
230
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

On the Improper Use of CRC for Cryptographic
Purposes in RFID Mutual Authentication Protocols

Eyad Taqieddin

Multimedia Networking Research Laboratory, Jordan University of Science and Technology, Jordan

Abstract—Mutual authentication is essential to guarantee the
confidentiality, integrity, and availability of an RFID system. One
area of interest is the design of lightweight mutual authentication
protocols that meet the limited computational and energy resources
of the tags. These protocols use simple operations such as
permutation and cyclic redundancy code for cryptographic
purposes. However, these functions are cryptographically weak and
are easily broken. In this work, we present a case against the use of
these functions for cryptographic purposes, due to their simplicity
and linear properties, by analyzing the LPCP protocol. We evaluate
the claims of the LPCP resistance to de-synchronization and full
disclosure attacks and show that the protocol is weak and can be
easily broken by eavesdropping on a few mutual authentication
sessions. This weakness stems from the functions themselves as
well as the improper use of inputs to these functions. We further
offer suggestions that would help in designing more secure
protocols.

Keywords: Authentication, cryptography, cyclic redundancy
check codes, information security, RFID tags.

1. Introduction

Radio Frequency Identification (RFID) systems are deployed
in various industrial and academic applications. They are
used in asset management systems, libraries, credit cards,
and passports. These systems consist of tags that store unique
identifying information about the objects being tracked, one
or more readers that communicate wirelessly with the tags,
and a backend database to store the information collected
from the tags. The information in the database is
continuously updated according to the responses from the
tags.
Passive RFID tags harvest the incident power from the
reader signals and use it to run their circuitry and respond
back to the reader. This form of energy harvesting supports a
short communication range and limited computational power
of the tags.
A critical aspect to be considered with RFID systems is data
privacy and integrity. Current RFID implementations have
little provision to these necessary features. Thus, the system
becomes vulnerable to various attacks that include tag
cloning, tag tracking, information disclosure, and denial of
service (DoS).
In the past few years, researchers focused on proposing
protocols that support mutual authentication between the
readers and tags and maintain the privacy of secret
information shared between these parties. For successful
mutual authentication between the reader and the tag, both
parties must possess the same secret encryption keys and use
them in the private exchange of random numbers and the tag
identifier (ID). A mutual authentication session (hereupon
referred to as the session) involves a sequence of challenge-
response exchanges using the secret keys and random

numbers. The encryption operations must be chosen in line
with the limited computational and energy capabilities.
 Since the use of conventional ciphers, such as the Data
Encryption Standard (DES) and Advanced Encryption
Standard (AES), is not viable, several protocols were
proposed based on the use of simpler functions.
Ultralightweight protocols are based on simple bitwise,
addition, and shift operations. These protocols are suitable in
terms of their computational complexity but are weak from a
cryptographic perspective. On the other hand, lightweight
protocols use the same functions as those in ultralightweight
protocols along with cyclic redundancy code (CRC) and
pseudo-random number generators (PRNG). These two
added functions are readily available on the tags that comply
with the Electronic Product Code (EPC) Class 1 Generation
2 standard [1].
Unfortunately, although these functions offer limited
privacy, they are still being employed in various mutual
authentication protocols. Since the CRC function is
implemented on the RFID tags, it is widely employed as a
possible replacement of more complex cryptographic
functions. This poses a serious threat on the overall security
of the system and the associated data exchanges.
In this work, we present a case against the use of such
functions for mutual authentication. This is done by
highlighting the inherent weaknesses of the permutation and
CRC functions. To that end, a detailed analysis of a recently
proposed protocol called the Ultralightweight RFID
authentication Protocol with CRC and Permutation (LPCP)
 [2] is presented to show that it falls short of providing the
claimed security features. Due to the improper usage of the
CRC functions and the unique properties of the messages
structure, two attacks are presented. The first is a de-
synchronization attack in which the key update process is
manipulated such that the reader and the tag hold different
keys. The second is a full disclosure attack that reveals all
the secrets shared between the reader and the tag.
Furthermore, we offer suggestions that would help in
designing more secure protocols.
The paper is organized as follows: Section 2 presents an
overview of earlier attempts for secure ultralightweight and
lightweight protocols and their weaknesses. This is followed
by an overview and security analysis of the LPCP protocol in
Section 3. Finally, the paper is concluded in Section 4.

2. Related Work

The early attempts of ultralightweight cryptography appeared
in the Ultralightweight Mutual Authentication Protocol
(UMAP) family. It consisted of the Lightweight Mutual
Authentication Protocol (LMAP) [3], Minimalist Mutual-

231
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

Authentication Protocol (M2AP) [4], and the Efficient t
Mutual Authentication Protocol (EMAP) [5]. The main
operations in these protocols are the XOR, AND, OR and
addition. These protocols were shown to be vulnerable to de-
synchronization and full disclosure attacks [6–11].
The Strong Authentication and Strong Integrity (SASI)
protocol [12] was proposed as an alternative to overcome
these weaknesses. It added the rotation operation to the
bitwise operations used in the UMAP family. The protocol
was investigated thoroughly and several papers gave detailed
attacks that resulted in de-synchronization [13-14]. More
importantly, a full disclosure attack with high probability of
success by eavesdropping on 217 protocol runs was provided
in [15]. A detailed analysis of SASI in [16] presented the de-
synchronization, ID disclosure, and full secret values
disclosure attacks.
The Gossamer protocol provided enhancements to overcome
the vulnerabilities of its predecessors. It still was shown,
however, that the de-synchronization problem was not
solved. Active attacks that would result in de-
synchronization are detailed in [17-18].
One protocol that received attention is the RFID
authentication protocol with permutation (RAPP) [19]. This
protocol extended the operations used in SASI by adding the
permutation operation. The goal behind the permutation
operation is to hide any bit relationships that result from
bitwise operation. Similar to its predecessors, various attacks
appeared and showed its inherent weaknesses. De-
synchronization attacks with a reasonable probability of
success are given in [20-21]. Moreover, a detailed analysis in
 [22] gave the steps to run a full disclosure attack using 230
tag queries. This number of queries was hugely reduced
down to 192 tag queries in an improved full disclosure attack
in [23]. A detailed analysis of these previous attacks is given
in [24].
One recent protocol is the Succinct and Lightweight
Authentication Protocol (SLAP) [25]. In this protocol, an
ultralightweight operation, called conversion, is used as the
basis for cryptographic operations. The authors present a
detailed security analysis and claim that the protocol is
resistant to de-synchronization, replay, and tracing attacks.
SLAP was followed by an even newer protocol called the
pseudo-Kasami code based Mutual Authentication Protocol
(KMAP) [26] that avoids the use of simple bitwise
operations and, instead, uses a primitive operation that
enhances the diffusion properties to make the secrets
irreversible. In the analysis part, it is claimed that the
protocol resists all kinds of attacks.
The work in [27] provided an analysis of SLAP and KMAP
and presented a generalized case of a de-synchronization
attack that applies to both protocols. The attack shows that
the de-synchronization attack is still possible even though the
tag and the reader hold copies of the old and new secret
values.
As a general observation, most of the protocols that are
based on lightweight operations were shown to be
susceptible to attacks due to the inherent weaknesses in their
cryptographic operations. The work in [28] discusses the
typical mistakes that appear in the design of protocols and
provides guidelines to be followed in order to design and
evaluate the validity of mutual authentication protocols.

