes have to run 

in order to assist the navigation of mobile robotic nodes across 

areas with dangerous zones that have to be avoided [12, 13]. 

The creation of navigation paths within WSARNs is a difficult 

task given both the highly dynamic nature of the applications 

that exploit them and the need for an effective use of the limited 

capabilities and resources of static sensor nodes. This paper 

presents an improved version of the assisted navigation 

algorithm based on the “credit field” concept [14]. The main 

aim of such a version is to calculate navigation paths for mobile 

robotic nodes in the presence of obstacles and to assist their 

navigation to the event location without causing excessive 

energy unbalances among the static sensor nodes running the 

credit field algorithm. Thus, the effectiveness of the whole 

WSARN can be maximally ensured, since it is possible to 

minimise the failures of the static sensor nodes that are close to 

obstacles or adversary areas, which are particularly stressed by 

the navigation algorithm. The proposed algorithm has been 

implemented on top of Agilla [15, 16, 17], a mobile agents 

based middleware purposely designed to fit in the limited 

capabilities of the Mica2 Mote platform used in the conducted 

tests. In particular, Mica2 Motes are employed as static sensor 

nodes whereas the Lego Mindstorms robots integrated with a 

Stargate board are employed as mobile robotic nodes. 

The paper is organized as follows. Section 2 reports on the main 

related work. Section 3 describes the original navigation 

algorithm based on the concept of “credit field”. Section 4 

presents the improved version of the algorithm described in 

Section 3. In Section 5, the main details concerning the 

implementation of the improved version of the credit field 

algorithm are reported. Section 6 describes the main hardware 
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and software components needed to implement the proposed 

improved algorithm on a WSARN. Section 7 concludes the 

work. 
 

2. Related Work 
 

In the last few years many assisted navigation algorithms have 

been proposed in the literature. The most popular of them 

mainly follow two approaches, also called the “position-aware” 

approach and the “position-unaware” approach [ 18 ]. The 

former requires a WSARN to run a specific process to localize 

the static sensor nodes in global coordinates before executing 

the assisted navigation algorithm. The latter relies only on the 

topology of the WSARN, focusing on immediate 

neighbourhood of static sensor nodes to build the navigation 

strategies. 

The algorithm described in [12] follows the “position-aware” 

approach. It is based on the “potential field” computation 

protocol, which enables each static sensor node to compute its 

own potential value on the basis of the information received 

from the other nodes that have already computed their potential 

values. Such a value is an estimate of the node’s vicinity to the 

goal location and, once calculated, has to be broadcasted by 

each static sensor node to the neighbours. This computation 

develops in parallel, and ends when the static sensor nodes that 

are nearest to the mobile robotic node have computed their 

potential values. Then, static sensor nodes can exploit their 

potential values to guide the mobile robotic node to the goal 

along a path that avoids dangerous areas. 

The work presented in [19] analyses some algorithms based on 

the concept of “gradient”. Furthermore, the proposed algorithm 

exploits the measurements of static sensor nodes to generate the 

optimal trajectories that mobile robotic sensors have to follow 

to reach an identified target. 

The navigation protocol presented in [20] is based on the 

concept of geographic routing. It computes the path 

optimization by following the value gradient associated to the 

static sensor nodes. 

The algorithm described in [13] follows the “position-unaware” 

approach, and is based on the concept of “probabilistic 

navigation”. According to such an approach, each static sensor 

node computes the probability of the best direction that a mobile 

robotic node has to follow in order to reach the goal when it is in 

its vicinity. This enables the mobile robotic node to compute the 

direction to take in the proximity of each static sensor node. The 

computation of probabilities is developed by all the static sensor 

nodes, and enables the building of navigation paths. However, 

the mobile robotic node needs and maintains a transition model 

of the network, which has to be predetermined according to the 

deployment of the static sensor nodes. 

