
340
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

Assisted Navigation Algorithm for

Wireless Sensor Actuator and Robot Networks

Franco Frattolillo

Department of Engineering, University of Sannio, Benevento, Italy

Abstract: Wireless Sensor, Actuator and Robot Networks

(WSARNs) are made of mobile and static sensor nodes that interact to

perform specific tasks, such as supporting assisted navigation for

mobile robotic nodes that carry out requested operations in hostile

environments, where the human presence is impracticable. In this

regard, it is worth noting that assisted navigation algorithms have a

highly dynamic nature, and are implemented by sensor nodes

characterized by limited transmission power and lean autonomy in

terms of computing and memory capacity. This paper presents an

improved version of the assisted navigation algorithm based on the

concept of “credit field”. The main aim of the proposed algorithm is to

reduce and balance the energy consumption among the static sensor

nodes when running the algorithm to manage the presence of obstacles

and adversary areas, thus extending the lifetime of WSARNs. The

algorithm has been tested on a hybrid sensor network that employs

Mica2 Motes as static sensor nodes and Lego Mindstorms robots

integrated with a Stargate board developed by Crossbow as mobile

robotic nodes.

Keywords: wireless sensor networks, wireless sensor actuator and

robot networks, assisted navigation, energy consumption.

1. Introduction

Wireless Sensor Networks (WSNs) are collections of

micro-devices, called sensor nodes, provided with wireless

communication and sensing capability. Such nodes are tiny and

low cost devices, which can be spatially distributed in a given

area of interest for sensing or monitoring purposes. The main

aim is the implementation of networks of collaborative nodes

being able to gather information about different physical

phenomena within unstructured, dynamic or even hostile

environments for a wide spectrum of applications ranging from

wildlife and habitat monitoring to health care or battlefield

surveillance [1, 2, 3, 4, 5, 6].

Although sensor nodes are affected by limited communication

and computing resources, the new trends characterizing WSNs

are towards the development of fully-autonomous networks that

can adapt to complex situations and react to unpredictable

events within their coverage area. Such networks can augment

their perceive-and-report capabilities by employing actuator

nodes, so as to become perceive-and-react networks, also called

Wireless Sensor and Actuator Networks (WSANs) [7 , 8].

These capabilities enable WSANs to better control processes

and events in complex applications, such as home automation,

city lighting, traffic control, precision agriculture, etc.

A further improvement of WSAN consists in replacing the

stationary actuators with “actor” nodes, such as mobile robotic

nodes, in order to act upon the environment. In fact, the

introduction of such nodes makes it possible to build the

so-called Wireless Sensor, Actuator and Robot Networks

(WSARNs), which can accomplish a lot of tasks besides

actuating, such as autonomous nodes deployment or

redeployment, batteries recharging, etc [9, 10].

In WSARNs, mobile robotic nodes can both assist the network

in order to enhance its capabilities beyond its initial design goal

based on the power of mobility, and exploit the network to carry

out specific operations in hostile environments, where, for

example, the human presence is impracticable [11]. In the latter

instance, a relevant role of WSARNs is played in applications in

which mobile robotic nodes, characterized by limited on-board

resources or acting in constrained environments, have to be

guided using the distributed sensing and computing capabilities

of static sensor nodes. In such networks, when an event occurs

in a particular location, static sensor nodes collaborate to create

an optimal path that has to be followed by one or more mobile

robotic nodes to reach the designated location. In this regard, it

is worth noting that the collaboration among static sensor nodes

is managed according specific algorithms that nodes have to run

in order to assist the navigation of mobile robotic nodes across

areas with dangerous zones that have to be avoided [12, 13].

The creation of navigation paths within WSARNs is a difficult

task given both the highly dynamic nature of the applications

that exploit them and the need for an effective use of the limited

capabilities and resources of static sensor nodes. This paper

presents an improved version of the assisted navigation

algorithm based on the “credit field” concept [14]. The main

aim of such a version is to calculate navigation paths for mobile

robotic nodes in the presence of obstacles and to assist their

navigation to the event location without causing excessive

energy unbalances among the static sensor nodes running the

credit field algorithm. Thus, the effectiveness of the whole

WSARN can be maximally ensured, since it is possible to

minimise the failures of the static sensor nodes that are close to

obstacles or adversary areas, which are particularly stressed by

the navigation algorithm. The proposed algorithm has been

implemented on top of Agilla [15, 16, 17], a mobile agents

based middleware purposely designed to fit in the limited

capabilities of the Mica2 Mote platform used in the conducted

tests. In particular, Mica2 Motes are employed as static sensor

nodes whereas the Lego Mindstorms robots integrated with a

Stargate board are employed as mobile robotic nodes.

