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Abstract—As one of the security components in Network Security 

Monitoring System, Intrusion Detection System (IDS) is 

implemented by many organizations in their networks to detect and 

address the impact of network attacks. Many machine-learning 

methods have been widely developed and applied in the IDS. 

Selection of appropriate methods is necessary to improve the 

detection accuracy in the application of machine-learning in IDS. In 

this research, we proposed an IDS that we developed based on 

machine learning approach. We use 28 features subset without 

content features of  Knowledge Data Discovery (KDD) dataset to 

build machine learning model and are most likely to be applied for 

the IDS in the real network. The machine learning model based on 

this 28 features subset achieves 99.9% accuracy for both two-class 

and multiclass classification. From our experiments using the IDS, 

we have developed good performance in detecting attacks on 

real networks. 

Keywords— intrusion detection system, preprocessing, feature 

selection, model selection,  

1 Introduction 

In the last few decades, information and computer 

technology with interconnected internet services has become 

increasingly important in everyday human life. Various ways 

of network security have been researched and developed to 

protect information assets and computer network 

infrastructure. One technique that is often used in network 

security is Intrusion Detection System (IDS) [1]. Currently, 

detection mechanism in IDS is divided into two types, i.e., 

misuse and anomaly detection [2]. Misuse detection is a 

technique of detecting attacks based on a familiar signature 

pattern. Whereas anomaly detection is a technique to detect 

attacks based on anomaly conditions that occur in the 

network compared to the normal state of the network 

conditions that have been determined [3]. One technique 

used in anomaly detection is the use of Machine Learning 

method, in recognizing network behavior. 

The most commonly used conventional IDS today is 

signature-based (misuse detection). This type of IDS requires 

much human intervention ranging from identifying attacks, 

creating signature attacks, and storing these signatures into 

the database so that it can be used to detect such attacks in 

the future. As more and more types of new attacks appear on 

the internet the heavier the human task to keep the system 

always to be able to detect new types of attacks, which must 

always update the database with new types of attacks that 

appear. This results in zero-day conditions, where a new type 

of attack cannot be detected and infiltrated into the internal 

network and result in damage to the system [3].  This 

incident can occur because the new attack signature has not 

been stored in the database so that new attacks coming into 

the network are not recognized.  

The tasks that human must perform in maintaining the 

novelty of this signatures database can be achieved more 

efficiently by applying machine-learning approach. With the 

machine-learning approach, we only need to provide a set of 

network data with various conditions suitable for the 

processed system with a machine-learning algorithm so that 

found a model that can be used to recognize normal and 

abnormal network traffic. Furthermore, this machine-

learning model that has been built can be used to detect 

attacks more efficiently and reliably, without having to 

update the attack database often. 

Several studies were conducted to develop machine learning 

based IDS. Most of the studies were conducted using 

publicly available datasets such as KDDCUP or NSL-KDD 

dataset. The use of such datasets for IDS development can 

result in good machine learning models, but often cannot be 

implemented on real networks. Some features of these 

datasets cannot be simply extracted from real network traffic. 

In this study, we performed an analysis to select features of 

the KDD dataset that were most likely to be used in 

developing machine-learning based IDS. 

Although there have been many academic studies that reveal 

the potential of anomaly detection approach better in 

detecting new types of attacks, until now the widely used 

commercial/industrial IDS products are signature based 

(misuse detection). There are still some obstacles in the 

implementation of anomaly detection technique with 

machine learning method into the real network, that is a 

wrong selection of data features and inappropriate method 

usage [4]. 

Increasing number of attacks that threaten data security on 

internet encourage the use of encryption in data 

communications on the internet. As more and more human 

needs are turning to digital, a large number of digital services 

and applications use encryption as the primary method of 

securing data communications on the internet [5]. Available 

data show that encrypted Internet traffic increased by 90% 

per year [6]. NSS Labs predicts that by 2019, 75% of internet 

traffic will be encrypted [7]. 

More and more internet services are heavily dependent on 

encryption mechanisms to ensure their safety. Even 

encryption technology is also used by Internet crime actors 

to avoid detection and to secure their malicious activities. 

The large use of encryption technology in data 

communications on the internet has resulted in increasingly 

difficult network security monitoring work. The attack 

detection system can no longer assume that all data packets 

on the network can be extracted and investigated easily to 

detect anomaly within the network traffic [8,9]. 

Much research has been conducted to develop machine 

learning based IDS. Most of the researchers were conducted 

using a generally available dataset of KDDCUP dataset. The 
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use of such datasets for IDS development can result in good 

machine-learning models with high accuracy, but often 

cannot be implemented on real networks. Some features of 

this KDD dataset cannot be easily extracted from actual 

network traffic. In this study, we analyze to select features of 

the KDD dataset that are most likely to be used in 

developing machine learning based IDS and can be 

implemented in real networks. 