Another relevant algorithm based on the “position-unaware” 

approach is described in [21]. The algorithm implements a 

method that enables mobile robotic nodes equipped with 

directional antennas to reach an identified target in an area 

covered by a sensor network. More precisely, when a static 

sensor node detects an event, it broadcasts a notification 

message throughout the entire sensor network so as to build a 

navigation tree rooted at that sensor node. This enables the 

mobile robotic node to follow a path on the navigation tree, 

from node to node, until it reaches the root of the tree. 

3. Credit Field Navigation Algorithm 
 

The algorithm proposed in this paper is based on the “credit 

field” concept [14]. The main idea is that the static sensor nodes 

placed in the proximity of an event have to start the computation 

of the navigational forces that will guide the mobile robotic 

node to the event location (see Figure 1). 
 

 

Figure 1. The credit field in the presence of adversary areas 

More precisely, the static sensor nodes detecting an event 

identify the location that has to be reached by mobile robotic 

nodes, also called “region of phenomenon”. They form a 

“cluster”, and elect the static sensor node with the best event 

measure as their “cluster leader”. Then, the leader broadcasts to 

its neighbours a request packet, which represents an alert signal 

concerning with the recognition of a phenomenon to monitor 

and propagates through the sensor network until it reaches one 

or more mobile robotic nodes. 

Each mobile robotic node receiving the alert signal decides 

whether it can reply to the received request depending on an 

adopted decision criteria, which can take into account, for 

example, the initial location of the mobile robotic node with 

respect to the region of phenomenon or its power autonomy. 

The mobile robotic node that can reach the region of 

phenomenon replies to the cluster leader by sending a packet 

that follows backward the same routing path of the request 

packet. This enables each static sensor node on the routing path 

to increase by one the number of hops required to the reply 

packet to reach the cluster leader. As a consequence, when the 

cluster leader receives the reply packet, it can generate its own 

“credit value” by setting it to the number of hops required to the 

reply packet to arrive. After that, the cluster leader can 

broadcast its credit value to its one-hop neighbours by sending 

an “advertisement packet”. 

When a static sensor node receives an advertisement packet 

with a given credit value, it can generate its own credit value by 

setting it to the received value minus one. Then, it is allowed to 

propagate this new credit value, but only if it lies on the routing 

path followed by the previous request/reply packets. During this 

flooding phase, if a static sensor node receives further 

advertisement packets and has already computed its own credit 
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value, it simply ignores them. In fact, such a procedure is 

followed recursively, hop-by-hop, until the selected mobile 

robotic node can compute its credit value and set it to 0. 

When the mobile robotic node is selected, the procedure ends 

and the static sensor nodes appear to be arranged according to a 

credit hierarchy. In fact, such a hierarchy can be followed by the 

selected mobile robotic node to reach the region of phenomenon 

by choosing, at each hop, the node with the highest credit value. 
 

4. Improved Algorithm 
 

The static sensor nodes running the credit field navigation 

algorithm have to exchange many messages whenever the 

navigational forces, which will guide mobile robotic nodes to 

the event location, have to be computed. This causes a high 

energy consumption for the nodes due to the computing and 

communication overhead. Such a situation can be also worse if 

the navigation region is characterized by the presence of many 

dynamic obstacles or adversary areas. In this case, the static 

sensor nodes in proximity to obstacles and adversary areas have 

to preserve their energy, since their failure can prevent the 

algorithm from calculating a correct and secure path for mobile 

robotic nodes to avoid such obstacles and areas [22, 23, 24]. 
 

 

Figure 2. Classification of proximity 

To take into account the situation described above, the 

improved version of the credit field navigation algorithm 

introduces a classification of the static sensor nodes based both 

on their distance from obstacles and on their battery power 

levels compared to those ones of their neighbours. In fact, based 

on such a classification, each static sensor node can decide to 

what degree it can participate in the message flooding needed to 

compute the navigational forces exploited by mobile robotic 

nodes during their navigation. The basic idea is that the early 

static sensor nodes to be involved in the message flooding have 

to be both far from obstacles and provided with a high level of 

battery power compared to that one of the neighbours. On the 

contrary, the static sensor nodes that are very close to obstacles 

and characterized by a low level of battery power should not be 

involved in the message flooding particularly when their 

neighbours are provided with high levels of battery power. 

