
295
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

Implementation and Analysis of Combined Machine

Learning Method for Intrusion Detection System

Bisyron Wahyudi
1
, Kalamullah Ramli

2
, and Hendri Murfi

3

1,2Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia

3Department of Mathematics, Faculty of Science, Universitas Indonesia, Indonesia

Abstract—As one of the security components in Network Security

Monitoring System, Intrusion Detection System (IDS) is

implemented by many organizations in their networks to detect and

address the impact of network attacks. Many machine-learning

methods have been widely developed and applied in the IDS.

Selection of appropriate methods is necessary to improve the

detection accuracy in the application of machine-learning in IDS. In

this research, we proposed an IDS that we developed based on

machine learning approach. We use 28 features subset without

content features of Knowledge Data Discovery (KDD) dataset to

build machine learning model and are most likely to be applied for

the IDS in the real network. The machine learning model based on

this 28 features subset achieves 99.9% accuracy for both two-class

and multiclass classification. From our experiments using the IDS,

we have developed good performance in detecting attacks on

real networks.

Keywords— intrusion detection system, preprocessing, feature

selection, model selection,

1 Introduction

In the last few decades, information and computer

technology with interconnected internet services has become

increasingly important in everyday human life. Various ways

of network security have been researched and developed to

protect information assets and computer network

infrastructure. One technique that is often used in network

security is Intrusion Detection System (IDS) [1]. Currently,

detection mechanism in IDS is divided into two types, i.e.,

misuse and anomaly detection [2]. Misuse detection is a

technique of detecting attacks based on a familiar signature

pattern. Whereas anomaly detection is a technique to detect

attacks based on anomaly conditions that occur in the

network compared to the normal state of the network

conditions that have been determined [3]. One technique

used in anomaly detection is the use of Machine Learning

method, in recognizing network behavior.

The most commonly used conventional IDS today is

signature-based (misuse detection). This type of IDS requires

much human intervention ranging from identifying attacks,

creating signature attacks, and storing these signatures into

the database so that it can be used to detect such attacks in

the future. As more and more types of new attacks appear on

the internet the heavier the human task to keep the system

always to be able to detect new types of attacks, which must

always update the database with new types of attacks that

appear. This results in zero-day conditions, where a new type

of attack cannot be detected and infiltrated into the internal

network and result in damage to the system [3]. This

incident can occur because the new attack signature has not

been stored in the database so that new attacks coming into

the network are not recognized.

The tasks that human must perform in maintaining the

novelty of this signatures database can be achieved more

efficiently by applying machine-learning approach. With the

machine-learning approach, we only need to provide a set of

network data with various conditions suitable for the

processed system with a machine-learning algorithm so that

found a model that can be used to recognize normal and

abnormal network traffic. Furthermore, this machine-

learning model that has been built can be used to detect

attacks more efficiently and reliably, without having to

update the attack database often.

Several studies were conducted to develop machine learning

based IDS. Most of the studies were conducted using

publicly available datasets such as KDDCUP or NSL-KDD

dataset. The use of such datasets for IDS development can

result in good machine learning models, but often cannot be

implemented on real networks. Some features of these

datasets cannot be simply extracted from real network traffic.

In this study, we performed an analysis to select features of

the KDD dataset that were most likely to be used in

developing machine-learning based IDS.

Although there have been many academic studies that reveal

the potential of anomaly detection approach better in

detecting new types of attacks, until now the widely used

commercial/industrial IDS products are signature based

(misuse detection). There are still some obstacles in the

implementation of anomaly detection technique with

machine learning method into the real network, that is a

wrong selection of data features and inappropriate method

usage [4].

Increasing number of attacks that threaten data security on

internet encourage the use of encryption in data

communications on the internet. As more and more human

needs are turning to digital, a large number of digital services

and applications use encryption as the primary method of

securing data communications on the internet [5]. Available

data show that encrypted Internet traffic increased by 90%

per year [6]. NSS Labs predicts that by 2019, 75% of internet

traffic will be encrypted [7].

More and more internet services are heavily dependent on

encryption mechanisms to ensure their safety. Even

encryption technology is also used by Internet crime actors

to avoid detection and to secure their malicious activities.

The large use of encryption technology in data

communications on the internet has resulted in increasingly

difficult network security monitoring work. The attack

detection system can no longer assume that all data packets

on the network can be extracted and investigated easily to

detect anomaly within the network traffic [8,9].

Much research has been conducted to develop machine

learning based IDS. Most of the researchers were conducted

using a generally available dataset of KDDCUP dataset. The

296
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

use of such datasets for IDS development can result in good

machine-learning models with high accuracy, but often

cannot be implemented on real networks. Some features of

this KDD dataset cannot be easily extracted from actual

network traffic. In this study, we analyze to select features of

the KDD dataset that are most likely to be used in

developing machine learning based IDS and can be

implemented in real networks.

The paper is structured as follows: Works related to our

research are reviewed in Section 2. Section 3 introduces the

methodology of this research in developing machine-learning

model based IDS. Experiment and analysis are presented in

Section 4. Section 5, concludes this paper.

2 Related Works

In recent year researchers have carried out many researches

to develop anomaly-based IDS system using machine

learning approach. In contrast to misuse-based intrusion

detection that checks for signatures contained in the network

packet header, anomaly-based IDS extracts the network data

packets to obtain network features/attributes that can be used

to detect attacks using machine learning approach. Several

machine learning algorithms have been proposed by many

researchers. To develop a good machine learning method,

some techniques and mechanism need to be implemented in

a combination, such as the use of feature and model selection

as well as parameter tuning to get the optimal result.