Recently, Gao et al. [2] presented an analysis of the RAPP
protocol and demonstrated a de-synchronization attack by
tampering with the exchanged message. As a solution to the
vulnerability, the authors proposed a new protocol called
LPCP. This protocol is a lightweight protocol (the authors
call it approximate ultra-lightweight) that uses the CRC
function along with the operations defined for the RAPP
protocol. The authors verified the protocol using the Simple
Promela Interpreter and claimed that the LPCP protocol
provides confidentiality and is resistant to de-
synchronization, tracing, replay, and full disclosure attacks.
The work in [29] presented a de-synchronization attack by
impersonating a valid reader using eavesdropped messages
from earlier sessions. We further analyze the protocol and
present two attacks with a success probability equal to one.

3. Security analysis of LPCP protocol

The message exchange structure and the updates for LPCP
are shown in Fig. 1. The tag stores the Index-pseudonym
(IDS) along with three keys ,)(, L M HK K K . The reader

maintains two copies of these parameters labeled as

,)(, old old old old
L M HIDS K K K and (, , ,)new new new new

L M HIDS K K K .

The designation of new represents the updated values of the
parameters whereas old represents the values from the
previous session.
The reader initiates a session by sending a Hello message to
the designated tag. In return, the tag responds with its IDS .
The reader uses the received IDS to retrieve the parameters
associated with it from the backend database and then
generates a random number 1R which is used in computing

messages α and β . When the tag receives these messages,

it extracts 1R from α and then computes its own version of

β . A match indicates that the reader is authentic. The tag

then sends γ to the reader which, in turn, uses it to
authenticate the tag.
Next, the reader generates a new random number, 2R and

computes messages δ and ζ . Furthermore, the reader

checks if the received newIDS IDS= then an update of the
keys and IDS value takes place. The tag extracts 2R from

δ and verifies it using ζ . If no anomaly is detected then the
tag performs the same update to its parameters.

In this section, a detailed security analysis of the LPCP
protocol is given by presenting two attacks. The first is a
novel de-synchronization attack in which the reader and tag
will hold mismatching keys and will not be able to prove
their identities to each other. The second attack leads to the
full disclosure of all the secrets shared between the reader
and the tag. This allows the attacker to track the tag,
impersonate the tag in responding to the reader or vice versa,
and to maintain possession of the secrets values, even after
the update that takes place at the end of each session.

Preliminaries

To lay the foundation for presenting the attacks, we

232
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

Figure 1. The LPCP message exchange [2]

discuss the two main cryptographic functions used in LPCP:
the CRC and permutation (Per) operations. Then we present
observations related to the message structure and these
functions.
There are various implementations of the 16-bit CRC
functions that differ based on the initial value and the
polynomial. The CRC function used on EPC compliant tags
produces a 16-bit value based on the input value and the

generator polynomial 16 12 5 1x x x+ + + [1]. For illustration
purposes, we adopt the CRC-CCITT (XModem) in which the
computation of the CRC is done by initializing a register
with 0 0000x and then clocking the data one bit at a time to
be encoded (from MSB to LSB). Once all bits have been
clocked, the result in the register is taken as the CRC value.
Note, however, that the discussion in this paper would be
applicable to any other variant of the 16-bit CRC
function.CRC functions are not suitable for cryptographic
operations due to their linear properties [30-32]. The
cryptanalysis presented provides a further case against
adopting these functions for cryptographic purposes.
As for the second function, Per, the definition is as follows
[19]:

For two n-bit strings, X and Y , in the form

1 2 , {0,1}, 1, 2, , n iX x x x x i n= … ∈ = …

1 2 , {0,1}, 1, 2, , n iY y y y y i n= … ∈ = …
The Hamming weight of Y , ()wt Y , is (0)m m n≤ ≤ and

1 2 1k k kmy y y= =… = = and 1 2 0km km kny y y+ += =… = =

where 1 1 2k k km n≤ < < … < ≤ and

1 1 2km km kn n≤ + < + < … < ≤ , then

1 2 1 2 1(,) k k km kn kn km kmPer X Y x x x x x x x− + += … … (1)

As an example, assume we have two 8-bit arrays,
1001 0011X = and 11101 010Y = then
(,) 10001 101Per X Y = . The details are shown in Fig. 2.

Figure 2. Permutation example

From the example, we see that we start from the leftmost
position of Y and scan for the values of 1. Whenever a
match is found, the corresponding bit of X is taken. When
the rightmost bit is reached, we scan Y in the opposite
direction but this time we look for a match with zero and
copy the corresponding bit.
Observation 1: The way the CRC function is used in the
LPCP protocol makes it a reversible function.
The CRC function may be used with any size of input data.
However, with the LPCP protocol, the authors restricted the
size of the inputs to 16 bits. This is a serious flaw because

there will be 162 possible inputs with 162 possible outputs.

233
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

By examining all input combinations and the resulting
outputs, we find that the CRC becomes a one-to-one
function. In other words, given ()y CRC x= it is possible to

find 1) (x CRC y−= .

Observation 2: Given

1 2 3 2 1(,) n n nA Per X Y a a a a a a− −= = … then

1 2 3 2 1(,) n n nB Per X Y a a a a a a− −= = … (2)

Where Y is the complement of Y .
To illustrate this observation, we consider a case of 4-bit

arrays where 1 2 3 4 X x x x x= and we find A and B for all

possible values of Y and Y , as shown in Table 1. Note that
each entry in column A is a mirror image of that in column
B . This can be extended to any array size, n.

