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Abstract: An anonymisation of electrocardiogram (ECG) signal 

is essential during the distribution and storage in a public 

repository. In this paper, we introduce a novel low processing time 

ECG anonymisation method employing the fast Fourier transform 

(FFT) method. The proposed framework is suitable for sensor node 

platforms due to its low processing time. It was developed to 

address two major inherent limitations in the Internet of Medical 

Thing (IMedT) environment including most current requirement for 

securing ECG signal and urgent need for efficient methods to 

overcome physical limitation of sensor nodes. Ramifications from 

computer simulation showed that the proposed model was able to 

obscure both fiducial and non-fiducial features of the ECG signals. 

Performance evaluation between the original and the reconstructed 

ECG signals revealed strong cross-correlation implying lossless 

reconstruction of the original ECG signal. Furthermore, the 

proposed method achieved a lower processing time security 

algorithm as compared with the recently proposed wavelet based 

anonymisation methods. Finally, the proposed framework offered 

advantages in terms of flexibility in determining the secret key 

length makes it suitable for various applications.  
 

Keywords: anonymisation, electrocardiogram, fast Fourier 

transform, internet of medical things, internet of things.  
 

1. Introduction 
 

Virtual Network Index (VNI) that was released by Cisco in 

June 2016 awakes imagination about how the Internet will be 

[1]. According to Cisco’s paper, proliferation of global IP 

traffic and increment the number of devices connected to IP 

networks will contribute to the exchange of data that reach 

the order of Zettabyte (ZB) by 2020. Consequently, just 

about every physical object surrounding us (e.g. healthcare 

monitoring apparatus, machinery, appliances, autonomous 

cars and intelligent transportation, etc.) will be connected to 

the Internet forming the Internet of Things (IoT)[2,3]. In 

order to handle the countless number and various types of 

devices as well as linking the existing radio access 

technologies, a new architecture of the Fifth Generation (5G) 

networks is currently under consideration [4]. 

One of the most appealing applications in the era of IoT 

deployment is health and medical care areas. The IoT that 

integrating several numbers and various type of sensors 

together with smart medical devices may serve in, for 

example, tele-auscultation, medical consultation, remote 

health monitoring and analysis, remote diagnostics and online 

treatment as well as elderly care [5-7]. The so-called Internet 

of Medical Things (IMedT) is expected to reduce operational 

cost such as consultation and transportation cost. It is also 

crafted to shrink the gap between those who live in the 

isolated/remote areas and doctors in the urban areas. 

Nevertheless, due to small dimension of sensor nodes that 

construct the IoT and/or IMedT, the sensor nodes inherit 

particular constrains such as low processing power, limited 

space of memory and limited battery life. Hence, applications 

as well as signal processing algorithms that are embedded in 

the sensor nodes should consider these limitations carefully. 

For example, in a sensor node that is used for collecting 

electrocardiogram (ECG) data, selecting signal processing 

techniques before transmitting the ECG data will be quite a 

challenge. Complex algorithms will indeed provide high 

quality of ECG data; however, it will at the same time 

exhaust the memory and its battery life. Consequently, a low 

complexity ECG signal processing method is essential in the 

Internet of Medical Things (IMedT) application due to 

limited processing resources and capabilities of sensor nodes. 

On the other hand, secure ECG signal transmission is highly 

required as ECG signal contains important health information 

of a patient. The ECG signal surprisingly inherits uniqueness 

for each individual over a long period of time [8]. 

Furthermore, some other works showed that the ECG signal 

can perform as a biometric identity that contains specific 

information that belongs to a particular person [9]. These 

important features of ECG signal make it vulnerable to spoof 

attack, especially in transmitting the signal from sensor nodes 

to health care providers via public networks. Based on these 

facts, hence, an Internet-based e-Health platform that 

overlooks protection to individual health information is a real 

threat to patients’ privacy. Unfortunately, none of the 

existing e-Health platforms assign any anonymisation 

techniques to protect their ECG signal transmission. 

An unsecure ECG signal without anonymisation schemes 

may be subjected to man in the middle attack. In the worst 

case, fraudsters can gain access to a secured service and use 

the spoofed recorded ECG data to expose private information 

about patients [10-12]. Fig. 1 presents a scenario of a man in 

the middle attack in a health information transmission 

system. The figure displays possible attack points where 

fraudsters may exploit vulnerability of the system that are 

including: (i) wireless link between sensor nodes and mobile 

devices that mostly used to collect health information data 

from wireless body area networks (WBAN), (ii) 

wire/wireless link between gateway and the edge router, (iii) 

wire/wireless link between the edge router and the health care 

provider router, and finally (iv) in the repository or data 

center in the health care provider. Therefore, a health care 

provider needs to comply with certain widely accepted 

standards in order to minimise such security threat to a 

system and to protect medical records safely. For example, 

US Government upheld the Health Insurance Portability and 

Accountability Act (HIPAA) in 1996 for assuring protection 

to medical privacy users [13], the European Union ratified 

the Directive on Data Protection in 1995 [14], the Health 

Information Privacy Code passed by New Zealand 
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Government in 1994 established specific rules for agencies in 

the health sector to ensure protection of individual privacy 

[15], and the Personally Controlled Electronic Health Record 

(PCEHR) eHealth system released by the Australian 

Government in 2012 [16]. 