Table 1. Behaviour of a static sensor node 

classified as “very close” to an obstacle 

Battery power 

level of the node 

Battery power level 

of its neighbours 

 H M L 

hl NRn Nn Sn 

ml NRn NRn Nn 

ll NRn NRn Nn 
 

More precisely, the improved version of the credit field 

navigation algorithm is based on three sub-algorithms, which 

have to be run by each static sensor node: 

 the algorithm to classify the level of proximity of a static 

sensor node to an obstacle or adversay area, named ProxA; 

 the algorithm to estimate and update the battery power level 

of a static sensor node, named BattA; 

 the algorithm to estimate and update the battery power 

levels of the neighbours of a static sensor node, named 

NeighA. 

A static sensor node runs ProxA whenever it directly detects an 

obstacle, which can be also represented by an adversary area or 

by a dangerous event for the navigation of mobile robotic 

nodes. In this case, the node is classified as “very close” (vc), 

and has to send this detection information to all its neighbours. 

The static sensor nodes that cannot directly detect an obstacle or 

an adversary area but that can receive a detection information 

from a neighbour are classified as “close” (c) to an obstacle. 

All the other static sensor nodes that cannot directly detect an 

obstacle and that do not receive any detection information are 

classified as “not close” (nc) to an obstacle. 

Table 2. Behaviour of a static sensor node 

classified as “close” to an obstacle 

Battery power 

level of the node 

Battery power level 

of its neighbours 

 H M L 

hl Nn Sn Sn 

ml Nn Sn Sn 

ll NRn Nn Nn 
 

BattA is run by each static sensor node of a WSARN and 

estimates the battery power level of the node as “high” (hl), 

“medium” (ml), and “low” (ll) depending on specific predefined 

thresholds. The estimate is made periodically or when a static 

sensor node takes part in the computation of the navigational 

forces for mobile robotic nodes. In fact, whenever the battery 

power level of a static sensor node changes, the new value of the 

level is sent to all the neighbours. 

NeighA is run by a static sensor node upon the receipt of a 

message from a neighbour wanting to communicate the change 

of its own battery power level. The main aim is to derive a 

global information that summarizes the battery power levels of 

the neighbours. Therefore, if 50 percent of the neighbours have 

a high (hl) battery power level and the remaining neighbours 

have at least a medium (ml) battery power level, a static sensor 

node can consider its neighbours as highly charged (H). On the 

contrary, if 50 percent of the neighbours have a low (ll) battery 
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power level and the remaining neighbours have, at most, a 

medium (ml) battery power level, a static sensor node can 

consider its neighbours as little charged (L). In all other cases, a 

static sensor node considers its neighbours as averagely charged 

(M). 

After the execution of ProxA, BattA, and NeighA, each static 

sensor node can decide how to behave when the credit field has 

to be computed to guide mobile robotic nodes to an event 

location. To this end, the behaviour of a static sensor node can 

be specified as “strategic” (Sn), “normal” (Nn), and “not 

relevant” (NRn) with respect to the computation of the credit 

field. More precisely, if a node is specified as Sn, it must 

participate in the computation of the credit field. On the 

contrary, if a node is denoted as NRn, it is not forced to take part 

in the computation of the credit field. Finally, if a node is 

specified as Nn, it may participate in the computation of the 

credit field with probability of 50 percent. 

Table 3. Behaviour of a static sensor node 

classified as “not close” to an obstacle 

Battery power 

level of the node 

Battery power level 

of its neighbours 

 H M L 

hl Nn Sn Nn 

ml NRn Nn Nn 

ll NRn Nn Nn 
 

Table 1 summarizes how a static sensor node classified as “very 

close” to an obstacle has to behave depending on its battery 

power level and on the battery power level of its neighbours. 