The paper is organized as follows. Section 2 reports on the main

related work. Section 3 describes the original navigation

algorithm based on the concept of “credit field”. Section 4

presents the improved version of the algorithm described in

Section 3. In Section 5, the main details concerning the

implementation of the improved version of the credit field

algorithm are reported. Section 6 describes the main hardware

341
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

and software components needed to implement the proposed

improved algorithm on a WSARN. Section 7 concludes the

work.

2. Related Work

In the last few years many assisted navigation algorithms have

been proposed in the literature. The most popular of them

mainly follow two approaches, also called the “position-aware”

approach and the “position-unaware” approach [18]. The

former requires a WSARN to run a specific process to localize

the static sensor nodes in global coordinates before executing

the assisted navigation algorithm. The latter relies only on the

topology of the WSARN, focusing on immediate

neighbourhood of static sensor nodes to build the navigation

strategies.

The algorithm described in [12] follows the “position-aware”

approach. It is based on the “potential field” computation

protocol, which enables each static sensor node to compute its

own potential value on the basis of the information received

from the other nodes that have already computed their potential

values. Such a value is an estimate of the node’s vicinity to the

goal location and, once calculated, has to be broadcasted by

each static sensor node to the neighbours. This computation

develops in parallel, and ends when the static sensor nodes that

are nearest to the mobile robotic node have computed their

potential values. Then, static sensor nodes can exploit their

potential values to guide the mobile robotic node to the goal

along a path that avoids dangerous areas.

The work presented in [19] analyses some algorithms based on

the concept of “gradient”. Furthermore, the proposed algorithm

exploits the measurements of static sensor nodes to generate the

optimal trajectories that mobile robotic sensors have to follow

to reach an identified target.

The navigation protocol presented in [20] is based on the

concept of geographic routing. It computes the path

optimization by following the value gradient associated to the

static sensor nodes.

The algorithm described in [13] follows the “position-unaware”

approach, and is based on the concept of “probabilistic

navigation”. According to such an approach, each static sensor

node computes the probability of the best direction that a mobile

robotic node has to follow in order to reach the goal when it is in

its vicinity. This enables the mobile robotic node to compute the

direction to take in the proximity of each static sensor node. The

computation of probabilities is developed by all the static sensor

nodes, and enables the building of navigation paths. However,

the mobile robotic node needs and maintains a transition model

of the network, which has to be predetermined according to the

deployment of the static sensor nodes.

Another relevant algorithm based on the “position-unaware”

approach is described in [21]. The algorithm implements a

method that enables mobile robotic nodes equipped with

directional antennas to reach an identified target in an area

covered by a sensor network. More precisely, when a static

sensor node detects an event, it broadcasts a notification

message throughout the entire sensor network so as to build a

navigation tree rooted at that sensor node. This enables the

mobile robotic node to follow a path on the navigation tree,

from node to node, until it reaches the root of the tree.

3. Credit Field Navigation Algorithm

The algorithm proposed in this paper is based on the “credit

field” concept [14]. The main idea is that the static sensor nodes

placed in the proximity of an event have to start the computation

of the navigational forces that will guide the mobile robotic

node to the event location (see Figure 1).

Figure 1. The credit field in the presence of adversary areas

More precisely, the static sensor nodes detecting an event

identify the location that has to be reached by mobile robotic

nodes, also called “region of phenomenon”. They form a

“cluster”, and elect the static sensor node with the best event

measure as their “cluster leader”. Then, the leader broadcasts to

its neighbours a request packet, which represents an alert signal

concerning with the recognition of a phenomenon to monitor

and propagates through the sensor network until it reaches one

or more mobile robotic nodes.

Each mobile robotic node receiving the alert signal decides

whether it can reply to the received request depending on an

adopted decision criteria, which can take into account, for

example, the initial location of the mobile robotic node with

respect to the region of phenomenon or its power autonomy.

The mobile robotic node that can reach the region of

phenomenon replies to the cluster leader by sending a packet

that follows backward the same routing path of the request

packet. This enables each static sensor node on the routing path

to increase by one the number of hops required to the reply

packet to reach the cluster leader. As a consequence, when the

cluster leader receives the reply packet, it can generate its own

“credit value” by setting it to the number of hops required to the

reply packet to arrive. After that, the cluster leader can

broadcast its credit value to its one-hop neighbours by sending

an “advertisement packet”.

When a static sensor node receives an advertisement packet

with a given credit value, it can generate its own credit value by

setting it to the received value minus one. Then, it is allowed to

propagate this new credit value, but only if it lies on the routing

path followed by the previous request/reply packets. During this

flooding phase, if a static sensor node receives further

advertisement packets and has already computed its own credit

342
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

value, it simply ignores them. In fact, such a procedure is

followed recursively, hop-by-hop, until the selected mobile

robotic node can compute its credit value and set it to 0.