The paper is structured as follows: Works related to our 

research are reviewed in Section 2. Section 3 introduces the 

methodology of this research in developing machine-learning 

model based IDS. Experiment and analysis are presented in 

Section 4. Section 5, concludes this paper. 

2 Related Works 

In recent year researchers have carried out many researches 

to develop anomaly-based IDS system using machine 

learning approach. In contrast to misuse-based intrusion 

detection that checks for signatures contained in the network 

packet header, anomaly-based IDS extracts the network data 

packets to obtain network features/attributes that can be used 

to detect attacks using machine learning approach. Several 

machine learning algorithms have been proposed by many 

researchers. To develop a good machine learning method, 

some techniques and mechanism need to be implemented in 

a combination, such as the use of feature and model selection 

as well as parameter tuning to get the optimal result. 

A new method that combines several methods for detecting 

attacks is proposed by J. Lekha, and Padmavathi Ganapathi. 

[10] In their research they used improved CART technique 

for misuse detection and extreme learning machine (ELM) 

algorithm for anomaly detection. In the misuse detection 

model, the traffic pattern is classified into the known and 

unknown attack. Anomaly detection model classifies the not 

known attack as normal data set and unknown attack to 

improve the performance of normal traffic behavior. From 

the experimental results, the method offered by using the 

NSL-KDD dataset shows that the hybrid intrusion detection 

method proposed can improve performance in detecting 

attacks regarding training time, testing time, false positive 

ratio and detection ratio. The proposed method detects the 

known attacks and unknown attacks with a ratio of 99.8 % 

and 52% respectively. 

Mohammed A. Ambusaidi et al. proposed the use of Flexible 

Mutual Information (FMI) based algorithms to perform 

feature selection capable of handling linear and non-linear 

dependent features. The selection features are then applied to 

the Least Square Support Vector Machine (LSSVM) based 

attack detection method. To test the proposed technique 

several different datasets namely KDD Cup 99, NSL-KDD 

and Kyoto 2006+ dataset is used. From the experiment 

results obtained the best accuracy results using KDDCUP 99 

dataset with 21 features selected [11]. 

Chaouki Khammassi, Saoussen Krichen applies the wrapper 

approach to selecting the best feature portion of the genetic 

algorithm as a search strategy and logistic regression as a 

learning algorithm. The selection features were then 

processed using the three decision tree classifiers, i.e., C4.5, 

Random Forest (RF), and Naive Bayes Tree (NBTree), and 

the dataset used was 10% KDD99 datasets and the UNSW-

NB15 dataset. The experimental results obtained were 

99.90%, 99.8%, and 0.105% false alarm rate (FAR) with an 

18 features subset on the KDD99 dataset. The results 

obtained for UNSW-NB15 provide the lowest FAR with 

6.39% with a subset of 20 features [12]. 

M.R. Gauthama Raman et al. proposed the use of 

Hypergraph based Genetic Algorithm (HG-GA) for 

parameter setting and feature selection in the Support Vector 

Machine (SVM). The HG-GA-based algorithm is used to 

accelerate the search for optimal global solutions and used 

weighted objective functions to maintain a trade-off between 

maximizing detection rates and minimizing false alarm rates, 

along with the optimal number of features. To evaluate the 

proposed method, the NSL-KDD dataset is used, by 

comparing the use of all 41 features dataset and features 

subset obtained from the HG-GA method. The experimental 

results show that the HG-GA SVM method gives better 

accuracy and less processing time [13]. 

In a study conducted by Akashdeep, Ishfaq Manzoor, Neeraj 

Kumar, in the early stages of feature selection by ranking 

feature based on information gain and correlation. 

Furthermore, to do the classification used method of a neural 

network using back-propagation learning. At the time of this 

learning process used five different subsets of the KDD99 

dataset. The subset of KDD'99 datasets is grouped based on 

information gain and correlation. The experimental results 

indicate the selection of features to reduce the number of 

features used in building the model gives results with better 

accuracy and performance of the classifier [14]. 

In their research Sumaiya Thaseen Ikram, Aswani Kumar 

Cherukuri used SVM method to build IDS based machine 

learning. In their research, they used SVM multiclass to 

detect intrusion. To get the best result in SVM multiclass, the 

parameter of C and gamma on RBF kernel function were 

tuned to get optimal SVM model. For feature selection, 

important features are ranked according to a set of rules 

based on performance using chi-squared analysis, and the 

best feature subset was selected for use in model 

development. Development and testing of models conducted 

using the NSL-KDD dataset. The experimental results show 

the multiclass SVM with the best-selected features and the 

proper setting of C and gamma parameters gives the most 

optimum results [15]. 