Such a node is considered as “strategic” only when its battery 

power level is high and its neighbours have a low battery power 

level. In all other cases, it is scarcely involved in the 

computation of the credit field. This is because the node should 

save as much energy as possible in order both to extend its 

lifetime and to be useful in case the neighbours run out energy 

and cannot keep mobile robotic nodes away from the obstacle. 

Static sensor nodes classified as “close” to an obstacle play a 

strategic role in the computation of the credit field (see Table 2). 

They have to participate frequently in such a computation, since 

they are required to keep mobile robotic nodes away from 

obstacles. In fact, they are allowed to consume more energy, 

since, if they run out of energy, they can be always supported by 

the neighbours classified as “very close” to an obstacle. 

The static sensor nodes classified as “not close” to obstacles 

(see Table 3) are located in areas that do not require particular 

attention. They can be activated with a normal frequency, which 

has to be reduced only if the nodes are characterized by a low 

battery power level compared to that one of the neighbours. 
 

5. Implementation 
 

The improved version of the credit field algorithm has been 

implemented in Agilla, which is a middleware that makes it 

possible to program devices characterized by limited computing 

capabilities, such as static sensor nodes [15, 16, 17, 25]. 

Agilla, whose architectural model is shown in Figure 3, is based 

on a programming paradigm that employs “mobile agents” as 

basic programming units. Such units are small programs that 

can autonomously run on the static sensor nodes and 

communicate according to the Linda tuple space model [26]. 

They can also migrate or clone across the static sensor nodes of 

the network while maintaining their state. Moreover, Agilla 

provides each static sensor node with the list of its neighbours, 

and implements both local and remote tuple space operations. 
 

 

Figure 3. The Agilla model 

The proposed implementation consists of the following main 

agents: Detector, Searcher, Updater, Status, Adversary, 

Replier, Initializer, and Navigator. 

A Detector agent is run on each static sensor node of the 

network and is a “stationary” agent. It is created by a setup 

flooding, when the sensor network is deployed. Its main task 

consists in detecting events and in running the algorithm that 

elects the cluster leader node by exchanging messages in the 

tuple spaces of its neighbours. In this regard, when an event is 

detected, the Detector agent allocated on the cluster leader node 

takes charge of starting up an Updater agent, a Status agent, and 

a Searcher agent. 

An Updater agent is created by a Detector agent on a cluster 

leader node. Its main task consists in running the BattA 

algorithm on the static sensor nodes of the network, thus 

classifying them as hl, ml, or ll. Therefore, once it has been 

created on a node, it clones itself on all its neighbours. Then, it 

estimates the battery power level of the static sensor node on 

which it runs, and periodically communicates it to all its 

neighbours. 

A Status agent runs the NeighA algorithm on the static sensor 

nodes of the sensor network. It reads the battery power levels of 

its neighbours and classifies them as H, M, or L. Similarly to an 

Updater agent, it is created by a Detector agent on a cluster 

leader node. Then, it clones itself on all its neighbours, thus 

spreading throughout the sensor network. 

A Searcher agent is created by a Detector on a cluster leader 

node, and starts the computing phase that searches a mobile 

robotic node which can reach the region of phenomenon. 

During such a phase, the first Searcher agent created on the 

cluster leader node clones itself on all its neighbours. In this 

way, it can reach the neighbours and check whether they are in 

one of the three possible conditions: the reached node is (1) a 

mobile robotic node; (2) a static sensor node; (3) a static sensor 

node inside an adversary area. 

In the first case, the Searcher agent applies pre-defined criteria 

and decides whether the mobile robotic node can reach the 

region of phenomenon. In this case, the Searcher agent creates a 

Replier agent on the mobile robotic node, otherwise it stops its 

execution. 
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In the second case, the Searcher agent runs the ProxA algorithm 

to state the proximity level of the node to a possible obstacle or 

an adversary area. Therefore, if it detects an obstacle or an 

adversary area, it creates an Adversary agent, which takes 

charge of classifying proximity. Otherwise, if the Searcher 

agent does not detect any obstacle or adversary area and the 

proximity of the node has still not set, the Searcher agent 

directly sets it to nc. 
 