Observation 3: For an n-bit string X with a Hamming
weight of X , () , (0)wt x m m n= ≤ ≤

1 2 1 2 1(,) k k km kn kn km kmA Per X X x x x x x x x− + += = … … (3)

Where ,

1 2 1k k kmx x x= = … = = and 1 2 0km km knx x x+ += = … = =

Table 1. Possible Permutations of X Based on Y and Y

Y Y (,)A Per X Y= (,)B Per X Y=

0000 1111 4 3 2 1 x x x x 1 2 3 4 x x x x

0001 1110 4 3 2 1 x x x x 1 2 3 4 x x x x

0010 1101 3 4 2 1 x x x x 1 2 4 3 x x x x

0011 1100 3 4 2 1 x x x x 1 2 4 3 x x x x

0100 1011 2 4 3 1 x x x x 1 3 4 2 x x x x

0101 1010 2 4 3 1 x x x x 1 3 4 2 x x x x

0110 1001 2 3 4 1 x x x x 1 4 3 2 x x x x

0111 1000 2 3 4 1 x x x x 1 4 3 2 x x x x

1000 0111 1 4 3 2 x x x x 2 3 4 1 x x x x

1001 0110 1 4 3 2 x x x x 2 3 4 1 x x x x

1010 0101 1 3 4 2 x x x x 2 4 3 1 x x x x

1011 0100 1 3 4 2 x x x x 2 4 3 1 x x x x

1100 0011 1 2 4 3 x x x x 3 4 2 1 x x x x

1101 0010 1 2 4 3 x x x x 3 4 2 1 x x x x

1110 0001 1 2 3 4 x x x x 4 3 2 1 x x x x

1111 0000 1 2 3 4 x x x x 4 3 2 1 x x x x

This means that the first m bits of (,)Per X X will be 1’s

and the remaining n m− bits will be 0’s.
To illustrate this point, consider an example where

10001011X = then (,) 1111 0000Per X X =

Finally, we use the theorem below (detailed proof is given
in [29]).

Theorem 1: For any CRC and for any n-bit strings a and
b, it holds that

() () ()CRC a b CRC a CRC b⊕ = ⊕ (4)

De-synchronization attack

The LPCP protocol was originally proposed with the goal of
overcoming the threat of a de-synchronization attack.
However, it was shown in [29] that the LPCP is still
vulnerable to de-synchronization within three sessions by
replaying older messages.

In this section, we show a new de-synchronization attack
the exploits the weaknesses inherent in the CRC and Per
functions. A major enhancement in this attack is that it
succeeds in one session only. Furthermore, the updated IDS
will be the same for both the tag and the reader which would
make it harder to identify the attack.

The premise of the attack is to influence the tag to accept
false random numbers instead of those generated by the
reader. As such, when the update process takes place, the
reader and the tag will use different input values for the
update. For this to happen, the attacker does not necessarily
need to know the keys.

First, we simplify the equation of β using a property

from [22] which states that
(,) (,) (,)Per X Y Per Z Y Per X Z Y⊕ = ⊕ (5)

Thus, message β can be presented as

 1, ((()))M H L MCRCCRC Per K K K K Rβ = ⊕ ⊕ ⊕ (6)

From observation 1, we deduce that
1

1() (, ())M H L MT CRC Per K K K CRC K Rβ−= = ⊕ ⊕ ⊕ (7)

For CRC-CCITT (XModem), we know that
(0 84) 0CRC x CF xFFFF= . Thus, we take α sent by the

reader and modify it to ' 0 84x CFα α= ⊕ . The tag extracts
the random number from 'α and its value will be

'
1 1 0 84R R x CF= ⊕ . For the attack to succeed, we need to

replace β with a new message (we call it 'β) using the

value of '
1R .

'
1' ((, ()))M H L MCRC Per K K K CRC K Rβ = ⊕ ⊕ ⊕ (8)

By considering theorem 1 we find that
'
1 1() (0 84)M MCRC K R CRC K R x CF⊕ = ⊕ ⊕

1 () (0 84)MCRC K R CRC x CF= ⊕ ⊕

 1 () 0MCRC K R xFFFF= ⊕ ⊕ (9)

This means negating all the bits of 1()MCRC K R⊕ , thus
'
1 1() ()M MCRC K R CRC K R⊕ = ⊕ ,

By substituting in (8)

1' ((, () 0))M H L MCRC Per K K K CRC K R xFFFFβ = ⊕ ⊕ ⊕ ⊕

 (10)
From observation 2, we note that

1() 0), (M H L MCRCPer K K K K R xFFFF⊕ ⊕ ⊕ ⊕ is the

mirror image of T . Thus, to find β ′ , we take the mirror

image of T (call it ')T and then apply it to the CRC

function
()CRC Tβ ′ = ′ (11)

The tag receives 'α and β ′ then accepts '
1R as the

random number, and generates the message γ'
' '
1 1γ' (((), ())H MCRC Per CRC K R CRC K R= ⊕ ⊕ ⊕

 '
1((), ()))L M LPer CRC K K CRC K R⊕ ⊕ (12)

We need to convert γ' to the original γ such that the

reader will authenticate the tag without recognizing the
mismatched random numbers. For this to happen, the
message should be based on the value of 1R .

Given

 ()1' γ'G CRC−=

234
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

 ' '
1 1((), ())H MPer CRC K R CRC K R= ⊕ ⊕

 '
1((), ())L M LPer CRC K K CRC K R⊕ ⊕ ⊕ (13)

Which can be represented as ' '
1 2G G G′ = ⊕ , where

' ' '
1 1 1((), ())H MG Per CRC K R CRC K R= ⊕ ⊕ (14)
' '
2 1((), ())L M LG Per CRC K K CRC K R= ⊕ ⊕ (15)

We need to find the value

1 2G G G= ⊕

 1 1((), ())H MPer CRC K R CRC K R= ⊕ ⊕

 1((), ())L M LPer CRC K K CRC K R⊕ ⊕ ⊕ (16)

By examining (14), we see that
' ' '
1 1 1((), ())H MG Per CRC K R CRC K R= ⊕ ⊕

 1 1 ((), () 0)H MPer CRC K R CRC K R xFFFF= ⊕ ⊕ ⊕ (17)

This means that we find 1G by complementing all the bits

of '
1G and then taking their mirror image.

