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Abstract—Mutual authentication is essential to guarantee the 
confidentiality, integrity, and availability of an RFID system. One 
area of interest is the design of lightweight mutual authentication 
protocols that meet the limited computational and energy resources 
of the tags. These protocols use simple operations such as 
permutation and cyclic redundancy code for cryptographic 
purposes. However, these functions are cryptographically weak and 
are easily broken. In this work, we present a case against the use of 
these functions for cryptographic purposes, due to their simplicity 
and linear properties, by analyzing the LPCP protocol. We evaluate 
the claims of the LPCP resistance to de-synchronization and full 
disclosure attacks and show that the protocol is weak and can be 
easily broken by eavesdropping on a few mutual authentication 
sessions. This weakness stems from the functions themselves as 
well as the improper use of inputs to these functions. We further 
offer suggestions that would help in designing more secure 
protocols.  
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1. Introduction 
 

Radio Frequency Identification (RFID) systems are deployed 
in various industrial and academic applications. They are 
used in asset management systems, libraries, credit cards, 
and passports. These systems consist of tags that store unique 
identifying information about the objects being tracked, one 
or more readers that communicate wirelessly with the tags, 
and a backend database to store the information collected 
from the tags. The information in the database is 
continuously updated according to the responses from the 
tags.  
Passive RFID tags harvest the incident power from the 
reader signals and use it to run their circuitry and respond 
back to the reader. This form of energy harvesting supports a 
short communication range and limited computational power 
of the tags.  
A critical aspect to be considered with RFID systems is data 
privacy and integrity. Current RFID implementations have 
little provision to these necessary features. Thus, the system 
becomes vulnerable to various attacks that include tag 
cloning, tag tracking, information disclosure, and denial of 
service (DoS).  
In the past few years, researchers focused on proposing 
protocols that support mutual authentication between the 
readers and tags and maintain the privacy of secret 
information shared between these parties. For successful 
mutual authentication between the reader and the tag, both 
parties must possess the same secret encryption keys and use 
them in the private exchange of random numbers and the tag 
identifier (ID).  A mutual authentication session (hereupon 
referred to as the session) involves a sequence of challenge-
response exchanges using the secret keys and random 

numbers. The encryption operations must be chosen in line 
with the limited computational and energy capabilities.  
 Since the use of conventional ciphers, such as the Data 
Encryption Standard (DES) and Advanced Encryption 
Standard (AES), is not viable, several protocols were 
proposed based on the use of simpler functions. 
Ultralightweight protocols are based on simple bitwise, 
addition, and shift operations. These protocols are suitable in 
terms of their computational complexity but are weak from a 
cryptographic perspective. On the other hand, lightweight 
protocols use the same functions as those in ultralightweight 
protocols along with cyclic redundancy code (CRC) and 
pseudo-random number generators (PRNG). These two 
added functions are readily available on the tags that comply 
with the Electronic Product Code (EPC) Class 1 Generation 
2 standard  [1].  
Unfortunately, although these functions offer limited 
privacy, they are still being employed in various mutual 
authentication protocols. Since the CRC function is 
implemented on the RFID tags, it is widely employed as a 
possible replacement of more complex cryptographic 
functions. This poses a serious threat on the overall security 
of the system and the associated data exchanges.  
In this work, we present a case against the use of such 
functions for mutual authentication. This is done by 
highlighting the inherent weaknesses of the permutation and  
CRC functions. To that end, a detailed analysis of a recently 
proposed protocol called the Ultralightweight RFID 
authentication Protocol with CRC and Permutation (LPCP) 
 [2] is presented to show that it falls short of providing the 
claimed security features. Due to the improper usage of the 
CRC functions and the unique properties of the messages 
structure, two attacks are presented. The first is a de-
synchronization attack in which the key update process is 
manipulated such that the reader and the tag hold different 
keys. The second is a full disclosure attack that reveals all 
the secrets shared between the reader and the tag. 
Furthermore, we offer suggestions that would help in 
designing more secure protocols. 
The paper is organized as follows: Section 2 presents an 
overview of earlier attempts for secure ultralightweight and 
lightweight protocols and their weaknesses. This is followed 
by an overview and security analysis of the LPCP protocol in 
Section 3. Finally, the paper is concluded in Section 4. 
 