In this paper, we introduce a novel ECG anonymisation 

framework that maintains low processing time attribute 

driven by the fast Fourier transform (FFT) algorithm. The 

proposed framework was proposed to address two major 

constraints in the IMedT environment, i.e., immediate need 

for securing ECG signal and efficient method for overcoming 

physical limitation of sensor nodes. We argue although 

secure transmission channel standards have been long 

existing in the market, force penetration to the data centre are 

still possible in many ways. Hence, anonymisation methods 

are expecting to complement the existing security standards. 

In contrast to the previous anonymisation techniques in [10, 

17], which heavily employ the wavelet packet 

decomposition, FFT based ECG anonymisation is adopted 

and aimed to achieve a lower processing time security 

algorithm for obfuscating the ECG signal. Hence, major 

modifications of the existing algorithms had been done 

thoroughly, including: (i) substitution of the wavelet packet 

algorithm with the FFT algorithm, (ii) major modifications of 

anonymisation scheme owing the FFT algorithm features, 

(iii) modification of reversible function as shown in (6), and 

(iv) pushing out signal reconstruction phase that back-

transform frequency domain into time-domain to public 

server in order to reduce computational complexity of the 

system. The proposed method is expected to offer minimum 

computational load that might be suitable for mobile and 

sensor node platforms [18,19] that form the IMedT system. 

The structure of the paper is organised according to the 

following sections. The first section provides general 

overview of ECG security and its current problem. The last 

part of the first section emphasizes on the objectives of the 

paper and prominence of the proposed model in the IMedT 

environment. Related works will be described in the second 

section. The third section elaborates the proposed ECG 

anonymisation approach followed by results and discussions 

in the fourth section. Conclusions of the paper will be drawn 

in the last section of the paper. 
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Figure 1. Possible attack points for unsecure ECG signals 

subjected to man in the middle attack. 
 

2. Related Works 
 

Several studies have been proposed to secure ECG signal by 

way of anonymisation. In this section, we firstly elaborate 

two ECG anonymisation approaches used for securing ECG 

signal transmission. The two algorithms took the advantage 

of the wavelet packet methods for efficient decomposition of 

the related ECG signal. The section then followed by an 

explanation of a light encoding-compression-encryption 

method focusing on low energy implementation on a mobile 

phone. 

In [10], a wavelet packet-based ECG anonymisation method 

was proposed to firstly decompose the ECG signal. 

Subsequently, the low frequency components of the 

decomposed signal were replaced by zeros in order to 

distract the time domain structure of the ECG signal. Thirdly, 

all coefficients including the distracted coefficients and the 

higher frequency coefficients of the ECG signal were 

reconstructed for anonymisation. Because of removal of 

some coefficients in the frequency domain, the structure of 

the ECG signal becomes different from the original signal. In 

the distribution process, the distorted ECG signal was 

purposely transmitted over the networks in order to 

camouflage the original signal. On the other hand, the 

removed low frequency signal was sent to an authorised 

personnel as a secret key. On the receiver part, reconstruction 

process was done by combining the secret key and the 

distorted signal in order to recover the original signal. 

However, we argue that using this method the anonymised 

ECG signal does not fully conceal the fiducial features since 

the RR interval (related to heart rate variability, HRV) is 

present in the signal. Moreover, it was shown that the 

anonymised signal appeared to be similar to the original ECG 

signal. Therefore, using this proposed method the 

anonymised signal can be identified easily by malicious user 

and used for their purpose. On the other hand, the algorithm 

showed some advantages. The experiment showed that the 

size of the secret key attained 5.8% of the original ECG 

signal size. Secondly, in order to secure the secret key, the 

algorithm employed compression and encryption techniques 

before distribution of the secret key. 

Algorithm performance of the previous work [10] was 

improved significantly by a slightly different approach that 

was introduced in [17]. In this paper a generalized wavelet 

packet method was utilised to decompose the ECG signal in 

several sub-bands encompassing low frequency components 

to high frequency components of the signal. Additionally, the 

proposed algorithm was equipped with a reversible function 

and/or operation. In this way, the proposed ECG 

anonymisation method proved to be able to conceal fiducial 

and non-fiducial features for both normal and abnormal ECG 

signals. The same as in [10], the algorithm removed the 

lower sub-band of ECG signal as a secret key and distributed 

separately to an authorized person in the medical centre, 

while the anonymised ECG signal was reconstructed to time 

domain, transmitted over public networks and stored in a 

medical database/server. At the receiver end, only an 

authorized personnel who had a secret key and knew the 

reversible function would be able to reconstruct the original 

ECG from the anonymised ECG. Performance of the 

proposed framework had been examined based on the cross-

correlation analysis, power spectral density and percentage 

residual difference. The paper showed that the reconstructed 

ECG was highly correlated with the original ECG, which 

achieved a lossless reconstruction of the ECG data and 

proved the robustness of the proposed method. It was also 

found from the performance analysis results that the 

proposed anonymisation scheme provides high-security 

protection to ECG data and patient privacy. 
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In [11], a joint encoding, compression and encryption 

framework was proposed to secure the ECG transmission. 