A new method that combines several methods for detecting

attacks is proposed by J. Lekha, and Padmavathi Ganapathi.

[10] In their research they used improved CART technique

for misuse detection and extreme learning machine (ELM)

algorithm for anomaly detection. In the misuse detection

model, the traffic pattern is classified into the known and

unknown attack. Anomaly detection model classifies the not

known attack as normal data set and unknown attack to

improve the performance of normal traffic behavior. From

the experimental results, the method offered by using the

NSL-KDD dataset shows that the hybrid intrusion detection

method proposed can improve performance in detecting

attacks regarding training time, testing time, false positive

ratio and detection ratio. The proposed method detects the

known attacks and unknown attacks with a ratio of 99.8 %

and 52% respectively.

Mohammed A. Ambusaidi et al. proposed the use of Flexible

Mutual Information (FMI) based algorithms to perform

feature selection capable of handling linear and non-linear

dependent features. The selection features are then applied to

the Least Square Support Vector Machine (LSSVM) based

attack detection method. To test the proposed technique

several different datasets namely KDD Cup 99, NSL-KDD

and Kyoto 2006+ dataset is used. From the experiment

results obtained the best accuracy results using KDDCUP 99

dataset with 21 features selected [11].

Chaouki Khammassi, Saoussen Krichen applies the wrapper

approach to selecting the best feature portion of the genetic

algorithm as a search strategy and logistic regression as a

learning algorithm. The selection features were then

processed using the three decision tree classifiers, i.e., C4.5,

Random Forest (RF), and Naive Bayes Tree (NBTree), and

the dataset used was 10% KDD99 datasets and the UNSW-

NB15 dataset. The experimental results obtained were

99.90%, 99.8%, and 0.105% false alarm rate (FAR) with an

18 features subset on the KDD99 dataset. The results

obtained for UNSW-NB15 provide the lowest FAR with

6.39% with a subset of 20 features [12].

M.R. Gauthama Raman et al. proposed the use of

Hypergraph based Genetic Algorithm (HG-GA) for

parameter setting and feature selection in the Support Vector

Machine (SVM). The HG-GA-based algorithm is used to

accelerate the search for optimal global solutions and used

weighted objective functions to maintain a trade-off between

maximizing detection rates and minimizing false alarm rates,

along with the optimal number of features. To evaluate the

proposed method, the NSL-KDD dataset is used, by

comparing the use of all 41 features dataset and features

subset obtained from the HG-GA method. The experimental

results show that the HG-GA SVM method gives better

accuracy and less processing time [13].

In a study conducted by Akashdeep, Ishfaq Manzoor, Neeraj

Kumar, in the early stages of feature selection by ranking

feature based on information gain and correlation.

Furthermore, to do the classification used method of a neural

network using back-propagation learning. At the time of this

learning process used five different subsets of the KDD99

dataset. The subset of KDD'99 datasets is grouped based on

information gain and correlation. The experimental results

indicate the selection of features to reduce the number of

features used in building the model gives results with better

accuracy and performance of the classifier [14].

In their research Sumaiya Thaseen Ikram, Aswani Kumar

Cherukuri used SVM method to build IDS based machine

learning. In their research, they used SVM multiclass to

detect intrusion. To get the best result in SVM multiclass, the

parameter of C and gamma on RBF kernel function were

tuned to get optimal SVM model. For feature selection,

important features are ranked according to a set of rules

based on performance using chi-squared analysis, and the

best feature subset was selected for use in model

development. Development and testing of models conducted

using the NSL-KDD dataset. The experimental results show

the multiclass SVM with the best-selected features and the

proper setting of C and gamma parameters gives the most

optimum results [15].

Prashant Kushwaha, Himanshu Buckchash, and

Balasubramanian Raman perform development of machine

learning based IDS by using KDD'99 dataset. To select the

best feature, filter based techniques feature selection was

carried out namely: correlation, gain ratio and Mutual

Information. Some machine learning methods are tested in

the learning process to choose the best model. The result

SVM has shown the best performance among all other

classifiers. Mutual Information based filter proved out to be

more effective in comparison with other features selection

techniques [16].

3 Proposed Method

3.1 Methodology

Our methodology in developing machine learning models for

IDS is briefly illustrated in Figure 1. We also conduct

simulation as the proof of concept of our methodology. In

this simulation, we implement our model in the real network.

The simulation process of our work is illustrated in Figur 2.

The steps in model development are as follows:

297
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

1. Data preprocessing: transform, rescale, and

normalize the NSL-KDD dataset

2. Feature selection: rank the feature score and select

the most relevant features, and remove unselected

features from the dataset.

3. Model selection: tune the appropriate parameters of

the model using an NSL-KDD dataset with selected

features.

4. Model evaluation: estimate the performance of the

model using NSL-KDD dataset and 10%KDDCUP

dataset.

5. Save the final model obtained from model

development in the file to be implemented on IDS.

Figure 1 Model Development

Figure 2 Intrusion Detection Simulation

The steps in Intrusion Detection Simulation are as follows:

1. Capture/sniff network traffic and save to file in pcap

format.