Also, by examining (15), we see that
' '
2 1((), ())L M LG Per CRC K K CRC K R= ⊕ ⊕

 1 ((), () 0)L M LPer CRC K K CRC K R xFFFF= ⊕ ⊕ ⊕ (18)

This indicates that we find 2 G by taking the mirror image

of the bits of '
2G .

Since the mirror image of both '1G and '
2G is taken then

the relative positions of adjacent bits will be the same. As a
result, to find the original value of 1 2G G G= ⊕ , we take the

mirror image of 'G and then complement the result (due to
the complement used with 1G).

Finally, the value of γ is found as ()CRC Gγ = and then

sent to the reader.
The reader verifies γ and accepts the tag as authentic, it

then generates the random number 2R and sends the

messages δ and ζ . However, we modify δ to 'δ (Similar

to the case of α and 'α) so the tag will extract '
2R from it.

As a final step, we need to convince the tag to accept the
modified random number by sending ζ' instead of ζ .

We follow a similar approach in updating ζ . First we take

()1 ζZ CRC−=

 1 2 ((), ())H MPer CRC K R CRC K R= ⊕ ⊕ ⊕

 2 1((), ())M LPer CRC R K CRC K R⊕ ⊕ (19)

Consider that

1 1 2((), ())H MZ Per CRC K R CRC K R= ⊕ ⊕ (20)

2 2 1((), ())M LZ Per CRC R K CRC K R= ⊕ ⊕ (21)

We need to modify 1Z and 2Z to match with the values of
'
1R and '

2R . As such,
' ' '
1 1 2((), ())H MZ Per CRC K R CRC K R= ⊕ ⊕ (22)
' ' '
2 2 1((), ())M LZ Per CRC R K CRC K R= ⊕ ⊕ (23)

For both (22) and (23), we see that the results are
complemented and their mirror image is taken. Thus taking

' '
1 2'Z Z Z= ⊕ results in eliminating the effect of the

complements. What is left is the effect of taking the mirror
image of Z (i.e.; 'Z is the mirror image of Z)

And ζ ()CRC Z′ ′=

The tag accepts the values of the random numbers. Now,
when both parties attempt to run their updates the results will
not match.

On the reader side

1 2((,))new
H M LIDS CRC Per IDS R R K K K= ⊕ ⊕ ⊕ ⊕ (24)

1 ((,))H H MK CRC Per K R K= ⊕ (25)

2 ((,))M M HK CRC Per K R K= ⊕ (26)

1 2((,))L LK CRC Per K R R IDS= ⊕ ⊕ (27)

On the tag side
' '
1 2((,))H M LIDS CRC Per IDS R R K K K= ⊕ ⊕ ⊕ ⊕ (28)

'
1((,))H H MK CRC Per K R K= ⊕ (29)

'
2 ((,))M M HK CRC Per K R K= ⊕ (30)

' '
1 2((,))L LK CRC Per K R R IDS= ⊕ ⊕ (31)

An interesting point is that that both the reader and the tag

will still have similar IDS values because ' '
1 2 1 2R R R R⊕ = ⊕ .

However, the keys HK and MK will differ and the next

session will not succeed.
We illustrate this attack by an example with reduced

length of 16-bit strings. Table 2 lists the initial values shared
between the reader and the tag. We label them with a
superscript of R or T to indicate whether it is a reader or a
tag value; respectively.

Table 2. Initial Values of Shared Parameters Between the

Reader and the Tag

Reader Side Tag Side

RIDS 0xBEAF TIDS 0Xbeaf

R
HK 0xE5AB T

HK 0xE5AB

R
MK 0xA9AF T

MK 0xA9AF

R
LK 0xA9AD T

LK 0xA9AD

R
1R 0x2EA2 T

1R Unknown yet

R
2R 0x5555 T

2R Unknown yet

The reader initiates by sending the Hello message and
receives 0IDS xBEAF= . The reader uses this IDS value to
acquire the shared keys from the database and then generates

the random number 1
RR . The reader sends

0 8xFE Eα = and 0 9718xβ =

These messages are modified by the attacker as
0 84 0 7 41x CF x Aα α ⊕ =′ = . Also, β ′ is computed by first

taking 1 0 9() 4T CRC x D Bβ−= =

The mirror image of the value of T is taken to find
0 2 9T xD B′ = . and () 0 45 7CRC T x Bβ =′ ′= . The values of

' α and β ′ are sent to the tag, which uses ' α to extract

1 0 6TR xAA D= . and verifies it by comparing its local value

of β ′ with that received.

Next, the tag generates γ 0 1x CAE′ = and the attacker

modifies it by finding 1(' 0 62) γG CRC xDC− ′= = . From the

235
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

discussion above, we need to take the mirror image of the
bits and then invert them to find 0 9 4 G xB C= and
γ () 0 3 5CRC G x D D= = . The reader uses the received value

of γ′ and compares it against its local value and then

considers the tag authentic. The reader then generates 2
RR

and sends 0 8 6x FECδ = and ζ 0x515C= .

The attacker modifies δ to find 0 0 0 29x x Bδ =′ and ζ'

by first taking
1 ζ() 0 668Z CRC xC−= =

The mirror image 0 1663Z x′ = and its corresponding

ζ () 0 510CRC Z xF=′ ′= . The tag extracts 2 0 19TR xD A=

from these messages.
Thus, the reader performs its update on its stored values

using 1 0 2 2RR x EA= and 2 0 5555RR x= while the tag uses

the values 1 0 6TR xAA D= and 2 0 19RR xD A= .

The new values after the session is completed are shown
in Table 3. Note that although both tags have updated to the
same IDS value, there is a mismatch between the values of

HK and MK held by the tag and those held by the reader.

This indicates that no future sessions would succeed in
mutual authentication.

This attack can be easily extended to cover the case of
EPC compliant tags of 96-bit length. The only difference in
that all strings would be divided into six 16-bit substrings to
be processed as shown above. This can be done in one
protocol run, similar to the 16-bit example.