 

Figure 4. Architecture of a mobile robotic node 

After the classification of the node proximity, the Searcher 

agent decides whether the node has to participate in the 

computation of the credit field. To take such a decision, it reads 

the tuples representing the classifications made by the Updater 

and Status agents, and implements the behaviour summarized 

by Table 1, Table 2, and Table 3 reported in Section 4. 

Therefore, if the Searcher agent decides to participate in the 

computation of the credit field, it simply clones itself on all its 

neighbours and propagates the computing phase to search an 

available mobile robotic node. Then, it creates a particular tuple 

in the local tuple space to prevent eventual other Searcher 

agents cloned on the node from starting another searching 

phase. 

Finally, in the third case, the Searcher agent terminates without 

cloning itself, thus preventing the node from participating in the 

computation of the navigational forces. 

An Adversary agent is created by a Searcher agent on a static 

sensor node whenever the node can directly detect an obstacle 

or an adversary area. In this case, the Adversary agent classifies 

the node as vc and clones itself on all the neighbours. 

When an Adversary agent is cloned on a static sensor node, it 

starts the phase to detect an obstacle or an adversary area. If the 

detection fails, the Adversary agent sets the proximity of the 

node to c and stops cloning itself. Otherwise, the agent classifies 

the node as vc, and clones itself on all the neighbours. Finally, 

the Adversary agent, before stopping its execution, creates a 

particular tuple in the local tuple space to prevent eventual other 

Adversary agents cloned on the node from runnnig. 

A Replier agent is created by a Searcher agent on a mobile 

robotic node that can reach the region of phenomenon. To this 

end, it can go backward to the cluster leader node to notify the 

availability of the mobile robotic node by exploiting the 

migration programming facility supported by Agilla. In fact, 

such a facility enables the Replier agent to follow backward, 

node-by-node, the same path previously followed by the 

Searcher agent, until the cluster leader node. This enables the 

Replier agent to track the followed path and count the number 

of hops in the path. In this way, the Replier agent can store a 

tuple in the local tuple space of the cluster leader node, which 

represents the credit value assigned to it. At this point, it can 

create an Initializer agent and stop its execution. 

An Initializer agent takes charge of building the credit field. To 

this end, it clones itself to its neighbours, carrying the initial 

value of the credit decremented by one. However, such a 

cloning process goes on only on the static sensor nodes that lie 

on the path previously followed by the Replier agent. Moreover, 

when the Initializer agent reaches a new static sensor node, it 

first checks whether a credit value has been already assigned to 

the node: in this case, no further actions are done. Otherwise, it 

sets the credit value of the static sensor node to the carried value 

decremented by one. Finally, when the Initializer agent reaches 

the mobile robotic node, it starts a Navigator agent on it. 

A Navigator agent is a “stationary” agent that can run only on a 

mobile robotic node. Its main task consists in driving such a 

node to the region of phenomenon by exploiting the 

navigational forces represented by the computed credit field. 

Therefore, the Navigator agent checks the credit values of the 

current neighbours and chooses the highest one. Then, it 

generates all the commands needed to guide the mobile robotic 

node towards the static sensor node that possesses the chosen 

credit value. This process is repeated whenever the chosen static 

sensor node is reached by the mobile robotic node, which can 

thus follow, node-by-node, the path determined by the credit 

field until the region of phenomenon. 
 

6. Experimental Section 
 

The proposed implementation of the improved version of the 

credit field algorithm has been tested on a WSARN consisting 

of 64 static sensor nodes and 2 mobile robotic nodes. 
 