2. Extract pcap file to obtain the network features

based on KDD dataset format.

3. Detect intrusion from the pcap with KDD dataset

format using the final model from the model

development.

4. Classify the network traffic as normal or abnormal

then display and save the result.

3.2 Dataset

The most publicly available and comprehensive dataset that

is widely used in research and development of machine

learning based IDS is the KDDCUP'99 dataset. The

KDDCUP'99 dataset developed by MIT Lincoln Labs

provides a standard dataset generated from simulations in

military network environments and by encompassing various

intrusions [17]. The dataset also provides network features

that can be used to build and evaluate the machine learning

based attack detection model.

The classification of the attacks types provided in the

KDDCUP'99 dataset is first grouped into two types of

connections, i.e., normal and attack connection. Furthermore,

the attack connections are grouped again in 4 types of attack,

that is:

 DoS (Denial of Service): a type of attack aimed at
shutting down network services by flooding networks
with certain data packets.

 Probe: is a type of attack intended to conduct
surveillance and look for weakness information from a
particular network address.

 R2L (Remote to Local): a type of attack that is
performed to access a particular network address
remotely illegally.

 U2R (User to Root): the type of attack that is performed
to escalate user privileges to higher privileges such as
superuser.

From 4 types of these attacks, each is divided into several

sub-types of attacks. The complete attack classification is

summarized in Table 1.

Table 1 Network Traffic Classification

Two-Class
normal abnormal/attack

Multiclass (5 Labels)
normal DoS Probe R2L U2R

Multiclass (23 Labels)
normal smurf satan warezclient buffer_overflow

neptune ipsweep guess_passwd rootkit

back portsweep warezmaster loadmodule

teardrop nmap imap perl

pod ftp_write

land multihop

 phf

 spy

The data features provided in the KDDCUP'99 dataset

consists of 4 types of features as given in Table 2-5.

In 2009 Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and

Ali A. Ghorban reviewed the KDDCUP'99 dataset, and

found some weaknesses in the KDDCUP'99 dataset,

including many redundant data that can influence the

298
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

outcome of machine learning to become biased [18]. To fix

the weaknesses found in the KDDCUP'99 dataset, then the

NSL-KDD dataset is offered. The data structure and

classification of attacks in the NSL-KDD dataset remain the

same as KDDCUP'99, with structural improvements and

eliminating duplicate records in the dataset.

In our research, we decided to use the NSL-KDD dataset

with the consideration that the data is still representative to

simulate the real network and it has been improved so that it

can produce better non-biased learning models due to

duplicate data. NSL-KDD data consists of training data and

test data, each of which is stored in 2 separate files. For

testing purposes in this research, we also prepare test data

taken from 10% dataset KDDCUP'99.

Table 2 Basic features of individual TCP connections

No Feature Name Description Type

1 duration length (number of seconds)

of the connection
continuous

2 protocol_type type of the protocol, e.g., tcp,
udp, etc.

discrete

3 service network service on the

destination, e.g., http, telnet,
etc.

discrete

4 src_bytes number of data bytes from

source to destination
continuous

5 dst_bytes number of data bytes from
destination to source

continuous

6 flag normal or error status of the

connection
discrete

7 land 1 if connection is from/to the
same host/port; 0 otherwise

discrete

8 wrong_fragment number of ‘wrong’ fragments continuous

9 urgent number of urgent packets continuous

Table 3 Content features within a connection suggested by

domain expert knowledge

No Feature Name Description Type

10 hot number of ‘hot’ indicators continuous

11 num_failed_logins number of failed login
attempts

continuous

12 logged_in 1 if successfully logged in;
0 otherwise

discrete

13 num_compromised number of compromised
conditions

continuous

14 root_shell 1 if root shell is obtained;
0 otherwise

discrete

15 su_attempted 1 if ‘su root’ command
attempted; 0 otherwise

discrete

16 num_root number of ‘root’ accesses continuous

17 num_file_creations number of file creation
operations

continuous

18 num_shells number of shell prompts continuous

19 num_access_files number of operations on
access control files

continuous

20 num_outbound_cmds number of outbound
commands in an ftp
session

continuous

21 is_hot_login 1 if the login belongs to
the ‘hot’ list; 0 otherwise

discrete

22 is_guest_login 1 if the login is a ‘guest’
login; 0 otherwise

discrete

Table 4 Traffic features computed using a two-second time

window

No Feature Name Description Type

23 count number of connections to
the same host as the current
connection in the past two
seconds

continuous

24 serror_rate % of connections that have
‘SYN’ errors

continuous

25 rerror_rate % of connections that have
‘REJ’ errors

continuous

26 same_srv_rate % of connections to the
same service

continuous

27 diff_srv_rate % of connections to
different services

continuous

28 srv_count number of connections to
the same service as the
current connection in the
past two seconds