The main idea of this work is to provide light processing 

power for transmission ECG signal from acquisition devices 

to mobile phones, and from mobile phones to a medical 

database. By employing the proposed encoding method, the 

ECG signal was not only successfully obscured, but also 

significantly reduced in terms of its file size. It was claimed 

that the compression ratio reached 3.84. Therefore, the 

proposed method potentially applies in the small devices 

such as IoT, which mostly inherits source power limitation. 

The works were able to increase the security strength by 

implementing the three phases encoding-compression-

encryption schemes on the mobile phone. Using the proposed 

framework, the new algorithms achieved overall compression 

ratio up to 20.06 that were greatly expected to reduce the 

transmission burden over the public networks. 

A similar method but with different idea was introduced in 

[20] to secure the ECG signal transmission. In this work, a 

symmetric cryptography equipped with a lightweight block 

chipper was implemented in an embedded system aimed to 

form a secure and energy efficient wireless body area 

networks (WBAN). The examination results showed that the 

proposed system attained 0.054 mJ/block energy 

consumption. It can be interpreted that the system provide 

low energy consumption but secure transmission during both 

encryption and description phases. 
 

3. A Proposed Real Time ECG Security 

Approach 
 

In this part, we will explore the proposed real-time ECG 

security approach by, firstly providing a general overview of 

the IMedT system as important building blocks in the Fifth 

Generation (5G) communication networks. It is then followed 

by elaboration of the proposed real-time ECG security 

system and its reconstruction method. 
 

3.1    A general framework of the IMedT system 
 

Internet of Medical Things (IMedT) coordinates myriad of 

connected mobile medical devices to promote future health 

care services. Implementation of the IMedT system gives 

advantage for example for monitoring and tracking not only 

the state of patients’ health but also the medication process 

and its direct effect to patients. In the health information 

management point of view, the IMedT could be used to assist 

logistics of medicine and healthcare apparatus and manage 

their entire value chain. 

IMedT can be considered as an extension of the Internet of 

Things (IoT) concept. It is the IoT that is envisaged to 

change the 5G cellular networks perspective. In this context, 

there will be a shift paradigm from current connected people 

to connected things concept whereby millions of connected 

mobile phones and computers will be complemented by 

billions of devices and sensors yearn for the Internet 

connection. This increasing number of connected devices 

pushes direct consequence to the current cellular networks 

architecture. A number of femto and pico cells in a site that 

covers certain area with various radio access technologies 

needed to be linked appropriately to a multitier networks 

consisting of macrocells. Fig. 2 depicts an imaginary example 

of a heterogeneous network that connects a number of nodes 

with several medical sensors to a macrocell base station, a 

core network and the Internet, subsequently. This 

heterogeneous network will become one of the important 

features in the 5G communication networks [21-23]. A 

healthcare provider resides on the other side of the network. 

In general, medical sensors may retrieve all vital sign signals 

such as body temperature, blood pressure, pulse rate, and 

respiration rate sensors. However, in this paper we only 

consider ECG signal due to some reasons. Firstly, ECG is the 

most commonly recorded signal in the patients monitoring 

and examination to perceive patient heart failure and 

cardiovascular disease (CVD) through the Heart Rate (HR) 

detection and RR Interval calculation. Secondly, ECG signal 

requires streaming data transmission from patients recorded 

devices to the healthcare provider, which imposes specific 

requirement similar to multimedia transmission, i.e. large 

number of transmitted data and hence, it requires wider 

bandwidth spectrum, smart storage management and more 

sophisticated signal processing algorithm to handle the data. 

Consequently, ECG signal processing involves more 

challenging methods to securely transmit over 

communication media. 
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Figure 2. Illustration of multitier heterogeneous networks 

incorporating medical sensors in 5G communication 

networks. 
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Figure 3. The proposed ECG anonymisation approach 
 

In the IMedT system as shown in Fig. 2, security will be one 

of the most crucial issues needed to be tackled properly. In 

fact the security threat jeopardize not only to the ECG data 

encompassing the path from patients to doctors (resided in 

the healthcare provider), but also to online pathological 

reports and feedback traversing public networks from the 

doctors to the patients. Therefore, securing ECG data in the 

complete construction of the IMedT system is mandatory. 