When the mobile robotic node is selected, the procedure ends

and the static sensor nodes appear to be arranged according to a

credit hierarchy. In fact, such a hierarchy can be followed by the

selected mobile robotic node to reach the region of phenomenon

by choosing, at each hop, the node with the highest credit value.

4. Improved Algorithm

The static sensor nodes running the credit field navigation

algorithm have to exchange many messages whenever the

navigational forces, which will guide mobile robotic nodes to

the event location, have to be computed. This causes a high

energy consumption for the nodes due to the computing and

communication overhead. Such a situation can be also worse if

the navigation region is characterized by the presence of many

dynamic obstacles or adversary areas. In this case, the static

sensor nodes in proximity to obstacles and adversary areas have

to preserve their energy, since their failure can prevent the

algorithm from calculating a correct and secure path for mobile

robotic nodes to avoid such obstacles and areas [22, 23, 24].

Figure 2. Classification of proximity

To take into account the situation described above, the

improved version of the credit field navigation algorithm

introduces a classification of the static sensor nodes based both

on their distance from obstacles and on their battery power

levels compared to those ones of their neighbours. In fact, based

on such a classification, each static sensor node can decide to

what degree it can participate in the message flooding needed to

compute the navigational forces exploited by mobile robotic

nodes during their navigation. The basic idea is that the early

static sensor nodes to be involved in the message flooding have

to be both far from obstacles and provided with a high level of

battery power compared to that one of the neighbours. On the

contrary, the static sensor nodes that are very close to obstacles

and characterized by a low level of battery power should not be

involved in the message flooding particularly when their

neighbours are provided with high levels of battery power.

Table 1. Behaviour of a static sensor node

classified as “very close” to an obstacle

Battery power

level of the node

Battery power level

of its neighbours

 H M L

hl NRn Nn Sn

ml NRn NRn Nn

ll NRn NRn Nn

More precisely, the improved version of the credit field

navigation algorithm is based on three sub-algorithms, which

have to be run by each static sensor node:

 the algorithm to classify the level of proximity of a static

sensor node to an obstacle or adversay area, named ProxA;

 the algorithm to estimate and update the battery power level

of a static sensor node, named BattA;

 the algorithm to estimate and update the battery power

levels of the neighbours of a static sensor node, named

NeighA.

A static sensor node runs ProxA whenever it directly detects an

obstacle, which can be also represented by an adversary area or

by a dangerous event for the navigation of mobile robotic

nodes. In this case, the node is classified as “very close” (vc),

and has to send this detection information to all its neighbours.

The static sensor nodes that cannot directly detect an obstacle or

an adversary area but that can receive a detection information

from a neighbour are classified as “close” (c) to an obstacle.

All the other static sensor nodes that cannot directly detect an

obstacle and that do not receive any detection information are

classified as “not close” (nc) to an obstacle.

Table 2. Behaviour of a static sensor node

classified as “close” to an obstacle

Battery power

level of the node

Battery power level

of its neighbours

 H M L

hl Nn Sn Sn

ml Nn Sn Sn

ll NRn Nn Nn

BattA is run by each static sensor node of a WSARN and

estimates the battery power level of the node as “high” (hl),

“medium” (ml), and “low” (ll) depending on specific predefined

thresholds. The estimate is made periodically or when a static

sensor node takes part in the computation of the navigational

forces for mobile robotic nodes. In fact, whenever the battery

power level of a static sensor node changes, the new value of the

level is sent to all the neighbours.

NeighA is run by a static sensor node upon the receipt of a

message from a neighbour wanting to communicate the change

of its own battery power level. The main aim is to derive a

global information that summarizes the battery power levels of

the neighbours. Therefore, if 50 percent of the neighbours have

a high (hl) battery power level and the remaining neighbours

have at least a medium (ml) battery power level, a static sensor

node can consider its neighbours as highly charged (H). On the

contrary, if 50 percent of the neighbours have a low (ll) battery

343
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

power level and the remaining neighbours have, at most, a

medium (ml) battery power level, a static sensor node can

consider its neighbours as little charged (L). In all other cases, a

static sensor node considers its neighbours as averagely charged

(M).

After the execution of ProxA, BattA, and NeighA, each static

sensor node can decide how to behave when the credit field has

to be computed to guide mobile robotic nodes to an event

location. To this end, the behaviour of a static sensor node can

be specified as “strategic” (Sn), “normal” (Nn), and “not

relevant” (NRn) with respect to the computation of the credit

field. More precisely, if a node is specified as Sn, it must

participate in the computation of the credit field. On the

contrary, if a node is denoted as NRn, it is not forced to take part

in the computation of the credit field. Finally, if a node is

specified as Nn, it may participate in the computation of the

credit field with probability of 50 percent.