continuous

29 srv_serror_rate % of connections that have
‘SYN’ errors

continuous

30 srv_serror_rate % of connections that have
‘REJ’ errors

continuous

31 srv_diff_host_rate % of connections to
different hosts

continuous

Table 5 Traffic features computed using the previous 100

connections

No Feature Name Description Type

32 dst_host_count count of

destination host
continuous

33 dst_host_srv_count count of
destination host
service

continuous

34 dst_host_same_srv_rate same service rate
for destination
host

continuous

45 dst_host_diff_srv_rate difference
service rate for
destination host

continuous

36 dst_host_same_src_port_rate same source port
rate for
destination host

continuous

37 dst_host_srv_diff_host_rate difference host
rate for
destination host
service

continuous

38 dst_host_serror_rate % ‘SYN’ errors
of destination
host

continuous

39 dst_host_srv_serror_rate % ‘SYN’ errors
of destination
host service

continuous

40 dst_host_rerror_rate % ‘REJ’
errors of
destination host

continuous

41 dst_host_srv_rerror_rate % ‘REJ’
errors of
destination host
service

continuous

NSL-KDD data that has been separated between the training

data and data testing is then performed preprocessing data

which includes transformation, scaling, standardization, and

normalization. Training data is used during model

299
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

development, including features selection and model

selection. While data testing is used to evaluate learning

outcomes of each model. The model learning outcomes will

also be evaluated using test data taken from the 10% dataset

of KDDCUP'99.

For the proof of concept of our proposed method, we also set

up a dataset that is captured from a real network. The data

packet captured from the real network is stored in the file in

pcap format. Furthermore, this pcap file is extracted to get

the appropriate features and stored in the format of the KDD

dataset structure format. An overview of the network packet

capture system topology as presented in Figure 3.

Figure 3 Network Capture Topology

To simulate attack data packets in this simulation system, we

used some attack tools as follows:

DoS : HOIC, Slowloris

Scanner : Uniscan, nmap

Bruteforce: Burp Suite, Intruder

The real-time capture dataset in KDD format is then used to

test the model already developed to detect whether it is

normal or attack network traffic.

To perform real-time network data extraction as well as from

pcap files to network features that correspond to the KDD

structure we follow the explanation of the KDD dataset [16]

and explanation of Lee & Stolfo in their work [18]. Based on

the available references we can only extract the features

subsets: basic features (1-9), time based traffic features (23-

31) and connection based traffic features (23-31), while for

content features (10-22) we cannot extract it because there is

no documentation explaining how to determine the value in

the content features. In the explanations described in KDD

[17] and Lee & Stolfo [19], the content features are

determined by the domain expert knowledge without

explaining how to determine the value. From the results of

our observations we also found that the value of the content

features is related to certain systems/applications in the

simulation performed by MIT Lincoln Labs so that these

content features are not suitable to be generally applied to

other systems/applications. From the development of the

internet, network system today also found that most of the

network traffic on the internet is currently encrypted, making

it difficult to get the content features. [20]

3.3 Data Preprocessing

The learning algorithm in machine-learning has a close bond
with certain data types and structures so that its performance
is strongly influenced by the data available. Most machine-
learning methods are developed based on certain assumptions
regarding the type and structure of the data being processed.
To get the best results in building classification model, data
preparation is required to meet the criteria required by the
machine learning method that we use. Using inappropriate
data with the machine-learning method will result in a poor
model that cannot provide the correct predictions [21].
The data preprocessing in this research include
transformation, scaling, standardization, and normalization.
Data transformation is process to change the original data
type into the data type required by the machine learning
method. Scaling is carried out to adjust the value of all data
features so that it is on the same scale. Standardization of data
features is performed to adjust the feature value so that it
follows the Gaussian distribution of having a mean value of 0
and standard deviation 1, which is particularly useful for
machine learning methods which assume that the processed
data follow the Gaussian distribution.

3.4 Feature Selection

Feature selection is the process of selecting features in our
data that contribute to the prediction or output variables we
expect. The data are available for the classification model
sometimes not necessarily appropriate to the implementation
in real work. For these reasons, we need to select the features
to determine the most relevant features and by the
implementation in a real application.
There are several methods to perform feature selection. In
general, Isabelle Guyon and Andre Elisseeff [22] categorize
as follows:

1. Filter Methods that is selecting features using

statistical measurements. Each feature is scored

based on statistical calculations; then the threshold

is specified to decide the features to be included in

model formation.

2. Wrapper Methods, which is looking for the most

optimal combination of features by evaluating some

combination of features and calculating the score

based on the model accuracy.

3. Embedded Methods, which is choosing features

when building a model, for example using

regularization algorithm.

4. Ad-hoc feature selection, which is choosing features

based on domain expert knowledge.

The main objective of this research is to get the best

implementable model. Our main focus is designing systems

by implementing machine learning in IDS. One important

job is to determine the structure and content of the data most

likely to be applied to the IDS in the real network. In

determining the structure and content of this data one of the

jobs is to choose the features that best suit the conditions in

the field and can be applied at the time of implementation.

To determine the structure and content of this most

appropriate data in the feature selection stage we used some

feature selection methods and compare the result, then to

determine the final result of the feature selection using

domain expert knowledge related to the implementation of

machine learning model on IDS. Feature selection method is

conducted by calculating the score of each feature with

wrapper approach method and univariate feature selection.

300
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

Then the features ware ranked by its score, and features with

a high score were selected. The main goal in this phase is to

select features which provide high quality and practical

training data for the selected classifier algorithm. Then, the

classifier is trained with the new data with selected features

subset, and finally, the intrusion detection model is built.

Feature selection with wrapper approach involves evaluation

of features through checking the accuracy of the models

learned from different subsets of features. In this method, we

implement a meta estimator that fits some subsets and

compute features of importance. The feature subset, which

leads to the best model of learning, is selected. The feature

selection with the wrapper approach resulted from the fact

that the combination of the features and the characteristics of

the main features of the study. [23]

Univariate feature selection works by selecting the best

features based on univariate statistical tests, in this work we

use chi-square. Univariate feature selection determines the

strength of the relationship between the feature and the

response variable by examining each feature individually.