Prashant Kushwaha, Himanshu Buckchash, and 

Balasubramanian Raman perform development of machine 

learning based IDS by using KDD'99 dataset. To select the 

best feature, filter based techniques feature selection was 

carried out namely: correlation, gain ratio and Mutual 

Information. Some machine learning methods are tested in 

the learning process to choose the best model. The result 

SVM has shown the best performance among all other 

classifiers. Mutual Information based filter proved out to be 

more effective in comparison with other features selection 

techniques [16]. 

3 Proposed Method 

3.1 Methodology 

Our methodology in developing machine learning models for 

IDS is briefly illustrated in Figure 1. We also conduct 

simulation as the proof of concept of our methodology.  In 

this simulation, we implement our model in the real network. 

The simulation process of our work is illustrated in Figur 2. 

The steps in model development are as follows: 
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1.  Data preprocessing: transform, rescale, and 

normalize the NSL-KDD dataset 

2. Feature selection: rank the feature score and select 

the most relevant features, and remove unselected 

features from the dataset. 

3. Model selection: tune the appropriate parameters of 

the model using an NSL-KDD dataset with selected 

features. 

4. Model evaluation: estimate the performance of the 

model using NSL-KDD dataset and 10%KDDCUP 

dataset. 

5. Save the final model obtained from model 

development in the file to be implemented on IDS.  

 
Figure 1 Model Development 

 

 

Figure 2 Intrusion Detection Simulation 

The steps in Intrusion Detection Simulation are as follows: 

1. Capture/sniff network traffic and save to file in pcap 

format. 

2. Extract pcap file to obtain the network features 

based on KDD dataset format. 

3. Detect intrusion from the pcap with KDD dataset 

format using the final model from the model 

development. 

4. Classify the network traffic as normal or abnormal 

then display and save the result. 

3.2 Dataset 

The most publicly available and comprehensive dataset that 

is widely used in research and development of machine 

learning based IDS is the KDDCUP'99 dataset. The 

KDDCUP'99 dataset developed by MIT Lincoln Labs 

provides a standard dataset generated from simulations in 

military network environments and by encompassing various 

intrusions [17]. The dataset also provides network features 

that can be used to build and evaluate the machine learning 

based attack detection model. 

The classification of the attacks types provided in the 

KDDCUP'99 dataset is first grouped into two types of 

connections, i.e., normal and attack connection. Furthermore, 

the attack connections are grouped again in 4 types of attack, 

that is: 

 DoS (Denial of Service): a type of attack aimed at 
shutting down network services by flooding networks 
with certain data packets. 

 Probe: is a type of attack intended to conduct 
surveillance and look for weakness information from a 
particular network address. 

 R2L (Remote to Local): a type of attack that is 
performed to access a particular network address 
remotely illegally. 

 U2R (User to Root): the type of attack that is performed 
to escalate user privileges to higher privileges such as 
superuser.  

From 4 types of these attacks, each is divided into several 

sub-types of attacks. The complete attack classification is 

summarized in Table 1. 

Table 1 Network Traffic Classification 

Two-Class 
normal abnormal/attack 

Multiclass (5 Labels) 
normal DoS Probe R2L U2R 

Multiclass (23 Labels) 
normal smurf satan warezclient buffer_overflow 

neptune ipsweep guess_passwd rootkit 

back portsweep warezmaster loadmodule 

teardrop nmap imap perl 

pod  ftp_write  

land  multihop  

  phf  

  spy  
 

The data features provided in the KDDCUP'99 dataset 

consists of 4 types of features as given in Table 2-5. 

In 2009 Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and 

Ali A. Ghorban reviewed the KDDCUP'99 dataset, and 

found some weaknesses in the KDDCUP'99 dataset, 

including many redundant data that can influence the 
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outcome of machine learning to become biased [18]. To fix 

the weaknesses found in the KDDCUP'99 dataset, then the 

NSL-KDD dataset is offered. The data structure and 

classification of attacks in the NSL-KDD dataset remain the 

same as KDDCUP'99, with structural improvements and 

eliminating duplicate records in the dataset. 

In our research, we decided to use the NSL-KDD dataset 

with the consideration that the data is still representative to 

simulate the real network and it has been improved so that it 

can produce better non-biased learning models due to 

duplicate data. NSL-KDD data consists of training data and 

test data, each of which is stored in 2 separate files. For 

testing purposes in this research, we also prepare test data 

taken from 10% dataset KDDCUP'99. 