Table 3. New Values of Shared Parameters Between Reader
& Tag

Reader Side Tag Side

RIDS 0x7A22 TIDS 0x7A22

R
HK 0x170C T

HK 0x45C1

R
MK 0x221E T

MK 0xE29A

R
LK 0xB959 T

LK 0xB959

R
1R 0x2EA2 T

1R 0xAA6D

R
2R 0x5555 T

2R 0xD19A

Full disclosure attack

The full disclosure attack is more elaborate with the goal of
finding all the secret information shared between the reader
and the tag. The attacker deliberately forces the current
session not to be completed by blocking the message γ from

reaching the reader. In such a case, no update will take place
(thus the same secret information will be used). However,
per the protocol specification, a new value for 1R will be

generated for each subsequent session.
The following notation is used in presenting the attack

 iX Bit string X sent in session i , where
 { , , , , , }X Tα β γ δ ξ∈

[] jX The jth bit of string X

1
iR and 2

iR Random numbers generated for session i

[0] j An n-bit array of all 0’s except at bit
position j

We run the attack in two steps. In the first step, we capture
messages from several sessions for offline analysis. The
second step involves an active attack phase where the
messages are manipulated in order to reveal more
information about the secret keys.

Step 1: Message capture and offline analysis
By examining (6) and (7), we see that for any two sessions

i and j , the values of iα and iβ will differ from jα and
jβ . With all secret keys constant, this change depends

solely on the values 1
iR and 1

jR .

1((,)) M HCRC Per K K Rα = ⊕ (32)

1 ((, ()))M H L MCRC Per K K K CRC K Rβ = ⊕ ⊕ ⊕ (33)

One fact about the permutation operation is that
((,)) ((,))wt Per X Y wt Per X W= . This is because we only

change the positions of the bits of X without any
substitution. The same can be applied to (33) where

 1((, ()))i
M H L Mwt Per K K K CRC K R⊕ ⊕ ⊕ = .

1((, ()))j
M H L Mwt Per K K K CRC K R⊕ ⊕ ⊕ (34)

Consider the scenario where the attacker has captured the

tuples 1 1, α β and , i iα β , for any 2i ≥ . Thus, we have:

1 1
1 ((,)) M HCRC Per K K Rα = ⊕ (35)

1 1
1 ((, ()))M H L MCRC Per K K K CRC K Rβ = ⊕ ⊕ ⊕ (36)

1 ((,)) i
M H

iCRC Per K K Rα = ⊕ (37)

1 ((, ()))i
M H L M

iCRC Per K K K CRC K Rβ = ⊕ ⊕ ⊕ (38)

By taking
1

1
1 1((,)) ((,))

i

i
M H M HCRC Per K K R CRC Per K K R

α α⊕

= ⊕ ⊕ ⊕

1 1
1 1 1 1 i i i iR R R R= ⊕ = ∆ → = ⊕ ∆ (39)

And substituting 1
iR in (38), we have

1
1 ((, ()))i i

M H L MCRC Per K K K CRC K Rβ = ⊕ ⊕ ⊕ ⊕ ∆

 1
1 ((, () ()))i

M H L MCRC Per K K K CRC K R CRC= ⊕ ⊕ ⊕ ⊕ ∆

 (40)
And since the effect of the outer CRC operation in β can

be reversed based on observation 1, we get
1 1 1) (T CRC β−=

 1
1 (, ())M H L MPer K K K CRC K R= ⊕ ⊕ ⊕ (41)

1() i iT CRC β−=

 1
1(, () ())i

M H L MPer K K K CRC K R CRC= ⊕ ⊕ ⊕ ⊕ ∆ (42)

The interpretation of this difference between (41) and (42)
is that the bits of M H LK K K⊕ ⊕ are permuted by

()1
1)(MCRC K R CRC⊕ ⊕ ∆ instead of just 1

1()MCRC K R⊕ .

When ()[] 0 , 1, 2, , jCRC j n∆ = = … , then

1 1
1 1()[() [()]]M j M jCRC CRCK R CRC K R⊕ ⊕ ∆ = ⊕ and the

permutation will not be affected. However, when
[()] 1,jCRC ∆ = the result of

1
1[() ()]M jCRC K R CRC⊕ ⊕ ∆ will be inverted and it will

236
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

affect the result of the permutation operation. This bit
inversion is very useful in reversing the result of the
permutation to find its two inputs. The logic behind this is
that if the bit was originally 1 and its corresponding bit,
[]M H L jK K K⊕ ⊕ , was placed at position h in the result of

the permutation, then when we invert the bit to 0 its
corresponding bit would be placed at position ,k where

k h> . The same logic applies if we invert the bit from 0 to 1
the bit would be moved from position h to position k with
h k> .

We employ this idea to find the bits of M H LK K K⊕ ⊕

and 1
1()MCRC K R⊕ . By considering the leftmost bit

0[]M H LK K K⊕ ⊕ , there are two possible positions for this

bit to occupy in T , 0[]T if 1
1 0[()] 1MK RCRC ⊕ = or [] nT if

1
1 0[()] 0MK RCRC ⊕ = . Thus, if we invert bit
1

01[()]MK RCRC ⊕ then either 0[]T will appear as [] nT

(meaning that 1
01[()]MK RCRC ⊕ was originally 1) or [] nT

will appear as 0[]T (1
01[()]MK RCRC ⊕ was originally 0).

From this, we have determined the value of
1

01[()]MK RCRC ⊕ by the change of position and also we

have determined the value of []0M H LK K K⊕ ⊕ because

that is the value of the bit [] iT that got affected by the

inversion.
Once we know the value at the position 0, we can proceed

iteratively from position 1 up to position 1n − . At the end of
this step, we will have several possible values of

M H LK K K⊕ ⊕ and 1
1MK R⊕ . In themselves, they do not

expose the values of the individual keys but are used in the
second step of the attack.

To illustrate the steps of the offline analysis, we use a
reduced size example with the same initial values from Table
2. The goal is to find M H LK K K K= ⊕ ⊕ and

1
1()MC CRC K R= ⊕ based on the differences between

session 1 and its subsequent sessions.

Initially, the attacker captures 1α and 1β which are

created based on the keys and the random number 1
1R .

Message 1γ is stored by the attacker and blocked form the

reader to force it to generate a new random number, 2
1R , and

its corresponding 2α and 2β . The process is repeated

several times until we have a sufficient set of iα and iβ

messages. Table 4 lists the values of iα and iβ for 7

protocol sessions generated by implementing the protocol in
C code.

To find 0[]K , we consider all cases for which

0[()] 1iCRC ∆ = . This applies to sessions 2 and 7. By

comparing 1T with 2T and 7T , the attacker can extract
some information regarding the unknown bits.