Chi-square is used for assessing two kinds of comparing:

tests of independence and tests of goodness of fit. In feature

selection, a test of independence is assessed by chi-square

and estimate whether the class is independent of a feature

[24].

3.5 Model Selection

In the model selection, some learning algorithms were

observed, and the model gives the best accuracy results were

selected. To get the best results from each model of the

learning algorithm, we optimize the parameters of each

model before the learning process. In this work, we tuned the

parameters with grid search and cross-validation method.

The grid search method is to look for combinations of

parameters that provide the best learning outcomes, by trying

different combinations of parameters in the learning

algorithm. Cross-validation is the process of training learners

using one set of data and testing it using a different set. In

our research we used 5-fold cross-validation, i.e., the dataset

is divided into five subsets: 4 subsets for learning and one

subset for testing [25].

In the selection model, the learning process is conducted

using four different methods, i.e., Naïve Bayes, Neural

network, K-NN, and SVM. Each of these methods was

evaluated using training dataset that has been prepared to

conduct learning and the features subset that have been

selected in the features selection process. The models

obtained from learning process then were tested using testing

dataset, i.e., NSL-KDD test dataset and 10% and 20% of

10% KDDCUP dataset. The results of accuracy and timing

of each model were compared and analyzed to determine the

best model to be used in the next process.

3.6 Model Evaluation

To evaluate the model, we measured the performance of the

classifier in classifying the data correctly. Generally,

performance measurement of a classification model is

conducted by using confusion matrix. The confusion matrix

is a table that records the number of original class label data

and predicted class label. By comparing the amount of the

original class label data and the predicted class label, we can

get the number of correct predictions and the number of false

predictions.

From the number data of correct predictions and false

predictions are then used to calculate the accuracy, error rate,

etc. of the classification, using commonly used formulas, one

of which is from [26], as follows:

True Positives (TP) - Is a correctly predicted positive value,

that is the value of the actual class, and the predicted class

value is equally positive.

True Negatives (TN) - Is a correctly predicted negative

value, that is the value of the actual class, and the predicted

class value are equally negative.

False Positive (FP) - Is an incorrectly predicted positive

value, that is a class value that is positive, but the value of

the prediction class is negative.

False Negative (FN) - Is an incorrectly predicted negative

value, that is a class value that is negative, but the value of

the prediction class is positive.

Accuracy - Accuracy is the most intuitive measure of

performance, and this is just a precisely predicted

observation ratio for total observation.

Accuracy = TP + TN / TP + FP + FN + TN

Precision - Precision is a predictably positive predictor ratio

to total positive observation predictions.

Precision = TP / TP + FP

Recall (Sensitivity) - Recall is a well-predicted positive

observation ratio for all observations in the actual class - yes.

Recall = TP / TP + FN

F1 Score - The F1 score is the weighted average of Precision

and Recall. Therefore, this score takes false positives and

false negatives into account.

F1 Score = 2 * (Recall * Precision) / (Recall +

Precision)

4 Experiment and Analysis

In this research, we divided the work into 2 phases: Model

Development Phase and Simulation Phase. In Model

Development Phase we experimented to produce machine

learning model which will be implemented in real IDS. In

Simulation Phase, we conducted a simulation to test the

machine learning model that has been developed in a system

that detects attacks from the real network.

4.1 Experiment Setup

In running the experiment in this research, we utilized

computer facilities for data processing with the following

specifications:

Processor: 2,5 GHz Intel Core i5

Memory: 8 GB 1600 MHz DDR3

Operating System: Ubuntu 17.10

For data processing with machine learning, we used Python

programming language with machine learning tools Scikit-

learn [27].

4.2 Model Development Phase

The model development phase was carried out to create a

machine learning model that will be used for detection of

301
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

attacks on real networks. The model development phase

includes the process of data preparation, features selection,

model selection, and model evaluation.

Data used in this phase were training data from NSL-KDD

and test data from NSL-KDD and 10% and 20% of

10%KDDCUP'99. The description of the dataset is given in

Table 6.

Table 6 Dataset Description
Data Total Normal Dos Probe R2L U2R

NSL Train 125.972 67.342 45.927 11.656 995 52

NSL Test 18.793 9.711 5.740 1.106 2.199 37

10%

KDD10%

49.402 9.751 39.139 388 123 1

20%

KDD10%

98.804 19.577 78.196 797 228 6

In the features selection process, we performed two methods

of feature importance with wrapper approach and univariate

chi-square. The results of each feature selection method are

as presented in Table 7. In this table the shaded cells are

features with lower score, and may be removed.

From the result of some feature selection methods, we

choose the features that produce the best model and enable to

be implemented in real IDS. As the final decision of features

selection, we use domain expert knowledge consideration

related to its implementation in the real network. Based on

the description of KDDCUP'99 [17] and NSL-KDD [28] it is

known that content features subset (number 10-22) from

Table 3, the data is obtained based on expert knowledge

domain. From our analysis and observation, we get that the

data on this features subset was obtained from certain

applications and cannot be generalized. Furthermore, the

trend of current internet applications that data on these

features is encrypted it is difficult to get these features data

from real network packets. Based on these considerations, in

this study, we remove the content feature (number 10-22).