Table 2 Basic features of individual TCP connections 

No Feature Name Description Type 

1 duration  length (number of seconds) 

of the connection  
continuous 

2 protocol_type type of the protocol, e.g., tcp, 
udp, etc.  

discrete 

3 service network service on the 

destination, e.g., http, telnet, 
etc. 

discrete 

4 src_bytes number of data bytes from 

source to destination 
continuous 

5 dst_bytes number of data bytes from 
destination to source 

continuous 

6 flag normal or error status of the 

connection 
discrete 

7 land 1 if connection is from/to the 
same host/port; 0 otherwise 

discrete 

8 wrong_fragment number of ‘wrong’ fragments continuous 

9 urgent number of urgent packets continuous 

Table 3 Content features within a connection suggested by 

domain expert knowledge 

No Feature Name Description Type 

10 hot number of ‘hot’ indicators  continuous 

11 num_failed_logins number of failed login 
attempts 

continuous 

12 logged_in 1 if successfully logged in; 
0 otherwise 

discrete 

13 num_compromised number of compromised 
conditions 

continuous 

14 root_shell 1 if root shell is obtained; 
0 otherwise 

discrete 

15 su_attempted 1 if ‘su root’ command 
attempted; 0 otherwise 

discrete 

16 num_root number of ‘root’ accesses  continuous 

17 num_file_creations number of file creation 
operations 

continuous 

18 num_shells number of shell prompts  continuous 

19 num_access_files number of operations on 
access control files 

continuous 

20 num_outbound_cmds number of outbound 
commands in an ftp 
session 

continuous 

21 is_hot_login 1 if the login belongs to 
the ‘hot’ list; 0 otherwise 

discrete 

22 is_guest_login 1 if the login is a ‘guest’ 
login; 0 otherwise 

discrete 

Table 4 Traffic features computed using a two-second time 

window 

No Feature Name Description Type 

23 count number of connections to 
the same host as the current 
connection in the past two 
seconds 

continuous 

24 serror_rate % of connections that have 
‘SYN’ errors 

continuous 

25 rerror_rate % of connections that have 
‘REJ’ errors 

continuous 

26 same_srv_rate % of connections to the 
same service 

continuous 

27 diff_srv_rate % of connections to 
different services 

continuous 

28 srv_count number of connections to 
the same service as the 
current connection in the 
past two seconds 

continuous 

29 srv_serror_rate % of connections that have 
‘SYN’ errors  

continuous 

30 srv_serror_rate % of connections that have 
‘REJ’ errors 

continuous 

31 srv_diff_host_rate % of connections to 
different hosts 

continuous 

Table 5 Traffic features computed using the previous 100 

connections 

No Feature Name Description Type 

32 dst_host_count count of 

destination host 
continuous 

33 dst_host_srv_count count of 
destination host 
service 

continuous 

34 dst_host_same_srv_rate  same service rate 
for destination 
host 

continuous 

45 dst_host_diff_srv_rate difference 
service rate for 
destination host 

continuous 

36 dst_host_same_src_port_rate same source port 
rate for 
destination host 

continuous 

37 dst_host_srv_diff_host_rate difference host 
rate for 
destination host 
service 

continuous 

38 dst_host_serror_rate % ‘SYN’ errors 
of destination 
host 

continuous 

39 dst_host_srv_serror_rate  % ‘SYN’ errors 
of destination 
host service 

continuous 

40 dst_host_rerror_rate  % ‘REJ’ 
errors of 
destination host 

continuous 

41 dst_host_srv_rerror_rate  % ‘REJ’ 
errors of 
destination host 
service 

continuous 

 

NSL-KDD data that has been separated between the training 

data and data testing is then performed preprocessing data 

which includes transformation, scaling, standardization, and 

normalization. Training data is used during model 
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development, including features selection and model 

selection. While data testing is used to evaluate learning 

outcomes of each model. The model learning outcomes will 

also be evaluated using test data taken from the 10% dataset 

of KDDCUP'99. 

For the proof of concept of our proposed method, we also set 

up a dataset that is captured from a real network. The data 

packet captured from the real network is stored in the file in 

pcap format. Furthermore, this pcap file is extracted to get 

the appropriate features and stored in the format of the KDD 

dataset structure format. An overview of the network packet 

capture system topology as presented in Figure 3.  

 

 
Figure 3 Network Capture Topology 

 

To simulate attack data packets in this simulation system, we 

used some attack tools as follows: 

DoS    : HOIC, Slowloris 

Scanner    : Uniscan, nmap 

Bruteforce: Burp Suite, Intruder 
 

The real-time capture dataset in KDD format is then used to 

test the model already developed to detect whether it is 

normal or attack network traffic. 