Table 3. Behaviour of a static sensor node

classified as “not close” to an obstacle

Battery power

level of the node

Battery power level

of its neighbours

 H M L

hl Nn Sn Nn

ml NRn Nn Nn

ll NRn Nn Nn

Table 1 summarizes how a static sensor node classified as “very

close” to an obstacle has to behave depending on its battery

power level and on the battery power level of its neighbours.

Such a node is considered as “strategic” only when its battery

power level is high and its neighbours have a low battery power

level. In all other cases, it is scarcely involved in the

computation of the credit field. This is because the node should

save as much energy as possible in order both to extend its

lifetime and to be useful in case the neighbours run out energy

and cannot keep mobile robotic nodes away from the obstacle.

Static sensor nodes classified as “close” to an obstacle play a

strategic role in the computation of the credit field (see Table 2).

They have to participate frequently in such a computation, since

they are required to keep mobile robotic nodes away from

obstacles. In fact, they are allowed to consume more energy,

since, if they run out of energy, they can be always supported by

the neighbours classified as “very close” to an obstacle.

The static sensor nodes classified as “not close” to obstacles

(see Table 3) are located in areas that do not require particular

attention. They can be activated with a normal frequency, which

has to be reduced only if the nodes are characterized by a low

battery power level compared to that one of the neighbours.

5. Implementation

The improved version of the credit field algorithm has been

implemented in Agilla, which is a middleware that makes it

possible to program devices characterized by limited computing

capabilities, such as static sensor nodes [15, 16, 17, 25].

Agilla, whose architectural model is shown in Figure 3, is based

on a programming paradigm that employs “mobile agents” as

basic programming units. Such units are small programs that

can autonomously run on the static sensor nodes and

communicate according to the Linda tuple space model [26].

They can also migrate or clone across the static sensor nodes of

the network while maintaining their state. Moreover, Agilla

provides each static sensor node with the list of its neighbours,

and implements both local and remote tuple space operations.

Figure 3. The Agilla model

The proposed implementation consists of the following main

agents: Detector, Searcher, Updater, Status, Adversary,

Replier, Initializer, and Navigator.

A Detector agent is run on each static sensor node of the

network and is a “stationary” agent. It is created by a setup

flooding, when the sensor network is deployed. Its main task

consists in detecting events and in running the algorithm that

elects the cluster leader node by exchanging messages in the

tuple spaces of its neighbours. In this regard, when an event is

detected, the Detector agent allocated on the cluster leader node

takes charge of starting up an Updater agent, a Status agent, and

a Searcher agent.

An Updater agent is created by a Detector agent on a cluster

leader node. Its main task consists in running the BattA

algorithm on the static sensor nodes of the network, thus

classifying them as hl, ml, or ll. Therefore, once it has been

created on a node, it clones itself on all its neighbours. Then, it

estimates the battery power level of the static sensor node on

which it runs, and periodically communicates it to all its

neighbours.

A Status agent runs the NeighA algorithm on the static sensor

nodes of the sensor network. It reads the battery power levels of

its neighbours and classifies them as H, M, or L. Similarly to an

Updater agent, it is created by a Detector agent on a cluster

leader node. Then, it clones itself on all its neighbours, thus

spreading throughout the sensor network.

A Searcher agent is created by a Detector on a cluster leader

node, and starts the computing phase that searches a mobile

robotic node which can reach the region of phenomenon.

During such a phase, the first Searcher agent created on the

cluster leader node clones itself on all its neighbours. In this

way, it can reach the neighbours and check whether they are in

one of the three possible conditions: the reached node is (1) a

mobile robotic node; (2) a static sensor node; (3) a static sensor

node inside an adversary area.

In the first case, the Searcher agent applies pre-defined criteria

and decides whether the mobile robotic node can reach the

region of phenomenon. In this case, the Searcher agent creates a

Replier agent on the mobile robotic node, otherwise it stops its

execution.

344
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

In the second case, the Searcher agent runs the ProxA algorithm

to state the proximity level of the node to a possible obstacle or

an adversary area. Therefore, if it detects an obstacle or an

adversary area, it creates an Adversary agent, which takes

charge of classifying proximity. Otherwise, if the Searcher

agent does not detect any obstacle or adversary area and the

proximity of the node has still not set, the Searcher agent

directly sets it to nc.

Figure 4. Architecture of a mobile robotic node

After the classification of the node proximity, the Searcher

agent decides whether the node has to participate in the

computation of the credit field. To take such a decision, it reads

the tuples representing the classifications made by the Updater

and Status agents, and implements the behaviour summarized

by Table 1, Table 2, and Table 3 reported in Section 4.

Therefore, if the Searcher agent decides to participate in the

computation of the credit field, it simply clones itself on all its

neighbours and propagates the computing phase to search an

available mobile robotic node. Then, it creates a particular tuple

in the local tuple space to prevent eventual other Searcher

agents cloned on the node from starting another searching

phase.