Further, we compared the learning accuracy and performance

of the model with 41 features and with 28 features.

Based on features score ranking, then 19 best features of the

wrapper approach and 21 best features of univariate chi-

square were tested using the SVM classifier. The tests with

the SVM classifier were performed to compare the accuracy

results with all 41 features dataset, 21 features subset, and 19

features subset. In this test, we also used a subset of 28

features that are the result of feature reduction of a total of 41

KDD features without content features (10-22) based on

domain expert knowledge. The accuracy results from each

features subset can be seen in Table 8.

From the accuracy of each features subset in Table 8, it can

be seen that a subset with 28 features provides the best

accuracy results, thus in the selection of our model we use

the 28 features subset.

In the model selection stage, we use a dataset with 28

features (without content features). Some of the learning

algorithms we evaluated are SVM, Naïve Bayes, KNN, and

Neural Network. We conducted learning the process for

classification of two-class (normal and attack) and multiclass

(normal, DoS, Probe, R2L, and U2R). The result of

prediction for each learning algorithm for classification of

two-class presented in Table 9, and for classification of

multiclass presented in Table 10. Comparison of accuracy

each learning algorithm for classification of two-class

presented in Figure 4, and for classification of multiclass

presented in Figure 5.

Table 7 Feature Selection Score

Features

Univariate Chi

Square Wrapper

duration 2.826519543 63,54787209

protocol_type 0.172328957 295,6548746

service 8.243793956 121,9684166

flag 5.465393293 1910,788543

src_bytes 1089.543299 175,9347821

dst_bytes 7126.314318 117,271535

land 0.00065122 175,6223816

wrong_fragment 0.226732233 96,22986459

urgent 0.000181718 43,11841727

hot 0.040297298 83,83387513

num_failed_logins 0.000297401 26,57231803

logged_in 3.625973858 679,0578386

num_compromised 0.195937472 38,5219464

root_shell 0.005176937 65,36687351

su_attempted 0.01173053 93,63296562

num_root 0.457813131 15,44384933

num_file_creations 0.100395265 13,60867399

num_shells 0.001347134 56,37072523

num_access_files 0.040903397 29,66709078

num_outbound_cmds 0 0

is_host_login 8.70631E-05 43,81715626

is_guest_login 0.019253195 105,9430942

count 652.5616721 82,83794029

srv_count 0.000272025 53,6925844

serror_rate 329.0606084 755,9977392

srv_serror_rate 317.0746204 101,812899

rerror_rate 55.81489236 70,47880838

srv_rerror_rate 42.61256533 159,1656237

same_srv_rate 208.264141 1480,058033

diff_srv_rate 26.63040191 169,1683489

srv_diff_host_rate 14.15434894 91,17000547

dst_host_count 95.74258043 437,2705228

dst_host_srv_count 696.8826698 638,6550968

dst_host_same_srv_rate 234.4820854 100,187664

dst_host_diff_srv_rate 31.97842615 77,14903087

dst_host_same_src_port_rate 6.927567558 255,3532438

dst_host_srv_diff_host_rate 1.456325149 129,8679041

dst_host_serror_rate 372.2546649 293,9741698

dst_host_srv_serror_rate 381.5193858 416,1960159

dst_host_rerror_rate 63.54755808 323,118674

dst_host_srv_rerror_rate 68.66941117 111,8726018

302
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

Table 8 Selected Feature Model Accuracy
Features Precision Recall F1-score AUC Accuracy

Wrapper

(19)

0.998157 0.997663 0.99791 0.99803 0.998055

Univariate

(21)

0.996335 0.996964 0.99665 0.996886 0.99688

28 0.998498 0.998363 0.998431 0.998528 0.998539

41 0.998357 0.998284 0.998071 0.998144 0.998135

Table 9 Two-Class Model Performance

Method Data Test Precision Recall F1-score Accuracy

SVM NSL Test 0,837 0,793 0,815 0,826

 KDD10% 0,997 0,988 0,993 0,988

 20KDD10% 0,997 0,989 0,993 0,988

Naïve
Bayes NSL Test

0,928 0,703 0,800 0,830

 KDD10% 0,885 0,284 0,430 0,396

 20KDD10% 0,885 0,284 0,430 0,396

KNN NSL Test 0,959 0,803 0,874 0,888

 KDD10% 0,998 0,992 0,995 0,992

 20KDD10% 0,998 0,992 0,995 0,992

Neural

Network NSL Test
0,951 0,749 0,838 0,860

 KDD10% 0,996 0,993 0,994 0,990

 20KDD10% 0,995 0,993 0,994 0,990

Figure 4 Comparison of accuracy for two-class

From the learning process with some learning algorithms as

presented in Figure 4 and Figure 5, KNN gives the best

accuracy result but requires very long learning and prediction

process as shown in Table 9 and Table 10. SVM algorithm

gives excellent and stable results in training and test

accuracy with fast learning and prediction time.