To perform real-time network data extraction as well as from 

pcap files to network features that correspond to the KDD 

structure we follow the explanation of the KDD dataset [16] 

and explanation of Lee & Stolfo in their work [18]. Based on 

the available references we can only extract the features 

subsets: basic features (1-9), time based traffic features (23-

31) and connection based traffic features (23-31), while for 

content features (10-22) we cannot extract it because there is 

no documentation explaining how to determine the value in 

the content features. In the explanations described in KDD 

[17] and Lee & Stolfo [19], the content features are 

determined by the domain expert knowledge without 

explaining how to determine the value. From the results of 

our observations we also found that the value of the content 

features is related to certain systems/applications in the 

simulation performed by MIT Lincoln Labs so that these 

content features are not suitable to be generally applied to 

other systems/applications. From the development of the 

internet, network system today also found that most of the 

network traffic on the internet is currently encrypted, making 

it difficult to get the content features. [20] 

3.3 Data Preprocessing 

The learning algorithm in machine-learning has a close bond 
with certain data types and structures so that its performance 
is strongly influenced by the data available. Most machine-
learning methods are developed based on certain assumptions 
regarding the type and structure of the data being processed. 
To get the best results in building classification model, data 
preparation is required to meet the criteria required by the 
machine learning method that we use. Using inappropriate 
data with the machine-learning method will result in a poor 
model that cannot provide the correct predictions [21]. 
The data preprocessing in this research include 
transformation, scaling, standardization, and normalization. 
Data transformation is process to change the original data 
type into the data type required by the machine learning 
method. Scaling is carried out to adjust the value of all data 
features so that it is on the same scale. Standardization of data 
features is performed to adjust the feature value so that it 
follows the Gaussian distribution of having a mean value of 0 
and standard deviation 1, which is particularly useful for 
machine learning methods which assume that the processed 
data follow the Gaussian distribution. 

3.4 Feature Selection 

Feature selection is the process of selecting features in our 
data that contribute to the prediction or output variables we 
expect. The data are available for the classification model 
sometimes not necessarily appropriate to the implementation 
in real work. For these reasons, we need to select the features 
to determine the most relevant features and by the 
implementation in a real application.  
There are several methods to perform feature selection. In 
general, Isabelle Guyon and Andre Elisseeff [22] categorize 
as follows:  

1. Filter Methods that is selecting features using 

statistical measurements. Each feature is scored 

based on statistical calculations; then the threshold 

is specified to decide the features to be included in 

model formation. 

2. Wrapper Methods, which is looking for the most 

optimal combination of features by evaluating some 

combination of features and calculating the score 

based on the model accuracy. 

3. Embedded Methods, which is choosing features 

when building a model, for example using 

regularization algorithm. 

4. Ad-hoc feature selection, which is choosing features 

based on domain expert knowledge. 

The main objective of this research is to get the best 

implementable model. Our main focus is designing systems 

by implementing machine learning in IDS. One important 

job is to determine the structure and content of the data most 

likely to be applied to the IDS in the real network. In 

determining the structure and content of this data one of the 

jobs is to choose the features that best suit the conditions in 

the field and can be applied at the time of implementation. 

To determine the structure and content of this most 

appropriate data in the feature selection stage we used some 

feature selection methods and compare the result, then to 

determine the final result of the feature selection using 

domain expert knowledge related to the implementation of 

machine learning model on IDS. Feature selection method is 

conducted by calculating the score of each feature with 

wrapper approach method and univariate feature selection. 
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Then the features ware ranked by its score, and features with 

a high score were selected. The main goal in this phase is to 

select features which provide high quality and practical 

training data for the selected classifier algorithm. Then, the 

classifier is trained with the new data with selected features 

subset, and finally, the intrusion detection model is built. 

Feature selection with wrapper approach involves evaluation 

of features through checking the accuracy of the models 

learned from different subsets of features. In this method, we 

implement a meta estimator that fits some subsets and 

compute features of importance. The feature subset, which 

leads to the best model of learning, is selected. The feature 

selection with the wrapper approach resulted from the fact 

that the combination of the features and the characteristics of 

the main features of the study. [23] 

Univariate feature selection works by selecting the best 

features based on univariate statistical tests, in this work we 

use chi-square. Univariate feature selection determines the 

strength of the relationship between the feature and the 

response variable by examining each feature individually. 

Chi-square is used for assessing two kinds of comparing: 

tests of independence and tests of goodness of fit. In feature 

selection, a test of independence is assessed by chi-square 

and estimate whether the class is independent of a feature 

[24]. 

3.5 Model Selection 

In the model selection, some learning algorithms were 

observed, and the model gives the best accuracy results were 

selected. To get the best results from each model of the 

learning algorithm, we optimize the parameters of each 

model before the learning process. In this work, we tuned the 

parameters with grid search and cross-validation method. 

The grid search method is to look for combinations of 

parameters that provide the best learning outcomes, by trying 

different combinations of parameters in the learning 

algorithm. Cross-validation is the process of training learners 

using one set of data and testing it using a different set. In 

our research we used 5-fold cross-validation, i.e., the dataset 

is divided into five subsets: 4 subsets for learning and one 

subset for testing [25]. 