It is generally known that the IMedT preserves similar 

characteristics to the IoT system, i.e., low resources in terms 

of both computation and energy capacity. These limitations 

are mainly triggered by the small physical size of the sensor 

nodes that are expected to be attached on the human body 

comfortably. Consequently, design of the algorithm for 
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securing the ECG data should be performed by paying 

specific attention to this particular issue. 
 

3.2.   The proposed ECG anonymisation method 
 

The ECG security framework (called as ECG anonymisation) 

proposed in this paper consist of the following several main 

processes, i.e. ECG signal transformation from time domain 

to frequency domain, frequency domain component partition, 

signal modification in the frequency domain which involves 

several sub-processes, and ECG signal reconstruction from 

frequency domain to time domain. Fig. 3 illustrates the ECG 

anonymisation process, while the detail algorithm in the form 

of pseudo-code is shown in Algorithm 1.  

Step by step process of anonymising the ECG signal 

sequence is elaborated as follows: 

Step 1. Let’s assume the ECG signal sequence in the form 

  10:  Nnnx  . Apply transformation of the ECG 

signal sequence using the Discrete Fourier Transform (DFT) 

to obtain frequency domain signal that is represented 

by   10:  NkkX  , where N is the length of the ECG 

signal sequence. The DFT of a finite-length ECG sequence of 

length N is defined by (1) as follows 
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The inverse DFT is provided by the following equation 
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Theoretically, there are many ways to compute the DFT rule 

in (1) and (2), however, in this work a FFT algorithm is 

employed to compute the DFT of an input ECG sequence, 

 nx . Compared to other methods in calculating the DFT, the 

FFT produces incredibly more efficient and substantially low 

computational load algorithm. Given the advantage of the 

FFT as above, we argue that FFT is sufficient for processing 

signal in low power mobile devices such as those in sensor 

nodes. In the proposed method, the ECG sequence length, 

N is restricted to any positive power of two integer, for 

example 128, 256, 512, 1024, etc. Two reasons for confining 

the number for N in that form are: firstly, it is essential to 

keep the power of two signal length in the digital storage 

such as in the sensor nodes, and, secondly, it is required by 

the FFT algorithm to compute the DFT efficiently. Hence, by 

choosing the length of the ECG signal sequence as a power 

of two integer, we expect to achieve a near real-time, low 

power consumption and efficient signal processing for ECG 

signal anonymisation. 

Step 2. Time domain transformation to the frequency domain 

as in Step 1 is then followed by frequency domain 

partitioning. The frequency domain partitioning phase is 

considered the most crucial part in the ECG anonymisation 

procedures. In this phase, we separate frequency domain 

signal,  kX into two sub-bands, i.e.,  kX1 and  kX 2 . The 

first sub-band,  kX1  represents low frequency components 

of the signal, while the second one,  kX 2 signifies high 

frequency components. Partition of the interested signal in 

frequency domain is shown in (3). 
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where P is the expected secret key length and 1 NQ . 

The length of  kX  represented by Q  in the in (3) is 

determined based on the following assumptions: 

a) Variable Q  is selected carefully to ensure that the ECG 

signal samples contain high frequency components up to 

250Hz. This assumption is expected to assure all 

important features extracted from the ECG signal such as 

QRS complex, P wave and T wave remain unharmed 

[24,25]. 

b) The variables Q  and P  are suggested to obey relation 

in (4) as 
 

 PQ mod0  ,                                   (4) 
 

where  mod  is a modulus operation. Consequently, 

applying (4) in the algorithm will guarantee that Q  is 

always positive natural number multiplication of P . 

Hence, a block of  P components of the signal can be 

repeated to achieve exactly the same length as Q  to 

allow correct modification in Step 4. 

c) The length of Q  is determined by considering algorithm 

efficiency in the reconstruction process i.e., from 

frequency domain to time domain of the ECG signal. 

Therefore, based on this reason, the length of Q  should 

be set to any positive power of two integer. 

Step 3. Separate the lowest frequency components of the 

ECG signal,  kX
1

 from  kX  in (3) to obtain an 

unencrypted and uncompressed key,  . The key is defined 

as 

     PkkXk ,,0:
1

 ,                           (5) 

where P  is the desired secret key length. In this step, 

removing  kX
1

 from  kX leaves  kX
2

in the frequency 

domain of the signal sequence. The  kX
2

 holds detail 

information about the ECG signal as it contains high 

frequency components of the signal. 