Table 10 Multiclass Model Performance

Method Data Test Precision Recall F1-score Accuracy

 SVM NSL Test 0,837 0,837 0,837 0,837

 KDD10% 0,883 0,883 0,883 0,883

 20KDD10% 0,884 0,884 0,884 0,884

 Naïve
Bayes NSL Test

0,830 0,830 0,830 0,830

 KDD10% 0,350 0,350 0,350 0,350

 20KDD10% 0,351 0,351 0,351 0,351

 KNN NSL Test 0,882 0,882 0,882 0,882

 KDD10% 0,989 0,989 0,989 0,989

 20KDD10% 0,990 0,990 0,990 0,990

 Neural

Network NSL Test
0,826 0,826 0,826 0,826

 KDD10% 0,205 0,205 0,205 0,205

 20KDD10% 0,207 0,207 0,207 0,207

Figure 5 Comparison of accuracy for multiclass

Considering the purpose of model development in this

research to be implemented in the real network, we required

a classifier model which gives good accuracy result and fast

processing time. We decided to use SVM for the next

process of building the classification model to be

implemented for IDS in a real network.

4.3 Simulation Phase

In the simulation phase, we built the SVM classification

model with the NSL-KDD dataset. Furthermore, the results

of model development for both classifications of two-class

and multiclass were tested using the NSL-KDD test dataset,

and 10% and 20% of 10% KDDCUP'99 dataset. The final

model of this development result was then used to detect

intrusion from pcap data captured from the real network as

described in section 4.2 of this paper. The prediction

accuracy of SVM classification model can be seen in Table 9

and Table 10. The result of prediction and processing time

with test data and intrusion detection from pcap data with the

classification of 2 classes is presented in Table 11, and

classification with multiclass is presented in Table 12. The

example view of intrusion detection results from real

networks is provided in Figure 6.

Table 11 Two-Class Data SVM Prediction Result

Tablea 12 Multiclass Data SVM Prediction Result

From the experimental results using two-class and multiclass

SVM classification model with new dataset without

involving content features (feature 10-22) show very good

result. In the learning process two-class obtained 99.9%

accuracy with a processing time of 8 seconds 20

milliseconds, and the results in the multiclass classification

accuracy of 99.9% with a processing time of 9 seconds 80

303
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

milliseconds. The prediction results in NSL-KDD test data

for classification of two-class got 82,6% accuracy with

process time 1 second 28 milliseconds, and the result of

classification of multiclass accuracy 83,7% with process time

1 second 25 milliseconds. Predicted results in 10% KDD10%

test data for classification of two-class obtained 98.8%

accuracy with process time 3 seconds 24 milliseconds and

results in multiclass classification accuracy 88.3% with

process time 3 seconds 26 milliseconds. Predicted results in

20% of KDD10% test data for two-class classification

obtained 98.8% accuracy with a processing time of 6 seconds

93 milliseconds and results in multiclass classification

accuracy 89.4% with a processing time of 6 seconds 98

milliseconds.

Figure 6 Intrusion Detection View in Real Network

5 Conclusions

We have successfully developed an intrusion detection

model using machine learning approach which applies to a

real network. Removing the content features (feature 10-22)

from the structure of the KDD dataset results in an attack

detection classification model with high accuracy. The

experiment without involving the content features of KDD

dataset gives the best classification accuracy. From our

experiments on the feature selection, it is shown that most of

the content features have low scores so that they can be

eliminated from the dataset. The developed model

implemented on IDS works well in detecting attacks in a real

network.

The results of the experiment on several classification

models show that SVM provides the best performance results

with average accuracy on the test data of 93.4% for

classification of two-class, and 86.8% for multiclass

classification. Processing time on the test dataset for

classification of two-class and multiclass is quite short.

Experiments on real networks, the IDS that have been

developed the ability to detect attacks with 6.839.023

network traffic within 7 minutes, 49 seconds, 30

milliseconds.

6 Acknowledgement

This article’s publication is supported by the United States

Agency for International Development (USAID) through the

Sustainable Higher Education Research Alliance (SHERA)

Program for Universitas Indonesia’s Scientific Modeling,

Application, Research, and Training for City-centered

Innovation and Technology (SMART CITY) Project, Grant

#AID-497-A-1600004, Sub Grant #IIE-00000078-UI-1.

References

[1] Zayed Al Haddad, Mostafa Hanoune, and Abdelaziz

Mamouni, "A Collaborative Network Intrusion Detection

System (C-NIDS) in Cloud Computing," International Journal

of Communication Networks and Information Security

(IJCNIS) vol. Vol. 8, No. 3, December 2016, pp. 130-135,

2016.

[2] A. L. Buczak and E. Guven, "A Survey of Data Mining and

Machine Learning Methods for Cyber Security Intrusion

Detection," in IEEE Communications Surveys & Tutorials,

vol. 18, no. 2, pp. 1153-1176, Second quarter 2016.

[3] Monowar Hussain Bhuyan, D K Bhattacharyya and J K Kalita

"Survey on Incremental Approaches for Network Anomaly

Detection" International Journal of Communication Networks

and Information Security (IJCNIS) vol. Vol. 3, No. 3,

December 2011, pp. 226-239, 2011.

[4] M. Tavallaee, N. Stakhanova and A. A. Ghorbani, "Toward

Credible Evaluation of Anomaly-Based Intrusion-Detection

Methods," in IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), vol. 40, no.

5, pp. 516-524, Sept. 2010.

[5] Amiruddin, Anak Agung Putri Ratna, and Riri Fitri Sari " New

Key Generation and Encryption Algorithms for Privacy

Preservation in Mobile Ad Hoc Networks" International

Journal of Communication Networks and Information

Security (IJCNIS) vol. Vol. 9, No. 3, December 2017, pp.