In the selection model, the learning process is conducted 

using four different methods, i.e., Naïve Bayes, Neural 

network, K-NN, and SVM. Each of these methods was 

evaluated using training dataset that has been prepared to 

conduct learning and the features subset that have been 

selected in the features selection process. The models 

obtained from learning process then were tested using testing 

dataset, i.e., NSL-KDD test dataset and 10% and 20% of 

10% KDDCUP dataset. The results of accuracy and timing 

of each model were compared and analyzed to determine the 

best model to be used in the next process. 

3.6 Model Evaluation 

To evaluate the model, we measured the performance of the 

classifier in classifying the data correctly. Generally, 

performance measurement of a classification model is 

conducted by using confusion matrix. The confusion matrix 

is a table that records the number of original class label data 

and predicted class label. By comparing the amount of the 

original class label data and the predicted class label, we can 

get the number of correct predictions and the number of false 

predictions. 

From the number data of correct predictions and false 

predictions are then used to calculate the accuracy, error rate, 

etc. of the classification, using commonly used formulas, one 

of which is from [26], as follows: 

True Positives (TP) - Is a correctly predicted positive value, 

that is the value of the actual class, and the predicted class 

value is equally positive. 
 

True Negatives (TN) - Is a correctly predicted negative 

value, that is the value of the actual class, and the predicted 

class value are equally negative. 
 

False Positive (FP) - Is an incorrectly predicted positive 

value, that is a class value that is positive, but the value of 

the prediction class is negative. 
 

False Negative (FN) - Is an incorrectly predicted negative 

value, that is a class value that is negative, but the value of 

the prediction class is positive. 
 

Accuracy - Accuracy is the most intuitive measure of 

performance, and this is just a precisely predicted 

observation ratio for total observation. 
 

Accuracy = TP + TN / TP + FP + FN + TN 
 

Precision - Precision is a predictably positive predictor ratio 

to total positive observation predictions. 
 

Precision = TP / TP + FP 
 

Recall (Sensitivity) - Recall is a well-predicted positive 

observation ratio for all observations in the actual class - yes. 
 

Recall = TP / TP + FN 
 

F1 Score - The F1 score is the weighted average of Precision 

and Recall. Therefore, this score takes false positives and 

false negatives into account. 
 

F1 Score = 2 * (Recall * Precision) / (Recall + 

Precision) 
 

4 Experiment and Analysis 
 

In this research, we divided the work into 2 phases: Model 

Development Phase and Simulation Phase. In Model 

Development Phase we experimented to produce machine 

learning model which will be implemented in real IDS. In 

Simulation Phase, we conducted a simulation to test the 

machine learning model that has been developed in a system 

that detects attacks from the real network. 

4.1 Experiment Setup 

In running the experiment in this research, we utilized 

computer facilities for data processing with the following 

specifications: 
 

Processor: 2,5 GHz Intel Core i5 

Memory: 8 GB 1600 MHz DDR3 

Operating System: Ubuntu 17.10 
 

For data processing with machine learning, we used Python 

programming language with machine learning tools Scikit-

learn [27]. 
 

4.2 Model Development Phase 

The model development phase was carried out to create a 

machine learning model that will be used for detection of 
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attacks on real networks. The model development phase 

includes the process of data preparation, features selection, 

model selection, and model evaluation. 

Data used in this phase were training data from NSL-KDD 

and test data from NSL-KDD and 10% and 20% of 

10%KDDCUP'99. The description of the dataset is given in 

Table 6. 
 

Table 6 Dataset Description 
Data Total Normal Dos Probe R2L U2R 

NSL Train 125.972 67.342 45.927 11.656 995 52 

NSL Test 18.793 9.711 5.740 1.106 2.199 37 

10% 

KDD10% 

49.402 9.751 39.139 388 123 1 

20% 

KDD10% 

98.804 19.577 78.196 797 228 6 

In the features selection process, we performed two methods 

of feature importance with wrapper approach and univariate 

chi-square. The results of each feature selection method are 

as presented in Table 7. In this table the shaded cells are 

features with lower score, and may be removed. 

From the result of some feature selection methods, we 

choose the features that produce the best model and enable to 

be implemented in real IDS. As the final decision of features 

selection, we use domain expert knowledge consideration 

related to its implementation in the real network. Based on 

the description of KDDCUP'99 [17] and NSL-KDD [28] it is 

known that content features subset (number 10-22) from 

Table 3, the data is obtained based on expert knowledge 

domain. From our analysis and observation, we get that the 

data on this features subset was obtained from certain 

applications and cannot be generalized. Furthermore, the 

trend of current internet applications that data on these 

features is encrypted it is difficult to get these features data 

from real network packets. Based on these considerations, in 

this study, we remove the content feature (number 10-22). 