6.1 Main Network Hardware and Software Components 
 

Static sensor nodes are Mica2 Motes, each provided with a 

radio platform based on the Atmel ATmega 128L and a 

low-power microcontroller able to run the TinyOS operating 

system loaded in the internal flash memory. TinyOS is a light, 

energy efficient operating system, which has been purposely 

developed to manage self-configuring WSNs. It enables static 

sensor nodes to concurrently run an application and 

communicate through a multi-channel radio transceiver. 

Moreover, it supports the Agilla middleware [15]. 

Mobile robotic nodes are made of a Stargate board connected to 

a Lego Mindstorms robot (see Figure 4). In particular, the 

Stargate board provides the Lego Mindstorms robot with the 

capacity to interact both with the static sensor nodes and with a 

PC acting as the “base station” of the WSARN. This enables the 

robot to receive the movement commands generated on the 

Stargate board by the Agilla agents through the infrared port 

(see Figure 5). 

The Stargate board is an embedded system that can run a Linux 

kernel, and consists of a 400 MHz Intel Xscale processor, an 

Intel SA1111 StrongARM companion chip for I/O, a 32 MB 

Intel StrataFlash chip, and 64 MB SDRAM. It can be connected 

to a specific daughter card provided with Ethernet and USB 

ports, and with PCMCIA/CF slots, which can be used to get 
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wireless communication based on the IEEE 802.11 protocol. 

The Stargate board is not provided with a mote-compatible RF 

radio. Therefore, communication between the Stargate board 

and the static sensor nodes based on the Mica2 Mote platform is 

implemented by another Mica2 Mote, which can be connected 

to the Stargate expansion bus through the 51 pin ending port. 
 

 

Figure 5. Interaction within a mobile robotic node 

The Lego Mindstorms robot is managed by a programmable 

module, called RCX, whose core is a Hitachi H8/3292 

microcontroller with 32 KB of external RAM. The RCX is 

provided with a simple firmware able to accept and execute 

only basic commands, received through the infrared port 

connected to the Stargate board, to control the motors and 

sensors installed on the robot. Therefore, in order to improve the 

capabilities of the RCX and to program it in a high level 

language, such as Java, the standard firmware has been replaced 

with the LeJOS firmware. In fact, this firmware is supplied with 

an extended API to fully control all the functionalities of the 

RCX, and supports a Java based programming on top of a “tiny” 

Java Virtual Machine”, such as the TinyVM. 

To set up the WSARN, Agilla has to dynamically load the 

agents described in Section 4 on the static sensor nodes. In this 

regard, agent loading is carried out by running a Java 

application, called AgentInjector, purposely customised for the 

Stargate board, that is a node with limited computing 

capabilities compared to a PC. This has required the installation 

of a “reduced” Java Runtime Environment on the Stargate 

board as well as the implementation of the remote access to the 

functionalities of the AgentInjector via the standard “Remote 

Method Invocation” software support. In this way, the mobile 

robotic nodes provided with Stargate board have been 

transformed into actual wireless “base stations” connected to a 

PC, which can thus act as a “remote console” able to 

dynamically program the WSARN. 
 

6.2 Tests 
 

To prove the effectiveness of the proposed navigation 

algorithm, two different WSARNs have been deployed. They 

are shown in Figure 1 and in Figure 8, respectively. The 

networks have been repeatedly activated to generate the 

navigational forces of credit field and to guide mobile robotic 

nodes to the region of phenomenon. The activations have been 

carried out always running both the original credit field 

algorithm and its improved version, in order to compare the 

different energy consumptions. In this regard, it worth noting 

that the WSARNs deployed in the tests are characterized by 

configurations that involve a different number of static sensor 

nodes in the navigation of mobile robotic nodes, and this entails 

a very different global energy consumption. 

 

Figure 6. Energy consumption trend of the sensor network 

shown in Figure 1 after five executions of the navigation 

process 

The former test has been conducted on the WSN depicted in 

Figure 1. In this network, most of the static sensor nodes are 

directly involved in the navigation process of the two mobile 

robotic nodes to the region of phenomenon. Such a process has 

been run 20 times in total, evenly divided in executions of the 

original and improved credit field algorithm. 