Considering 1 9 4 10011 101 01001 011 T D B= = and
2 565 1110 0101 0110 0101T E= = , we see that 1 2

0 15[] []T T=

and also 1 2
15 0[] []T T= . Thus, it is not possible to determine

the effect of the bit flip of 0[()]iCRC ∆ because either 1
0[]T

has become 2
15[]T or 1

15 []T has become 2
0[]T . However, if

we consider Fig. 3, we observe that 1 7
0 15[] []T T≠ and

1 7
15 0[] []T T= . This leads to the conclusion that 1 15[]T must

have changed its position and became 7
0[]T . In other words,

the bit which was originally permuted with a []0
C = 0 to

appear as the 1
15[]T has now been permuted with a 1 to

appear as the 7
0[]T .

To confirm this result, assume that the bit was originally

permuted with []0
1C = , instead of 0. This would mean that

the bit should appear as 1 0[]T and when the permuting bit is

flipped, []0
1C = , it should appear as 7

15[]T . However, since

1 7
0 15[] []T T≠ , this confirms that the assumption is incorrect

and asserts the conclusion that [] 1
150

[] 1K T= = and

[]0
0C = .

Figure 3. Bit transition after flipping 0[()]iCRC ∆

Next, to find the bits 1[]K and 1[]C , the attacker considers

the cases for which 1[()] 1iCRC ∆ = . The sessions of interest

are 4, 5, and 6. Not all cases would yield a result but by

considering Fig. 4 to examine 1 T and 4T .

Note that 1
15[]T is set to 1 and since

[] []4
00 0

[()]C CRC C⊕ ∆ = , then the permutation of that bit

for both strings will not be affected (i.e.; 1 4
15 15[] []T T=).

For illustration purposes, all known bits are shown
highlighted.

TABLE 4. Values of Captured Messages iα and iβ and their Corresponding i∆

Session (i) iα iβ 1()i iT CRC β−= 1i iα α∆ = ⊕ ()iCRC ∆

237
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

1 0xFE8E 0x9718 0x9D4B ---
2 0x7EB6 0xD344 0xE565 0x8038 0xAAC3
3 0x76B6 0xAAF7 0xD58D 0x8838 0x256A
4 0x34B6 0x72CB 0x34D7 0xCA38 0x4EC4
5 0x342C 0x59D3 0x965B 0xCAA2 0x6C37
6 0x8579 0x0F91 0x2B2F 0x7BF7 0x4B5B
7 0x8D7E 0x7A8E 0xFC64 0x73F0 0xB215

Figure 4. Bit transition after flipping 1[()]iCRC ∆

Our interest now is on bit positions 0 and 14. Note that
1 4

14 0[] []T T≠ while 1 4
0 14[] []T T= . This leads to the

conclusion that 1
0[]T must have changed its position and

became 4
14[]T . In other words, the bit which was originally

permuted with []1 1C = to appear as 1
0[]T has now been

permuted with a bit 0 to appear as the 4
14[]T . This means that

the value of the bit [] 1
01

[] 1K T= = and that it was originally

permuted with []1 1C = .

The same result could be obtained by considering 1 T

along with 6 00101 101 00101 111T = .
Up to this point, we know the first two bits of
 K = 1 1
C = 0 1
The process is continued to find the bits at position 2. By

taking session 2, and knowing that 2() 0 3CRC xACC∆ = ,

then [] 2
0,10,1

[()] 01 10 11C CRC⊕ ∆ = ⊕ = . Thus, 0,1[]K will

be permuted with 11 to yield the first 2 bits of 2T , 2
0,1[]T .

Figure 5. Bit transition after flipping 2[()]iCRC ∆

From Fig. 5, 1 2

14 2
T T   =   

 and 1 2

1 15
T T   ≠   

 and we

conclude that [] 1
2 14

1K T = = 
 and this bit was permuted

with []2
0C = , giving

K = 1 1 1
C = 0 1 0
The same procedure is repeated to find all the remaining

bits. Note, however, that in some cases we may not be able
to use the procedure to find a conclusive result. For example,
when considering position 8, the applicable sessions are 2
and 4. We notice that for none of the sessions produces the

case where 1[] []ih jT T= and 1[] []ik lT T≠ . In such a case,

there are two options, either we capture more messages or

examine the case when bit 8[()] 0iCRC ∆ = . Looking for a

case for which the bits on the boundaries are equal and this
would give us 8[] .K

By studying the case of 3T in Fig. 6, the boundary bits
3

5[]T and 3
13[]T are equal. Regardless of the initial position

of these bits, we can safely say that
3 3

8 5 13[] [] [] 1.K T T= = =

Furthermore, from 1 1001110101001011T = , we see that

the boundary bits are 1
4[] 1T = and 11

1[] 0T = . As such, we

know that 8[]K certainly appears as 1 4[]T . Hence, 8[] 1C = .

 By proceeding with the steps, and getting to position 14,

we have two bits only to consider 1 7[] 0T = and 1
8[] 1T = .

Figure 6. Bit transition after flipping 8[()]iCRC ∆

When these bits are swapped there will be no conclusive
result to determine which of them is 13[]K or 14[]K .

As a result, we have two possible values for K , denoted
by 1K and 2K given along with the corresponding possible

values of C ; respectively.

1 111001011 0101 0 01

01010011 101 00010

01010011 101 00011

K

C

C

=

=

=

2 111001011 0101 010

01010011 101 000 00

01010011 101 000 01

K

C

C

=

=

=

To summarize, the results of the first step of the full
disclosure attack are given in Table 5.

238
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

Table 5. Results of First Step of Full Disclosure Attack.

M H LK K K⊕ ⊕ 1
1()MCRC K R⊕ 1

1MK R⊕

0xE5A9
0x53A2 0x870D
0x53A3 0x1A7C

0xE5AA
0x53A0 0xADCE
0x53A1 0x30BF

Step 2: Active attack by manipulating the random
numbers

Knowing M H LK K K⊕ ⊕ and 1
1MK R⊕ does not expose

the values of the individual keys. However, we utilize them

in the next step of the attack to manipulate 1α and 1β that

were captured at the beginning. The goal behind this step is

to convince the tag to accept a modified value for 1
1R in a

manner that would give more information about the secret
values. Since we have four sets of possible values, as shown
in Table 5, then this step needs to be repeated four times,
once for each set.

The attacker manipulates α by XORing it with 1
1MK R⊕

as shown in (43)
1
1MK Rα α′ ⊕ ⊕=

 1 1
1 1(,))(hM MCRC Per K K R K R= ⊕⊕ ⊕

 ,)()(hM MCRC Per K K K= ⊕ (43)
When the tag receives α ′ , it extract the value of

1
1 MR K= .