Finally, in the third case, the Searcher agent terminates without

cloning itself, thus preventing the node from participating in the

computation of the navigational forces.

An Adversary agent is created by a Searcher agent on a static

sensor node whenever the node can directly detect an obstacle

or an adversary area. In this case, the Adversary agent classifies

the node as vc and clones itself on all the neighbours.

When an Adversary agent is cloned on a static sensor node, it

starts the phase to detect an obstacle or an adversary area. If the

detection fails, the Adversary agent sets the proximity of the

node to c and stops cloning itself. Otherwise, the agent classifies

the node as vc, and clones itself on all the neighbours. Finally,

the Adversary agent, before stopping its execution, creates a

particular tuple in the local tuple space to prevent eventual other

Adversary agents cloned on the node from runnnig.

A Replier agent is created by a Searcher agent on a mobile

robotic node that can reach the region of phenomenon. To this

end, it can go backward to the cluster leader node to notify the

availability of the mobile robotic node by exploiting the

migration programming facility supported by Agilla. In fact,

such a facility enables the Replier agent to follow backward,

node-by-node, the same path previously followed by the

Searcher agent, until the cluster leader node. This enables the

Replier agent to track the followed path and count the number

of hops in the path. In this way, the Replier agent can store a

tuple in the local tuple space of the cluster leader node, which

represents the credit value assigned to it. At this point, it can

create an Initializer agent and stop its execution.

An Initializer agent takes charge of building the credit field. To

this end, it clones itself to its neighbours, carrying the initial

value of the credit decremented by one. However, such a

cloning process goes on only on the static sensor nodes that lie

on the path previously followed by the Replier agent. Moreover,

when the Initializer agent reaches a new static sensor node, it

first checks whether a credit value has been already assigned to

the node: in this case, no further actions are done. Otherwise, it

sets the credit value of the static sensor node to the carried value

decremented by one. Finally, when the Initializer agent reaches

the mobile robotic node, it starts a Navigator agent on it.

A Navigator agent is a “stationary” agent that can run only on a

mobile robotic node. Its main task consists in driving such a

node to the region of phenomenon by exploiting the

navigational forces represented by the computed credit field.

Therefore, the Navigator agent checks the credit values of the

current neighbours and chooses the highest one. Then, it

generates all the commands needed to guide the mobile robotic

node towards the static sensor node that possesses the chosen

credit value. This process is repeated whenever the chosen static

sensor node is reached by the mobile robotic node, which can

thus follow, node-by-node, the path determined by the credit

field until the region of phenomenon.

6. Experimental Section

The proposed implementation of the improved version of the

credit field algorithm has been tested on a WSARN consisting

of 64 static sensor nodes and 2 mobile robotic nodes.

6.1 Main Network Hardware and Software Components

Static sensor nodes are Mica2 Motes, each provided with a

radio platform based on the Atmel ATmega 128L and a

low-power microcontroller able to run the TinyOS operating

system loaded in the internal flash memory. TinyOS is a light,

energy efficient operating system, which has been purposely

developed to manage self-configuring WSNs. It enables static

sensor nodes to concurrently run an application and

communicate through a multi-channel radio transceiver.

Moreover, it supports the Agilla middleware [15].

Mobile robotic nodes are made of a Stargate board connected to

a Lego Mindstorms robot (see Figure 4). In particular, the

Stargate board provides the Lego Mindstorms robot with the

capacity to interact both with the static sensor nodes and with a

PC acting as the “base station” of the WSARN. This enables the

robot to receive the movement commands generated on the

Stargate board by the Agilla agents through the infrared port

(see Figure 5).

The Stargate board is an embedded system that can run a Linux

kernel, and consists of a 400 MHz Intel Xscale processor, an

Intel SA1111 StrongARM companion chip for I/O, a 32 MB

Intel StrataFlash chip, and 64 MB SDRAM. It can be connected

to a specific daughter card provided with Ethernet and USB

ports, and with PCMCIA/CF slots, which can be used to get

345
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

wireless communication based on the IEEE 802.11 protocol.

The Stargate board is not provided with a mote-compatible RF

radio. Therefore, communication between the Stargate board

and the static sensor nodes based on the Mica2 Mote platform is

implemented by another Mica2 Mote, which can be connected

to the Stargate expansion bus through the 51 pin ending port.

Figure 5. Interaction within a mobile robotic node

The Lego Mindstorms robot is managed by a programmable

module, called RCX, whose core is a Hitachi H8/3292

microcontroller with 32 KB of external RAM. The RCX is

provided with a simple firmware able to accept and execute

only basic commands, received through the infrared port

connected to the Stargate board, to control the motors and

sensors installed on the robot. Therefore, in order to improve the

capabilities of the RCX and to program it in a high level

language, such as Java, the standard firmware has been replaced

with the LeJOS firmware. In fact, this firmware is supplied with

an extended API to fully control all the functionalities of the

RCX, and supports a Java based programming on top of a “tiny”

Java Virtual Machine”, such as the TinyVM.