 

Figure 7. Energy consumption trend of the sensor network 

shown in Figure 1 after ten executions of the navigation process 

Then, the battery power level of the static sensor nodes has been 

estimated and classified according to 5 ranges of values: L1 

includes nodes with a battery power level in the range from 0 to 

20% of the maximum battery power level, denoted as Lmax; L2 

includes nodes with a battery power level in the range from 20% 

to 40% of Lmax; L3 includes nodes with a battery power level in 

the range from 40% to 60% of Lmax; L4 includes nodes with a 

battery power level in the range from 60% to 80% of Lmax; L5 

includes nodes with a battery power level in the range from 80% 

to Lmax. The estimates have been obtained after the fifth and 
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the tenth run of the navigation process of the mobile robotic 

nodes for each of the two algorithms, respectively. In both 

cases, they result in similar global energy consumptions, whose 

differences are within a range of 5%÷9%. 

Figure 6 shows the distribution of the static sensor nodes in the 

network depicted in Figure 1 according to their battery power 

level after five executions of the navigation process of the two 

mobile robotic nodes. Figure shows that energy consumption is 

better distributed among the static sensor nodes when the 

improved version of the credit field algorithm is run. In fact, 

most of the nodes has an energy level equal to L3, L4, and L5, 

whereas only 2% of the nodes has a minimum energy level. 

Such considerations are confirmed by the results shown in 

Figure 7, where only 5% of the nodes have a low energy level 

after ten executions of the improved version of the credit field 

algorithm. In fact, these results appear to be relevant, since they 

prove that the proposed algorithm reduces the energy 

consumption particularly for the static sensor nodes that are 

more loaded by the navigation algorithm. 
 

 

Figure 8. Credit field within a deployed sensor network 

The latter test has been conducted on the WSN depicted in 

Figure 8. Differently from the previous test, in this network only 

a limited number of the static sensor nodes are directly involved 

in the navigation process of the mobile robotic node to the 

region of phenomenon, and this means that the global energy 

consumption is reduced with respect to the previous test, when 

the navigation process is run. 

Also Figure 9 and Figure 10 show that the proposed improved 

algorithm can limit energy consumption for the static sensor 

nodes, thus promoting a more equal distribution of such a 

consumption particularly among the most loaded nodes. In fact, 

this is a relevant goal for WSARNs purposely deployed to guide 

mobile robotic nodes in hostile environments. In such networks, 

it is necessary to avoid getting static sensor nodes with a low 

battery power level, since these nodes could go out of service, 

thus preventing the detection of dynamic obstacles and 

adversary areas during the navigation of mobile robotic nodes. 

 

Figure 9. Energy consumption trend of the sensor network 

shown in Figure 8 after five executions of the navigation 

process 

 

Figure 10. Energy consumption trend of the sensor network 

shown in Figure 8 after ten executions of the navigation process 

7. Conclusions 
 

WSARNs can be exploited to guide mobile robotic nodes to 

event locations. The literature presents a number of algorithms 

that can achieve such a goal. However, these algorithms, such 

as that one based on the credit field, do not adequately take into 

account the problem of energy consumption of the static sensor 

nodes that have to guide mobile robotic nodes. Such a problem 

appears to be relevant, since WSARNs are usually employed to 

guide robots within hostile environments, where human 

presence is impracticable. This means that, if a number of static 

sensor nodes fail because of a high energy consumption caused 

by the repeated execution of the navigation algorithm, the 

whole WSARN could fail to guide robots to the region of 

interest in the presence of dynamic obstacles and adversary 

areas. The proposed navigation algorithm just solves such a 

problem. It can reduce and balance energy consumption among 

the static sensor nodes that are close to obstacles and adversary 

areas. Thus, the algorithm can preserve just the nodes that 

appear to be strategic for the navigation of robots. In fact, the 

conducted tests reasonably prove such claims.
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