Now, to find the corresponding 'β that would be accepted

by the tag, we take
1
1 ((, ()))M H L MCRC Per K K K CRC K Rβ = ⊕ ⊕ ⊕ (44)

1()T CRC β−=

 1
1(, ())M H L MPer K K K CRC K R= ⊕ ⊕ ⊕ (45)

By substituting 1
1 MR K= ,

' (, ())M H L M MT Per K K K CRC K K= ⊕ ⊕ ⊕

 (, (0 0000))M H LPer K K K CRC x= ⊕ ⊕

 (, 0 0000)M H LPer K K K x= ⊕ ⊕ (46)

This, as mentioned previously, indicates that 'T is the
mirror image of M H LK K K⊕ ⊕ which is already known.

Hence,
' ()CRC Tβ ′= (47)

When the tag verifies 'β , if will accept the value of
1
1 MR K= and proceed to generate
1 1 1

1 1γ (((), ()))H MCRC Per CRC K R CRC K R= ⊕ ⊕ ⊕

 1
1((), ())L M LPer CRC K K CRC K R⊕ ⊕ (48)

By substituting 1
1 MR K= , (9) is reduced to

1γ (((), ()))H M M MCRC Per CRC K K CRC K K= ⊕ ⊕ ⊕

 ((), ())L M L MPer CRC K K CRC K K⊕ ⊕ (49)

Thus,
1γ (((), (0 0000)))H MCRC Per CRC K K CRC x= ⊕ ⊕

 ((), ())L M L MPer CRC K K CRC K K⊕ ⊕ (50)

From (50), we can find

1 1 1()γG CRC−=

 ((),0 0000)H MPer CRC K K x= ⊕ ⊕

 ((), ())L M L MPer CRC K K CRC K K⊕ ⊕ (51)

 These values are used offline without any further message
collection needed. Based on observation 3, we see that

((), ())L M L MPer CRC K K CRC K K⊕ ⊕ will results in a

string consisting of m ones and 16 m− zeros, where m
is the Hamming weight of ()L MCRC K K⊕ . Note that this

value is unknown to us but it will be one of 16 possible
values (000 0, 1 00 0,1 10 0,1 11 0,1 11 1)K K K K K .

Thus, we take the value of 1G and run it in a loop for which
in each iteration we XOR it with one of the possible 16
values to get the value of ((),0 0000)H MPer CRC K K x⊕ for

that iteration. By taking the mirror image of these bits, we
find the value of ()H MCRC K K⊕ which can be easily

converted to H MK K⊕ .

Within the iteration, we run another loop that takes all
possible values of

HK ranging from 0x0000 to 0xFFFF.

From these values and
H MK K⊕ , we can find the

corresponding
MK . And from the known

M H LK K K⊕ ⊕

we can further extract LK . Moreover, since we have the

value of 1
1MK R⊕ then we can find the corresponding 11R .

The procedure above yields 162 cases. For each case, we

compute α and compare it with 1α . If they do not match
then we proceed to the next case. However, if a match is
found then we verify the result by computing γ and

comparing the result with the stored value 1γ . There will

only be one matching case which would give all the secret
information.

As mentioned earlier, there are four possible cases and
when all of them are attempted offline only one solution will
result. Moreover, Since this step is done offline, it can be
easily computed on a machine in minimal time and
complexity.

Once this step is complete, we know MK , , HK , LK , and

1
1R . To find the last unknown value, we wait for the reader

to initiate a new session, j , and passively collect messages

ja and jb from which we extracts 1
jR and also captures

jδ and ζ j from which we can easily compute 2
jR . At this

stage, we have all the secret values and can update the set of
keys after every successful session. Furthermore, we can
impersonate a reader or a tag by falsifying messages based
on the known secret values in our possession.

The complexity of the attack is very low in terms of the
number of messages collected and the time needed for the
offline analysis. Even if the EPC tags are used for a size of

96n = bits, the complexity is still low. Since the strings
will be divided into six substrings of 16-bits. For the first
step of the attack, each substring will be analyzed separately
from the others to yield four possibilities. For an attacker to

manipulate a and b , he will need to find a combination in

239
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

which the concatenation of the six substrings would be
accepted by the tag. As such, the attacker will need to run 46
= 212 cases instead of 4 with the reduced size example. Once
that is done, the computation can be performed in which
each substring is dealt with separately with a linear increase
in the complexity compared to the reduced size example.

4. Conclusion

In this paper, we analyzed the LPCP protocol and presented
two serious vulnerabilities that lead to desynchronization and
full disclosure of the secret values shared between the reader
and the tag. In particular, the use of CRC as a cryptographic
function is not a suitable choice due to its linear properties.
Furthermore, the permutation operation taken from the
RAPP protocol was shown to be of little cryptographic value
and easily reversible. The complexity of the attacks is very
low in terms of number of captured messages and the offline
computation time.
For more secure constructions of protocols, it is
recommended that the CRC function is not used. Protocol
designers can make use of the PRNG functions available on
the tags instead of the CRC. Short inputs of 16-bit length
should be avoided to guarantee that no one-to-one
relationship between the inputs and outputs is established.

Acknowledgement

This research was supported by the Jordan University of
Science and Technology, Research Project No. 259/2016.

References

[1] EPC Radio-Frequency Identity Protocols, Class-1 Generation-
2 UHF RFID Protocol for Communications at 860 MHz–960
MHz, Version 2.0.0, EPC Global, Nov., 2013.

[2] L. Gao, M. Ma, Y. Shu, Y. Wei, “An ultralightweight RFID
authentication protocol with CRC and permutation,” Journal of
Networks and Computer Applications, Vol. 41, No. 1, pp. 37–
46, 2014.

[3] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-
Tapiador, A. Ribagorda, “LMAP: A real lightweight mutual
authentication protocol for low-cost RFID tags,” Workshop on
RFID Security (RFIDSec’06), Graz, Austria, July 2006.

[4] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-
Tapiador, A. Ribagorda, “M2AP: A minimalist mutual-
authentication protocol for low-cost RFID tags,” The 3rd
International Conference on Ubiquitous Intelligence and
Computing (UIC’06), China, pp. 912-923, 2006.

[5] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-
Tapiador, A. Ribagorda, “EMAP: An efficient mutual
authentication protocol for low-cost RFID tags,” OTM
Federated Conferences and Workshop: IS Workshop (IS’06),
France, pp. 352-361, 2006.