Further, we compared the learning accuracy and performance 

of the model with 41 features and with 28 features. 

Based on features score ranking, then 19 best features of the 

wrapper approach and 21 best features of univariate chi-

square were tested using the SVM classifier. The tests with 

the SVM classifier were performed to compare the accuracy 

results with all 41 features dataset, 21 features subset, and 19 

features subset. In this test, we also used a subset of 28 

features that are the result of feature reduction of a total of 41 

KDD features without content features (10-22) based on 

domain expert knowledge. The accuracy results from each 

features subset can be seen in Table 8. 

From the accuracy of each features subset in Table 8, it can 

be seen that a subset with 28 features provides the best 

accuracy results, thus in the selection of our model we use 

the 28 features subset. 

In the model selection stage, we use a dataset with 28 

features (without content features). Some of the learning 

algorithms we evaluated are SVM, Naïve Bayes, KNN, and 

Neural Network. We conducted learning the process for 

classification of two-class (normal and attack) and multiclass 

(normal, DoS, Probe, R2L, and U2R). The result of 

prediction for each learning algorithm for classification of 

two-class presented in Table 9, and for classification of 

multiclass presented in Table 10. Comparison of accuracy 

each learning algorithm for classification of two-class 

presented in Figure 4, and for classification of multiclass 

presented in Figure 5. 
 

Table 7 Feature Selection Score 

Features 

Univariate Chi 

Square  Wrapper 

duration    2.826519543 63,54787209 

protocol_type    0.172328957 295,6548746 

service    8.243793956 121,9684166 

flag    5.465393293 1910,788543 

src_bytes    1089.543299 175,9347821 

dst_bytes    7126.314318 117,271535 

land    0.00065122 175,6223816 

wrong_fragment    0.226732233 96,22986459 

urgent    0.000181718 43,11841727 

hot    0.040297298 83,83387513 

num_failed_logins    0.000297401 26,57231803 

logged_in    3.625973858 679,0578386 

num_compromised    0.195937472 38,5219464 

root_shell    0.005176937 65,36687351 

su_attempted    0.01173053 93,63296562 

num_root    0.457813131 15,44384933 

num_file_creations    0.100395265 13,60867399 

num_shells    0.001347134 56,37072523 

num_access_files    0.040903397 29,66709078 

num_outbound_cmds    0 0 

is_host_login    8.70631E-05 43,81715626 

is_guest_login    0.019253195 105,9430942 

count    652.5616721 82,83794029 

srv_count    0.000272025 53,6925844 

serror_rate    329.0606084 755,9977392 

srv_serror_rate    317.0746204 101,812899 

rerror_rate    55.81489236 70,47880838 

srv_rerror_rate    42.61256533 159,1656237 

same_srv_rate    208.264141 1480,058033 

diff_srv_rate    26.63040191 169,1683489 

srv_diff_host_rate    14.15434894 91,17000547 

dst_host_count    95.74258043 437,2705228 

dst_host_srv_count    696.8826698 638,6550968 

dst_host_same_srv_rate    234.4820854 100,187664 

dst_host_diff_srv_rate    31.97842615 77,14903087 

dst_host_same_src_port_rate    6.927567558 255,3532438 

dst_host_srv_diff_host_rate    1.456325149 129,8679041 

dst_host_serror_rate    372.2546649 293,9741698 

dst_host_srv_serror_rate    381.5193858 416,1960159 

dst_host_rerror_rate    63.54755808 323,118674 

dst_host_srv_rerror_rate    68.66941117 111,8726018 
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Table 8 Selected Feature Model Accuracy 
Features Precision Recall F1-score AUC Accuracy 

Wrapper 

(19) 

0.998157 0.997663 0.99791 0.99803 0.998055 

Univariate 

(21) 

0.996335 0.996964 0.99665 0.996886 0.99688 

28 0.998498 0.998363 0.998431 0.998528 0.998539 

41 0.998357 0.998284 0.998071 0.998144 0.998135 

 

Table 9 Two-Class Model Performance 

Method Data Test Precision Recall F1-score Accuracy 

SVM NSL Test 0,837 0,793 0,815 0,826 

  KDD10% 0,997 0,988 0,993 0,988 

  20KDD10% 0,997 0,989 0,993 0,988 

Naïve 
Bayes NSL Test 

0,928 0,703 0,800 0,830 

  KDD10% 0,885 0,284 0,430 0,396 

  20KDD10% 0,885 0,284 0,430 0,396 

KNN NSL Test 0,959 0,803 0,874 0,888 

  KDD10% 0,998 0,992 0,995 0,992 

  20KDD10% 0,998 0,992 0,995 0,992 

Neural 

Network NSL Test 
0,951 0,749 0,838 0,860 

  KDD10% 0,996 0,993 0,994 0,990 

  20KDD10% 0,995 0,993 0,994 0,990 
 

 
Figure 4 Comparison of accuracy for two-class 

 

From the learning process with some learning algorithms as 

presented in Figure 4 and Figure 5, KNN gives the best 

accuracy result but requires very long learning and prediction 

process as shown in Table 9 and Table 10. SVM algorithm 

gives excellent and stable results in training and test 

accuracy with fast learning and prediction time. 
 