To set up the WSARN, Agilla has to dynamically load the

agents described in Section 4 on the static sensor nodes. In this

regard, agent loading is carried out by running a Java

application, called AgentInjector, purposely customised for the

Stargate board, that is a node with limited computing

capabilities compared to a PC. This has required the installation

of a “reduced” Java Runtime Environment on the Stargate

board as well as the implementation of the remote access to the

functionalities of the AgentInjector via the standard “Remote

Method Invocation” software support. In this way, the mobile

robotic nodes provided with Stargate board have been

transformed into actual wireless “base stations” connected to a

PC, which can thus act as a “remote console” able to

dynamically program the WSARN.

6.2 Tests

To prove the effectiveness of the proposed navigation

algorithm, two different WSARNs have been deployed. They

are shown in Figure 1 and in Figure 8, respectively. The

networks have been repeatedly activated to generate the

navigational forces of credit field and to guide mobile robotic

nodes to the region of phenomenon. The activations have been

carried out always running both the original credit field

algorithm and its improved version, in order to compare the

different energy consumptions. In this regard, it worth noting

that the WSARNs deployed in the tests are characterized by

configurations that involve a different number of static sensor

nodes in the navigation of mobile robotic nodes, and this entails

a very different global energy consumption.

Figure 6. Energy consumption trend of the sensor network

shown in Figure 1 after five executions of the navigation

process

The former test has been conducted on the WSN depicted in

Figure 1. In this network, most of the static sensor nodes are

directly involved in the navigation process of the two mobile

robotic nodes to the region of phenomenon. Such a process has

been run 20 times in total, evenly divided in executions of the

original and improved credit field algorithm.

Figure 7. Energy consumption trend of the sensor network

shown in Figure 1 after ten executions of the navigation process

Then, the battery power level of the static sensor nodes has been

estimated and classified according to 5 ranges of values: L1

includes nodes with a battery power level in the range from 0 to

20% of the maximum battery power level, denoted as Lmax; L2

includes nodes with a battery power level in the range from 20%

to 40% of Lmax; L3 includes nodes with a battery power level in

the range from 40% to 60% of Lmax; L4 includes nodes with a

battery power level in the range from 60% to 80% of Lmax; L5

includes nodes with a battery power level in the range from 80%

to Lmax. The estimates have been obtained after the fifth and

7%

17%

30%
31%

15%

2%

6%

33%

37%

22%

L1 L2 L3 L4 L5

P
er

ce
n
ta

g
e

o
f

st
at

ic
 s

en
so

r
n
o
d
es

fo
r

ea
ch

 r
an

g
e

o
f

b
at

te
ry

 p
o
w

er
 l

ev
el

Credit Field A. Improved Credit Field A.

15%

23%

28%

25%

9%

5%

17%

32%
30%

17%

L1 L2 L3 L4 L5

P
er

ce
n
ta

g
e

o
f

st
at

ic
 s

en
so

r
n
o

d
es

fo
r

ea
ch

 r
an

g
e

o
f

b
at

te
ry

 p
o

w
er

 l
ev

el

Credit Field A. Improved Credit Field A.

346
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

the tenth run of the navigation process of the mobile robotic

nodes for each of the two algorithms, respectively. In both

cases, they result in similar global energy consumptions, whose

differences are within a range of 5%÷9%.

Figure 6 shows the distribution of the static sensor nodes in the

network depicted in Figure 1 according to their battery power

level after five executions of the navigation process of the two

mobile robotic nodes. Figure shows that energy consumption is

better distributed among the static sensor nodes when the

improved version of the credit field algorithm is run. In fact,

most of the nodes has an energy level equal to L3, L4, and L5,

whereas only 2% of the nodes has a minimum energy level.

Such considerations are confirmed by the results shown in

Figure 7, where only 5% of the nodes have a low energy level

after ten executions of the improved version of the credit field

algorithm. In fact, these results appear to be relevant, since they

prove that the proposed algorithm reduces the energy

consumption particularly for the static sensor nodes that are

more loaded by the navigation algorithm.

Figure 8. Credit field within a deployed sensor network

The latter test has been conducted on the WSN depicted in

Figure 8. Differently from the previous test, in this network only

a limited number of the static sensor nodes are directly involved

in the navigation process of the mobile robotic node to the

region of phenomenon, and this means that the global energy

consumption is reduced with respect to the previous test, when

the navigation process is run.