[6] M. Bárász, B. Boros, P. Ligeti, K. Lója, D. Nagy, “Breaking
LMAP,” Workshop of RFID Security (RFIDSec’07), Spain,
July 2007.

[7] T. Li, G. Wang, “Security analysis of two ultra-lightweight
RFID authentication protocols,” The 22nd IFIP TC-11
International Information Security Conference, South Africa,
2007.

[8] M. Bárász, B. Boros, P. Ligeti, K. Lója, D. Nagy, “Passive
attack against the M2AP mutual authentication protocol for
RFID tags,” The 1st International EURASIP Workshop on
RFID Technology, Austria 2007.

[9] H.-Y. Chien, C.-W, Huang, “Security of ultra-lightweight
RFID authentication protocols and its improvements,” ACM

SIGOPS Operating Systems Review, Vol. 41, No. 4, pp. 83-
86, 2007.

[10] A. Alomair, L. Lazos, R. Poovendran, “Passive attacks on a
class of authentication protocols for RFID,” International
Conference on Information Security and Cryptology (ICISC
2007), South Korea, pp. 102-115, 2007.

[11] T. Li, R. Deng, “Vulnerability analysis of EMAP − an efficient
RFID mutual authentication protocol,” The 2nd International
Conference on Availability, Reliability, and Security
(AReS’07), pp. 238-245, Austria, 2007.

[12] H.-Y. Chien, “SASI: A new ultralightweight RFID
authentication protocol providing strong authentication and
strong integrity,” IEEE Transactions on Dependable and
Secure Computing, Vol. 4, No. 4, pp. 337-340, 2007.

[13] H.-M. Sun, W.-C. Ting, K.-H. Wang, “On the security of
Chen’s ultralightweight RFID authentication protocol,” IEEE
Transactions on Dependable and Secure Computing, Vol. 8,
No. 2, pp. 315–317, 2011.

[14] T. Cao, E. Bertino, H. Lei, “Security analysis of the SASI
protocol,” IEEE Transactions on Dependable and Secure
Computing, Vol. 6, No. 1, pp. 73–77, 2009.

[15] G. Avoine, X. Carpent, B. Martin, “Strong authentication and
strong integrity (SASI) is not that strong,” Workshop on RFID
Security (RFIDSec’10), Turkey, 2010.

[16] P. D’Arco, A. De Santis, “On ultralightweight RFID
authentication protocols,” IEEE Transactions on Dependable
and Secure Computing, Vol. 8, No. 4, pp. 548-563, 2011.

[17] K.-H. Yeh, N.W. Lo, “Improvement of two lightweight RFID
authentication protocols.” Information Assurance and Security
Letters, Vol. 1, pp. 6–11, 2010.

[18] D. Tagra, M. Rahman, S. Sampalli, “Technique for preventing
DoS attacks on RFID systems, “The 18th International
Conference on Software, Telecommunications, and Computer
Networks (SoftCOM’10), Croatia, pp. 6-10, Sept. 2010.

[19] Y. Tian, G. Chen, J. Li, “A new ultralightweight RFID
authentication protocol with permutation,” IEEE
Communications Letters, Vol. 16, No. 5, pp. 702-705, 2012.

[20] Z. Ahmadian, M. Salmasizadeh, M.R. Aref.,
“Desynchronization attack on RAPP ultralightweight
authentication protocol,” Information Processing Letters, Vol.
113, No. 7, pp. 205 – 209, 2013.

[21] D.-Z. Sun, Z. Ahmadian, Y.-J. Wang, M. Salmasizadeh, M.R.
Aref, “Analysis and enhancement of desynchronization attack
on ultralightweight RFID authentication protocol,” Cryptology
ePrint Archive (Technical Report) No. 2015/037, 2015.

[22] W. Shao-hui, H. Zhijie, L. Sujuan, C. Dan-wei, “Security
analysis of RAPP: An RFID authentication protocol based on
permutation,” Cryptology ePrint Archive (Technical Report)
No. 2012/327, 2012.

[23] N. Bagheri, M. Safkhani, P. Peris-Lopez, J. E. Tapiador,
“Weaknesses in a new ultralightweight RFID authentication
protocol with permutation-RAPP,” Security and
Communication Networks, Vol. 7, No. 6, pp. 945–949, 2014.

[24] U. Mujahid, M. Najam-ul-Islam, “Pitfalls in ultralightweight
RFID authentication protocol,” International Journal of
Communication networks and information Security, Vol. 7,
No. 3, pp. 169-176, 2015.

[25] L. Hanguang, G. Wen, J. Su, Z. Huang. "SLAP: succinct and
lightweight authentication protocol for low-cost RFID
system," Wireless Networks, pp. 1-10, 2016.

[26] U. Mujahid, M. Najam-ul-Islam, S. Sarwar. “A new
ultralightweight RFID authentication protocol for passive low
cost tags: KMAP,” Wireless Personal Communications, pp. 1–
20, 2016.

[27] M. Safkhani, N. Bagheri. “Generalized desynchronization
attack on UMAP: Application to RCIA, KMAP, SLAP and
SASI+ protocols,” Cryptology ePrint Archive (Technical
Report) No. 2016/905, 2016.

[28] G. Avoine, X. Carpent, J. Hernandez-Castro, "Pitfalls in
ultralightweight authentication protocol designs," IEEE

240
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

Transactions on Mobile Computing, Vol. 15, No. 9, pp. 2317-
2332, 2016.

[29] M. Akgün, U. Çaǧlayan, “On the security of recently proposed
RFID protocols,” Cryptology ePrint Archive (Technical
Report) No. 2013/820, 2013.

[30] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-
Tapiador, J. van der Lubbe, “Cryptanalysis of an EPC class-1
generation-2 standard compliant authentication protocol,”
Engineering Applications and Artificial Intelligence, Vol. 24,
No. 6, pp. 1061 – 1069, 2011.

[31] D.C. Ranasinghe, Networked RFID systems and lightweight
cryptography, Lightweight Cryptography for Low Cost RFID,
Springer, pp. 311–346, 2007.

[32] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-
Tapiador, A. Ribagorda, “Cryptanalysis of a novel
authentication protocol conforming to EPC-C1G2 standard,”
Computer Standards and Interfaces, Vol. 31, No. 2, pp. 372 –
380, 2009.