Step 4. Modify  kX
2

 component using a reversible 

function. We choose multiplication of the  kX
2

 component 

with  k  defined in (7). Multiplication operation is taken in 

order to maintain the low complexity characteristics of the 

algorithm. Modification  kX
2

 component can be written 

mathematically as follows 
 

      QPkkkXkX ,,1:
22

 .           (6) 
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Multiplication of  kX
2

 component with the  k  is an 

element-wise multiplication, where vector  k  is defined 

according to 
 

    Pkkk ,,0:offset   ,                      (7) 
 

with     minoffset . The element   defined as a 

constant value to prevent division by zero in the ECG 

reconstruction process. The .  represents an absolute 

operator. It should be clear that element-wise multiplication 

vector  kX
2

 by vector  k requires both of them to have 

the same size, accordingly the block vector  k  should be 

repeated until it reaches the same size as  kX
2

. Hence, 

applying (4) in the algorithm as explained in Step 2 will 

ensure that vector  kX
2

 and repetition of vector  k  have 

same size. 

Step 5. Establish a security key K  and securely distributed 

the key to authorised healthcare providers. The security key 

is generated by compressing and encrypting the key,  k  

defined in (5) together with the  k  represented by the 

following equation 

   ,EK ,              (8) 

where operator    signifies a compression operation and 

operator  E  indicates an encryption operation. 

Nonetheless, detail of compression and encryption algorithms 

is out of scope this paper. In the spirit of maintaining low 

complexity feature of the system, we suggest to adopt 

industrial standard that are currently available in the market. 

For instance, wireless transmission devices equipped with 

Bluetooth Low energy (BLE) technology has integrated 128-

bit AES encryption in the Bluetooth Core Specification 

version 4.0. Alternatively, Wireless LAN networks that based 

on the IEEE 802.11i standard currently employ Wi-Fi 

Protected Access (WPA) security protocols. 

Step 6. Upload the modified ECG signal,  kX
2

 to a secure 

public server, such as cloud server as a healthcare data 

repository. 

Step 7. Inside the public server, reconstruct the modified 

 kX
2

 into time domain utilising the inverse FFT algorithm. 

The time domain representation,  nx
2

 is the anonymised 

ECG signal that conceals part of the original ECG signal. 

 

Algorithm 1 Proposed ECG anonymisation method 

// Signal processing in a sensor node 

1: Begin 

2:  nx   ECG_signal 

3: Set value for P  and Q  

4:  kX   Fast Fourier Transform of  nx  

// separate low frequency component 

5:    PXkX ,,0
1

    

6:  kX
1

  

// compression and encryption 

7:     minoffset  

8:     offset,,0  Pk   

9:     ,EK               

10: Send K  to healthcare providers as a key 

// separate high frequency component 

11:    QPXkX ,,1
2

  

// modify high frequency component 

12:      kkXkX 
22

 

13: Upload  kX
2

 to public server 

  

// Signal processing in a public server 

// this is the anonymised ECG signal 

14:   nx
2

inverse Fast Fourier Transform  kX
2

  

15: Save  nx
2

 with unique ID for a particular individual 

16: End 
 

3.3.   The proposed ECG reconstruction method 
 

Reconstruction method is applied to the anonymised ECG 

signal in order restore the original ECG signal. In our case 

for example in Fig. 3, an authorised medical personnel in the 

healthcare provider has to perform ECG reconstruction 

process in order to interpret the transmitted ECG signal. 

Without this reconstruction process, a medical personnel can 

only see noise-like signals. Based on the received 

information, which consists of the secure key, K , and the 

anonymised ECG signal,  nx
2

, the ECG reconstruction 

method is explained in the following steps, while the detail of 

the algorithm in the form of pseudo-code is illustrated in 

Algorithm 2. 

Step 1. Firstly, it is necessary to decrypt and decompress the 

secure key,  K  to obtain the vector   that is mathematically 

represented by 

   KD ,                    (9) 

where operator D  and   denotes decryption and 

decompression operation, subsequently. However, the 

decryption and the decompression operations are beyond the 

scope of this paper. 

Step 2. Transform the anonymised time domain ECG signal, 

 nx
2

 in to the frequency domain employing the FFT 

algorithm to acquire  kX
2

. 

Step 3. Cancel the modification operation in (6) by dividing 

the vector  k  into each element in the vector  kX
2

. As a 

result, we get  kX
2

 as expressed in (10) 

 
 
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













 QPk

k

kx
kX ,,1:2

2
 ,           (10) 

and at the same time retrieve back the key,  k  according to 

(11) 

    Pkkk ,,0:offset  .          (11) 
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Step 4. The central part in this reconstruction algorithm is 

merging the vector  k  as in (11) into the vector  kX
2

 as 

in (10). The result of this operation is the un-anonymised 

ECG signal  kX
~

. 

Step 5. Convert  kX
~

 into the time domain utilising the 

inverse FFT algorithm to obtain the lossless ECG signal, 

 nx~ . Hereinafter, the lossless ECG signal will be presented 

to the medical personnel for interpretation and further 

analysis. 
 