Also Figure 9 and Figure 10 show that the proposed improved

algorithm can limit energy consumption for the static sensor

nodes, thus promoting a more equal distribution of such a

consumption particularly among the most loaded nodes. In fact,

this is a relevant goal for WSARNs purposely deployed to guide

mobile robotic nodes in hostile environments. In such networks,

it is necessary to avoid getting static sensor nodes with a low

battery power level, since these nodes could go out of service,

thus preventing the detection of dynamic obstacles and

adversary areas during the navigation of mobile robotic nodes.

Figure 9. Energy consumption trend of the sensor network

shown in Figure 8 after five executions of the navigation

process

Figure 10. Energy consumption trend of the sensor network

shown in Figure 8 after ten executions of the navigation process

7. Conclusions

WSARNs can be exploited to guide mobile robotic nodes to

event locations. The literature presents a number of algorithms

that can achieve such a goal. However, these algorithms, such

as that one based on the credit field, do not adequately take into

account the problem of energy consumption of the static sensor

nodes that have to guide mobile robotic nodes. Such a problem

appears to be relevant, since WSARNs are usually employed to

guide robots within hostile environments, where human

presence is impracticable. This means that, if a number of static

sensor nodes fail because of a high energy consumption caused

by the repeated execution of the navigation algorithm, the

whole WSARN could fail to guide robots to the region of

interest in the presence of dynamic obstacles and adversary

areas. The proposed navigation algorithm just solves such a

problem. It can reduce and balance energy consumption among

the static sensor nodes that are close to obstacles and adversary

areas. Thus, the algorithm can preserve just the nodes that

appear to be strategic for the navigation of robots. In fact, the

conducted tests reasonably prove such claims.

4%

13%

29%

32%

22%

2%

5%

28%

35%

30%

L1 L2 L3 L4 L5

P
er

ce
n
ta

g
e

o
f

st
at

ic
 s

en
so

r
n
o
d
es

fo
r

ea
ch

 r
an

g
e

o
f

b
at

te
ry

 p
o
w

er
 l

ev
el

Credit Field A. Improved Credit Field A.

10%

19%

29%
27%

15%

4%

14%

31% 30%

21%

L1 L2 L3 L4 L5

P
er

ce
n
ta

g
e

o
f

st
at

ic
 s

en
so

r
n
o

d
es

fo
r

ea
ch

 r
an

g
e

o
f

b
at

te
ry

 p
o

w
er

 l
ev

el

Credit Field A. Improved Credit Field A.

347
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci,

“Wireless sensor networks: A survey”, Computer

Networks, Vol. 38, No. 4, pp. 393-422, 2002.

[2] W. W. Dargie, C. Poellabauer, “Fundamentals of wireless

sensor networks: theory and practice”, John Wiley &

Sons, Hoboken, NJ, USA, 2010.

[3] K. Somoppa, K. Øvsthus, L. M. Kristensen, “An industrial

perspective on wireless sensor networks – a survey of

requirements, protocols, and challenges”, IEEE

Communications Surveys & Tutorials, Vol. 16, No. 3, pp.

1391-1412, 2014.

[4] A.-S. Khan Pathan, N. Badache, S. Moussaoui, “Strengths

and Weakness of Prominent Data Dissemination

techniques in Wireless Sensor Networks”, International

Journal of Communication Networks and Information

Security, Vol. 5, No. 3, pp. 158-177, 2013.

[5] T. Arampatzis, J. Lygeros, S. Manesis, “A survey of

applications of wireless sensors and wireless sensor

networks”, IEEE International Symposium on Intelligent

Control, Limassol, Cyprus, pp. 719-724, 2005.

[6] S. Tilak, N. B. Abu-Ghazaleh, W. Heinzelman, “A

taxonomy of wireless micro-sensor network models”,

ACM Mobile Computing and Communications Review,

Vol. 6, No. 2, pp. 28-36, 2002.

[7] A. Nayak, I. Stojmenovic, “Wireless sensor and actuator

networks”, John Wiley & Sons, Hoboken, NJ, USA, 2010.

[8] R, Verdone, D. Dardari, G. Mazzini, A. Conti, “Wireless

sensor and actuator networks: technologies, analysis and

design”, Academic Press, Cambridge, MA, USA, 2010.

[9] I. F. Akyildiz, I. H. Kasimoglu, “Wireless sensor and actor

networks: research challenges”, Ad Hoc Networks, Vol. 2,

No. 4, pp. 351-367, 2004.

[10] T. Melodia, D. Pompili, V. C. Gungor, I. F. Akyildiz,

“Communication and coordinationin wireless sensor and

actor networks”, IEEE Transactions on Mobile

Computing, Vol. 6, No. 10, pp. 1116-1129, 2007.