Table 10 Multiclass Model Performance 

Method Data Test Precision Recall F1-score Accuracy 

 SVM NSL Test 0,837 0,837 0,837 0,837 

  KDD10% 0,883 0,883 0,883 0,883 

  20KDD10% 0,884 0,884 0,884 0,884 

 Naïve 
Bayes NSL Test 

0,830 0,830 0,830 0,830 

  KDD10% 0,350 0,350 0,350 0,350 

  20KDD10% 0,351 0,351 0,351 0,351 

 KNN NSL Test 0,882 0,882 0,882 0,882 

  KDD10% 0,989 0,989 0,989 0,989 

  20KDD10% 0,990 0,990 0,990 0,990 

 Neural 

Network NSL Test 
0,826 0,826 0,826 0,826 

  KDD10% 0,205 0,205 0,205 0,205 

  20KDD10% 0,207 0,207 0,207 0,207 

 
Figure 5 Comparison of accuracy for multiclass 

 

Considering the purpose of model development in this 

research to be implemented in the real network, we required 

a classifier model which gives good accuracy result and fast 

processing time. We decided to use SVM for the next 

process of building the classification model to be 

implemented for IDS in a real network. 

4.3 Simulation Phase 

In the simulation phase, we built the SVM classification 

model with the NSL-KDD dataset. Furthermore, the results 

of model development for both classifications of two-class 

and multiclass were tested using the NSL-KDD test dataset, 

and 10% and 20% of 10% KDDCUP'99 dataset. The final 

model of this development result was then used to detect 

intrusion from pcap data captured from the real network as 

described in section 4.2 of this paper. The prediction 

accuracy of SVM classification model can be seen in Table 9 

and Table 10. The result of prediction and processing time 

with test data and intrusion detection from pcap data with the 

classification of 2 classes is presented in Table 11, and 

classification with multiclass is presented in Table 12. The 

example view of intrusion detection results from real 

networks is provided in Figure 6. 
 

Table 11 Two-Class Data SVM Prediction Result 

 
 

Tablea  12 Multiclass Data SVM Prediction Result 

 
 

From the experimental results using two-class and multiclass 

SVM classification model with new dataset without 

involving content features (feature 10-22) show very good 

result. In the learning process two-class obtained 99.9% 

accuracy with a processing time of 8 seconds 20 

milliseconds, and the results in the multiclass classification 

accuracy of 99.9% with a processing time of 9 seconds 80 
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milliseconds. The prediction results in NSL-KDD test data 

for classification of two-class got 82,6% accuracy with 

process time 1 second 28 milliseconds, and the result of 

classification of multiclass accuracy 83,7% with process time 

1 second 25 milliseconds. Predicted results in 10% KDD10% 

test data for classification of two-class obtained 98.8% 

accuracy with process time 3 seconds 24 milliseconds and 

results in multiclass classification accuracy 88.3% with 

process time 3 seconds 26 milliseconds. Predicted results in 

20% of KDD10% test data for two-class classification 

obtained 98.8% accuracy with a processing time of 6 seconds 

93 milliseconds and results in multiclass classification 

accuracy 89.4% with a processing time of 6 seconds 98 

milliseconds. 
 

 
 

Figure 6 Intrusion Detection View in Real Network 
 

5 Conclusions 
 

We have successfully developed an intrusion detection 

model using machine learning approach which applies to a 

real network. Removing the content features (feature 10-22) 

from the structure of the KDD dataset results in an attack 

detection classification model with high accuracy. The 

experiment without involving the content features of KDD 

dataset gives the best classification accuracy. From our 

experiments on the feature selection, it is shown that most of 

the content features have low scores so that they can be 

eliminated from the dataset. The developed model 

implemented on IDS works well in detecting attacks in a real 

network. 

The results of the experiment on several classification 

models show that SVM provides the best performance results 

with average accuracy on the test data of 93.4% for 

classification of two-class, and 86.8% for multiclass 

classification. Processing time on the test dataset for 

classification of two-class and multiclass is quite short. 

Experiments on real networks, the IDS that have been 

developed the ability to detect attacks with 6.839.023 

network traffic within 7 minutes, 49 seconds, 30 

milliseconds. 
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