Algorithm 2 Proposed ECG reconstruction method 

// Signal processing in a medical personnel device 

1: Begin 

2: Retrieve the secure key K  

// decompression and decryption of K  

3:   KD                        

4: Retrieve the anonymised ECG signal  nx
2

 from public 

server 

5:  kX
2

 Fast Fourier Transform of  nx
2

 

6:      kQPXkX  /,,1
22

  

7:      offset kk  

8:    kkX 
1

 

//  merge  kX
1

 into  kX
2

 

9:        QPXPXkX ,,1
2

,,,0
1

~
   

// this is the reconstructed ECG signal 

10:   nx~  inverse Fast Fourier Transform  kX
~

   

11: End 
 

4. Results and Discussions 
 

In this section, we will show performance evaluation of the 

proposed ECG anonymisation by way of computer 

simulation. Observation will be emphasized on the ECG 

signal processing performance evaluation and processing 

time analysis. In the simulation, we apply two types of ECG 

signals which consist of normal ECG signals representing 

healthy subjects and abnormal ECG signals from a patient 

who suffered arrhythmia. All of the ECG signals in the 

simulation were retrieved from a publicly available 

PhysioNet database. The normal ECG signals were obtained 

from PTB [26] database and the abnormal signal was taken 

from MIT-BIH database [26]. 

In this section, performance evaluation based on fiducial and 

non-fiducial features of the ECG signals will be carried out. 

The fiducial features will be examined using time domain 

representation of the signal. On the other hand, the non-

fiducial features will be evaluate utilising power spectral 

density (PSD) representation, cross-correlation of the original 

and reconstructed ECG signals, percentage residual 

difference (PRD) of the original and the anonymised ECG 

signals, and time processing of the proposed framework 

compared to the wavelet packet-based anonymisation 

approach [17]. 

The Percentage Residual Difference (PRD) between the 

original ECG signal and the anonymised ECG signal that will 

be used in the performance evaluation is represented by (12) 

[17]. The PRD is commonly used in many papers to measure 

the difference between the original ECG signal and the 

anonymised ECG signal, that is defined according to 
 

    
  

 



N
i

ix

N
i

ixix

1
2

1
2

2PRD ,                 (12) 

where  ix  denotes the original ECG signal,  ix
2

 is the 

anonymised ECG signal and Ni ,,1 . N  is the total 

number of samples in the ECG signal. 
 

4.1 Performance evaluation over normal ECG signal 
 

In the first part of performance evaluation for the proposed 

framework, a normal ECG signal for was taken from PTB 

database (i.e., patient245, signal s0474). It encompasses 

signal duration of 10 seconds. According to [26] the normal 

ECG signal from PTB database was retrieved using sampling 

frequency, Hzf
s

000,1 . Hence, in overall there were 

10,000 points of normal ECG signal. However, there were 

only 8,192 





 132  points, which signifies ECG signal 

duration 8.192 seconds used in the experiment in order to 

preserve efficient computation of the FFT and the inverse 

FFT algorithms. 

The ECG signal was transformed using FFT algorithm 

followed by partition of the ECG signal in frequency domain 

into low and high frequencies. The low frequency acted as a 

secret key,  . The length of the secret key was set to 

024,1P , which is related to frequency 125 Hz. Therefore, 

frequency components of the ECG signal between 0 and 125 

Hz were removed for the secret key. On the other hand, 

frequency components larger than 125 Hz were operated as 

ECG anonymisation that will be uploaded to a public 

server/cloud server after reconstructing it using inverse FFT. 

In the ECG anonymisation phase, the ECG signal was 

modified using a constant 01.0 . 

Time domain representation of normal ECG signal (i.e., 

patient245, signal s0474) and the anonymised ECG signal are 

shown in Fig. 4. (a) and (b), respectively. It is clear from Fig. 

4 (b) that the proposed ECG anonymisation framework 

successfully conceals all fiducial features of the original ECG 

signal in Fig. 4 (a). Frequency domain representation in terms 

of Welch’s power spectral density (PSD) estimation for both 

the original ECG signal and the anonymised ECG signal are 

shown in Fig. 5 (a) and (b), respectively. Both diagrams show 

horizontal axis that has frequency range from DC to one-half 

the sampling rate. It can be seen in Fig. 5 (b) that the non-

fiducial features of the ECG signal have been obscured 

utterly by anonymisation process of the proposed algorithm. 

Examination to both Fig. 4 (a) and (b), as well as Fig. 5 (a) 

and (b) concludes that the ECG signal of a subject cannot be 

interpreted by using the anonymised data solely. For 

example, a man in the middle attack that possibly has access 

to acquire the anonymised ECG signal can do nothing to 

decrypt the ECG signal without possessing the key. 
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One advantage of using the proposed algorithm compared to 

the previous algorithm, for example in [17], is that its 

flexibility to choose the secret key length. Fig. 6 (b) depicts 

the Welch’s power spectral density of the anonymised ECG 

signal with a shorter key length, i.e., 512P  than the one in 

Fig. 6. A key length 512P  is related to frequency 62.5 

Hz. Hence, in Fig. 6 (b) frequency components of the ECG 

signal between 0 and 125 Hz were removed for the secret key 

and frequency components larger than 125 Hz were 

preserved as anonymised ECG. The figure shows that the 

non-fiducial features of the ECG signal are perfectly 

concealed by the proposed algorithm utilising a shorter key 

length. 