[11] P. Gil, I. Maza, A. Ollero, P. Marrón, “Data centric

middleware for the integration of wireless sensor networks

and mobile robots”, 7
th

 Conference on Mobile Robots and

Competitions, Albuferia, Portugal, pp. 1-6, 2007.

[12] Q. Li, M. De Rosa, D. Rus, “Distributed algorithms for

guiding navigation across a sensor network”, 9
th

 ACM

International Conference on Mobile Computing and

Networking, San Diego, CA, USA, pp. 313-325, 2003.

[13] M. A. Batalin, G. S. Shukhatme, M. Hattig, “Mobile robot

navigation using a sensor network”, IEEE International

Conference on Robotics and Automation, New Orleans,

LA, USA, pp. 636-641, 2004.

[14] A. Verma, H. Sawant, J. Tan, “Selection and navigation of

mobile sensor nodes using a sensor network”, Pervasive

and Mobile Computing, Vol. 2, No. 1, pp. 65-84, 2006.

[15] C. L. Fok, G. C. Roman, C. Lu, “Agilla: A Mobile Agent

Middleware for Self-Adaptive Wireless Sensor

Networks”, ACM Transactions on Autonomous and

Adaptive Systems, Vol. 4, No. 3, Article 16, 2009.

[16] G. Mahadevan, S. Nirmala, N. Pradeep, “Extended

Architecture for Agilla Middleware to Reduce the Energy

Efficiency for WSN”, 4
th

 International Conference on

Emerging Research in Computing, Information,

Communication and Applications, Bangalore, India, in

“Emerging Research in Computing, Information,

Communication and Applications”, eds. N. R. Shetty, N.

H. Prasad, N. Nalini, Springer Singapore, pp. 543-553,

2005.

[17] L. Corradetti, D. Gregori, S. Marchesani, L. Pomante, M.

Santic, W. Tiberti, “A renovated mobile agents

middleware for WSN porting of Agilla to the TinyOS 2.x

platform”, IEEE 2
nd

 International Forum on Research and

Technologies for Society and Industry Leveraging a better

tomorrow, Bologna, Italy, pp. 1-5, 2016.

[18] N. Deshpande, E. Grant, T. C. Henderson, “Target

localization and autonomous navigation using wireless

sensor networks — a pseudogradient algorithm

approach”, IEEE Systems Journal, Vol. 8, No. 1, pp.

93-103, 2014.

[19] T. C. Henderson, E. Grant, “Gradient calculation in sensor

networks”, IEEE/RSJ International Conference on

Intelligent Robots and Systems, Sendai, Japan, Vol. 2, pp.

1792-1795, 2004.

[20] P. Corke, R. Peterson, D. Rus, “Localization and

navigation assisted by networked cooperating sensors and

robots”, International Journal Robotic Research, Vol. 24,

No. 9, pp. 771-786, 2005.

[21] J. R. Jiang, Y. L. Lai, F. C. Deng, “Mobile robot

coordination and navigation with directional antennas in

positionless wireless sensor networks”, International

Journal of Ad Hoc Ubiquitous Computing, Vol. 7, No. 4,

pp. 272-280, 2011.

[22] T. Rault, A. Bouabdallah, Y. Challal, “Energy efficiency

in wireless sensor networks: A top-down survey”,

Computer Networks, Vol. 67, pp. 104-122, 2014.

[23] W. Osamy, A. M. Khedr, “An algorithm for enhancing

coverage and network lifetime in cluster-based Wireless

Sensor Networks”, International Journal of

Communication Networks and Information Security, Vol.

10, No. 1, pp. 1-9, 2018.

[24] D. M. Omar, A. M. Khedr, D. P. Agrawal, “Optimized

Clustering Protocol for Balancing Energy in Wireless

Sensor Networks”, International Journal of

Communication Networks and Information Security, Vol.

9, No. 3, pp. 367-375, 2017.

[25] F. Frattolillo, N. Quarantiello, S. Ullo, “Implementing

Assisted Navigation in Hybrid Sensor Networks”, IEEE

Geoscience and Remote Sensing Symposium, Barcelona,

Spain, pp. 2909-2912, 2007.

[26] D. Gelernter, “Generative communication in Linda”,

ACM Transactions on Programing Languages and

Systems, Vol. 7, No. 1, pp. 80-112, 1985.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Luigi%20Pomante.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Marco%20Santic.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Marco%20Santic.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Walter%20Tiberti.QT.&newsearch=true
https://www.sciencedirect.com/science/article/pii/S1389128614001418#!
https://www.sciencedirect.com/science/article/pii/S1389128614001418#!
https://www.sciencedirect.com/science/article/pii/S1389128614001418#!
http://www.unisannio.it/it/content/implementing-assisted-navigation-hybrid-sensor-networks
http://www.unisannio.it/it/content/implementing-assisted-navigation-hybrid-sensor-networks