376-385, 2017.

[6] Trustworthy Internet Movement

(www.trustworthyinternet.org).

[7] https://www.nsslabs.com/company/news/press-releases/nss-

labs-predicts-75-of-web-traffic-will-be-encrypted-by-2019/

[8] Blake Anderson, David McGrew, “Machine Learning for

Encrypted Malware Traffic Classification: Accounting for

Noisy Labels and Non-Stationarity”, Proceedings of the 23rd

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Halifax, NS, Canada — August

13 - 17, pp. 1723-1732, 2017.

[9] R. Koch, M. Golling and G. D. Rodosek, "Behavior-based

intrusion detection in encrypted environments," in IEEE

Communications Magazine, vol. 52, no. 7, pp. 124-131, July

2014.

[10] J. Lekha, and Padmavathi Ganapathi, " Detection of Illegal

Traffic Pattern using Hybrid Improved CART and Multiple

Extreme Learning Machine Approach," International Journal

of Communication Networks and Information Security

(IJCNIS) vol. Vol. 9, No. 2, August 2017, pp. 164-171, 2017.

[11] Mohammed A. Ambusaidi, Xiangjian He, Priyadarsi Nanda,

and Zhiyuan Tan, " Building an Intrusion Detection System

Using a Filter-Based Feature Selection Algorithm," IEEE

TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 10,

October 2016.

[12] Chaouki Khammassi, Saoussen Krichen, " A GA-LR wrapper

approach for feature selection in network intrusion detection,"

computers & security 70 (2017) 255–277. Available:

http://dx.doi.org/10.1016/j.cose.2017.06.005

[13] M.R. Gauthama Raman, Nivethitha Somu, Kannan

Kirthivasan, Ramiro Liscano, V.S. Shankar Sriram, " An

efficient intrusion detection system based on hypergraph - a

Genetic algorithm for parameter optimization and feature

selection in support vector machine," Knowledge-Based

Systems 134 (2017) 1–12. Available:

https://doi.org/10.1016/j.knosys.2017.07.005

[14] Akashdeep, Ishfaq Manzoor, Neeraj Kumar, "A feature

reduced intrusion detection system using ANN classifier,"

Expert Systems With Applications 88 (2017) 249–257

Available: http://dx.doi.org/10.1016/j.eswa.2017.07.005

[15] Sumaiya Thaseen Ikram, Aswani Kumar Cherukuri, "Intrusion

detection model using a fusion of chi-square feature selection

and multiclass SVM," Journal of King Saud University –

https://doi.org/10.1016/j.knosys.2017.07.005

304
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

Computer and Information Sciences (2017) 29, 462–472.

Available: http://dx.doi.org/10.1016/j.jksuci.2015.12.004

[16] Prashant Kushwaha, Himanshu Buckchash, and

Balasubramanian Raman, "Anomaly-Based Intrusion

Detection Using Filter Based Feature Selection on KDD-CUP

99," Proceeding of the 2017 IEEE Region 10 Conference

(TENCON), Malaysia, November 5-8, 2017.

[17] KDD Cup 1999 Data

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[18] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, "A

Detailed Analysis of the KDD CUP 99 Data Set," The second

IEEE Symposium on Computational Intelligence for Security

and Defense Applications (CISDA), 2009.

[19] Lee and Stolfo, "A framework for constructing features and

models for intrusion detection systems", ACM Transaction on

Information and System Security, vol. 3, issue 4, pp. 227-

261, 2000.

[20] Jason Deign, "The encryption that protects your online data

can also hide malware", https://newsroom.cisco.com/feature-

content?type=webcontent&articleId=1853370.

[21] Malley B., Ramazzotti D., Wu J.T., "(2016) Data Pre-

processing," Secondary Analysis of Electronic Health

Records. Springer, Cham, pp 115-141. Available:

https://doi.org/10.1007/978-3-319-43742-2_12

[22] Isabelle Guyon, Andre Elisseeff "An Introduction to Variables

and Feature Selection" Journal of Machine Learning Research

3 (2003) 1157-1182.

[23] Han Lu, Mihaela Cocea, Weili Din, "Decision tree learning

based feature evaluation and selection for image

classification," Proceeding of The 2017 International

Conference on Machine Learning and Cybernetics (ICMLC).

[24] Nachirat Rachburee and Wattana Punlumjeak, "A Comparison

of Feature Selection Approach Between Greedy, IG-ratio,

Chi-square, and mRMR in Educational Mining, Proceeding of

The 2015 7th International Conference on Information

Technology and Electrical Engineering (ICITEE), Chiang

Mai, Thailand.

[25] Jun Lin, Jing Zhang, “A Fast Parameters Selection Method of

Support Vector Machine Based on Coarse Grid Search and

Pattern Search”, Proceeding of 2013 Fourth Global Congress

on Intelligent Systems.

[26] Powers, David M W, "Evaluation: From Precision, Recall and

F-Measure to ROC, Informedness, Markedness &

Correlation," Journal of Machine Learning

Technologies. 2 (1): 37–63.

[27] Pedregosa et al., “Scikit-learn: Machine Learning in Python,”

JMLR 12, pp. 2825-2830, 2011.

[28] NSL-KDD Dataset, http://www.unb.ca/cic/datasets/nsl.html