Fig. 7 (a) illustrates the reconstructed ECG signal after 

merging vector of the secret key,  , and vector of the 

anonymised ECG signal at the medical personnel side. 

Observe Algorithm 2 for the reconstruction process of the 

original ECG signal. Comparing Fig. 7 (a) and Fig 4 (a) 

clearly shows that both figures are identical with high degree 

of correlation. Moreover, cross-correlation of the original 

ECG signal and the reconstructed ECG signal that is 

presented in Fig. 7 (b) reveals that both ECG signals are 

highly correlated. This strong cross-correlation indicates 

close similarity between the original and reconstructed ECG 

signals. 
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Figure 4. Time domain representation of normal ECG signal: 

(a) original ECG signal, (b) anonymised ECG signal for 

024,1P . 
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Figure 5. Power spectral density representation of normal 

ECG signal: (a) original ECG signal, (b) anonymised ECG 

signal for 024,1P . 
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Figure 6. Power spectral density representation of normal 

ECG signal: (a) original ECG signal, (b) anonymised ECG 

signal for 512P . 
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Figure 7. (a) Time domain representation of reconstructed 

ECG signal, (b) cross correlation between original normal 

ECG signal and the reconstructed ECG signal. 
 

Furthermore, performance evaluation of the PRD as shown in 

(12) for the secret key length 024,1P  gives 

%76.18PRD , which shows there is significant different 

between the original ECG signal and the anonymised ECG 

signal. 
 

4.2 Performance evaluation over abnormal ECG signal 
 

In the second study, an abnormal ECG signal was taken from 

MIT-BIH arrhythmia database (i.e., signal 105m) with 10 

seconds signal duration. An arrhythmia syndrome reveals an 

abnormal heart beat pattern. This is mainly caused by 

problems in the heart’s electrical system. This abnormality is 

commonly classified into two basic patterns, i.e., slower 

electrical impulses than normal ECG signal called 

bradycardia (heart rate is less than 60 beats per minute) and 

faster electrical impulses than normal ECG signal called 

tachycardia (heart rate is more than 100 beats per minute)[27, 

28]. The abnormal tachycardia syndrome ECG signal was 

taken using sampling frequency, Hzf
s

360 . There were 

3,600 points of the abnormal ECG signal, however, there 

were only 2,048 





 112  points, which signifies ECG signal 

duration 5.7 seconds used in the experiment to maintain 

efficient computation of the FFT and the inverse FFT 

algorithms. 

The length of the secret key was set to 256P  , which is 

related to frequency 45 Hz. Therefore, frequency components 
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of the ECG signal between 0 and 45 Hz were removed for the 

secret key,  ,  and frequency components larger than 45 Hz 

were used for ECG anonymisation. The ECG signal was 

modified using a constant value, 01.0 . 

Fig. 8 (a) and (b) depicts the original abnormal ECG signal 

for a subject that suffered from a tachycardia syndrome (i.e., 

signal 105m) and the anonymised abnormal ECG signal, 

respectively. The figures show that all fiducial features of the 

ECG signal can be completely concealed by the proposed 

algorithm. On the other hand, performance evaluation in 

terms of non-fiducial features of the ECG is illustrated in Fig. 

9 (a) and (b). The figures reveal that Welch’s power spectral 

density of original abnormal ECG signal and the anonymised 

signal are clearly dissimilar. In other words, the proposed 

algorithm had successfully hidden the original ECG signal 

details from the eavesdroppers. 

Additionally, Fig. 10 (a) shows that the proposed 

reconstruction algorithm had been able to retrieve back the 

original abnormal ECG signal. Examination on the cross-

correlation between the original abnormal ECG signal and 

the reconstructed abnormal ECG signal verifies that both 

ECG signals are highly correlated as seen in Fig. 10 (b). 

Examination based on the PRD shows that residual 

difference between the original abnormal ECG signal and the 

anonymised signal results in %33.1PRD   for secret key 

length 256P .  Comparison between PRDs of the normal 

ECG signal with Hzf
s

000,1  and the abnormal ECG signal 

with Hzf
s

360 confirm the previous result in [17] that the 

PRD values depend on the sampling frequency. 
 

4.3 Performance evaluation over algorithm processing 

time 
 

An algorithm with low processing time is ultimately 

important to conserve energy in mobile and sensor node 

platforms. Consequently, one criterion in mind in designing 

an ECG anonymisation algorithm is that the running 

algorithm embedded in the devices should preserve low 

computational of the overall IMedT system. In this sub-

section, ECG anonymisation processing time of the proposed 

algorithm for different values of secret key length is 

examined as opposed to the wavelet packet-based 

anonymisation technique in [17]. 

ECG anonymisation processing time as a function of ECG 

signal length, Q , is shown in Fig. 11. A normal ECG signal 

(i.e., patient245, signal s0474) taken from PTB database with 

sampling frequency Hzfs 000,1  was used for evaluation, 

The signal covers 2 (two) minutes duration. However, in 

order to provide efficient calculation of the FFT in the 

proposed algorithm, a power of two integer ECG signal 

length was chosen for each simulation. In this simulation, 

ECG signal lengths, Q s, were set to 096,4212   points up 

to 536,65216   points signifying time duration between 

4,096 seconds and 65,536 seconds. The processing time 

computation for each data point in Fig. 11 was run over 100 

simulations. 

It can be seen in Fig. 11 that ECG anonymisation processing 

time produced by our proposed algorithm for several values 

secret key lengths outperforms the preceding wavelet packet-

based algorithm. The figure shows that the proposed 

framework is approximately 5 times faster than the wavelet 

packet based. For instance, the proposed framework took 

only approximately 6 milliseconds to anonymise the ECG 

signal for signal length 384,16214 Q  points. On the 

contrary, the existing wavelet packet based algorithm spent 

longer processing time, which is approximately 33 

milliseconds. 

Fig. 11 also reveals that the processing time of the proposed 

framework is comparable for several runs of anonymisation 

processes with variations of the secret key length. Therefore, 

it can be interpreted that the proposed framework offers 

flexibility for the applications to designate the secret key 

length in the ECG anonymisation and reconstruction 

processes. Comparing to the previous wavelet packet-based 

approach, the preceding algorithm can only provide the key 

size that was regulated by a factor of 
j

N

2
, where N  

represents the ECG signal length and j  is the decomposition 

level. 

0 1 2 3 4 5
-1

0

1

2

A
m

p
li
tu

d
e

 (
m

V
)

Time (s)
(a)

0 1 2 3 4 5
-0.2

-0.1

0

0.1

0.2

A
m

p
li
tu

d
e

 (
m

V
)

Time (s)
(b)

 

Figure 8. Time domain representation of abnormal ECG 

signal – tachycardia: (a) original ECG signal, (b) anonymised 

ECG signal for 256P . 

0 20 40 60 80 100 120 140 160 180
-80

-60

-40

-20

0

Frequency (Hz)

(a)

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/H
z
)

0 20 40 60 80 100 120 140 160 180
-100

-80

-60

-40

-20

Frequency (Hz)

(b)

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/H
z
)

 

Figure 9. Power spectral density representation of abnormal 
ECG signal – tachycardia: (a) original ECG signal, (b) 

anonymised ECG signal for 256P . 
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Figure 10. (a) Time domain representation of reconstructed 

ECG signal, (b) cross correlation between original abnormal 

ECG signal and the reconstructed ECG signal. 
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Figure 11. Processing time of ECG signal anonymisation 

using the proposed algorithm for different key lengths 

compared to the wavelet packet anonymisation technique. 
 

5. Conclusions 
 

Applications of the IoT in health and medical care areas are 

envisioned to be the one that can fully benefit from the IoT 

deployment. Henceforth, the term of Internet of Medical 

Things (IMedT) is commonly referred to such emerging 

technology. Nevertheless, due to small dimension of medical 

sensor nodes that construct the IMedT, the sensor nodes hold 

physical limitation in terms of low processing power, space 

of memory and battery life. Furthermore, transmitting ECG 

signal from sensor nodes to health care provider through 

public networks requires rigid security frameworks to protect 

patient’s privacy.  In this paper, a novel ECG anonymisation 

and reconstruction model have been proposed to address two 

major constraints in the IMedT environment, i.e., firstly, to 

accommodate the most current need for securing ECG signal 

transmission and secondly, to create an efficient method for 

overcoming power source limitation of sensor nodes. 

Performance evaluation examined using computer simulation 

over normal and abnormal ECG signals concluded the 

following results: (i) the proposed framework has ability to 

conceal both fiducial and non-fiducial features of the ECG 

signals in the anonymisation phase and correctly retrieved the 

original signal after successful reconstruction process, (ii) 

evaluation based on PRD showed that there is significant 

different between the original ECG signal and the 

anonymised ECG signal, (iii) on the contrary, strong cross-

correlation indicated close similarity between the original 

and the reconstructed ECG signals implying the proposed 

algorithm achieves lossless reconstruction of the original 

ECG signal, (iv) examination over processing time showed 

that the proposed algorithm consumed lower processing time 

compared to the existing wavelet packet-based algorithm, (v) 

finally, processing time of the proposed framework is 

comparable for several simulations with variations of the 

secret key lengths that makes it suitable for various 

applications. 
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