2. Related Work 
 

The early attempts of ultralightweight cryptography appeared 
in the Ultralightweight Mutual Authentication Protocol 
(UMAP) family. It consisted of the Lightweight Mutual 
Authentication Protocol (LMAP)  [3], Minimalist Mutual-



231 
International Journal of Communication Networks and Information Security (IJCNIS)                                           Vol. 9, No. 2, August 2017 

       
 

Authentication Protocol (M2AP)  [4], and the Efficient t 
Mutual Authentication Protocol (EMAP)  [5]. The main 
operations in these protocols are the XOR, AND, OR and 
addition. These protocols were shown to be vulnerable to de-
synchronization and full disclosure attacks  [6–11]. 
The Strong Authentication and Strong Integrity (SASI) 
protocol  [12] was proposed as an alternative to overcome 
these weaknesses. It added the rotation operation to the 
bitwise operations used in the UMAP family. The protocol 
was investigated thoroughly and several papers gave detailed 
attacks that resulted in de-synchronization  [13-14]. More 
importantly, a full disclosure attack with high probability of 
success by eavesdropping on 217 protocol runs was provided 
in  [15]. A detailed analysis of SASI in  [16] presented the de-
synchronization, ID disclosure, and full secret values 
disclosure attacks. 
The Gossamer protocol provided enhancements to overcome 
the vulnerabilities of its predecessors. It still was shown, 
however, that the de-synchronization problem was not 
solved. Active attacks that would result in de-
synchronization are detailed in [17-18]. 
One protocol that received attention is the RFID 
authentication protocol with permutation (RAPP)  [19]. This 
protocol extended the operations used in SASI by adding the 
permutation operation. The goal behind the permutation 
operation is to hide any bit relationships that result from 
bitwise operation. Similar to its predecessors, various attacks 
appeared and showed its inherent weaknesses. De-
synchronization attacks with a reasonable probability of 
success are given in [20-21]. Moreover, a detailed analysis in 
 [22] gave the steps to run a full disclosure attack using 230 
tag queries. This number of queries was hugely reduced 
down to 192 tag queries in an improved full disclosure attack 
in  [23]. A detailed analysis of these previous attacks is given 
in [24]. 
One recent protocol is the Succinct and Lightweight 
Authentication Protocol (SLAP) [25]. In this protocol, an 
ultralightweight operation, called conversion, is used as the 
basis for cryptographic operations. The authors present a 
detailed security analysis and claim that the protocol is 
resistant to de-synchronization, replay, and tracing attacks.  
SLAP was followed by an even newer protocol called the 
pseudo-Kasami code based Mutual Authentication Protocol 
(KMAP) [26] that avoids the use of simple bitwise 
operations and, instead, uses a primitive operation that 
enhances the diffusion properties to make the secrets 
irreversible. In the analysis part, it is claimed that the 
protocol resists all kinds of attacks.   
The work in [27] provided an analysis of SLAP and KMAP 
and presented a generalized case of a de-synchronization 
attack that applies to both protocols. The attack shows that 
the de-synchronization attack is still possible even though the 
tag and the reader hold copies of the old and new secret 
values.  
As a general observation, most of the protocols that are 
based on lightweight operations were shown to be 
susceptible to attacks due to the inherent weaknesses in their 
cryptographic operations. The work in [28] discusses the 
typical mistakes that appear in the design of protocols and 
provides guidelines to be followed in order to design and 
evaluate the validity of mutual authentication protocols.  

Recently, Gao et al.  [2] presented an analysis of the RAPP 
protocol and demonstrated a de-synchronization attack by 
tampering with the exchanged message. As a solution to the 
vulnerability, the authors proposed a new protocol called 
LPCP. This  protocol is a lightweight protocol (the authors 
call it approximate ultra-lightweight) that uses the CRC 
function along with the operations defined for the RAPP 
protocol. The authors verified the protocol using the Simple 
Promela Interpreter and claimed that the LPCP protocol 
provides confidentiality and is resistant to de-
synchronization, tracing, replay, and full disclosure attacks.  
The work in  [29] presented a de-synchronization attack by 
impersonating a valid reader using eavesdropped messages 
from earlier sessions. We further analyze the protocol and 
present two attacks with a success probability equal to one. 
 

3. Security analysis of LPCP protocol 
 

The message exchange structure and the updates for LPCP 
are shown in Fig. 1. The tag stores the Index-pseudonym 
(IDS) along with three keys , )( ,  L M HK K K . The reader 

maintains two copies of these parameters labeled as 

, )(  , old old old old
L M HIDS K K K  and ( , , , )new new new new

L M HIDS K K K . 

The designation of new represents the updated values of the 
parameters whereas old represents the values from the 
previous session. 
The reader initiates a session by sending a Hello message to 
the designated tag. In return, the tag responds with its IDS . 
The reader uses the received IDS  to retrieve the parameters 
associated with it from the backend database and then 
generates a random number 1R  which is used in computing  

messages α  and β . When the tag receives these messages, 

it extracts 1R  from  α  and then computes its own version of 

β . A match indicates that the reader is authentic. The tag 

then sends γ  to the reader which, in turn, uses it to 
authenticate the tag.  
Next, the reader generates a new random number, 2R  and 

computes messages δ  and ζ . Furthermore, the reader 

checks if the received newIDS IDS=  then an update of the 
keys and IDS  value takes place. The tag extracts 2R  from 

δ  and verifies it using ζ . If no anomaly is detected then the 
tag performs the same update to its parameters. 
 

 

In this section, a detailed security analysis of the LPCP 
protocol is given by presenting two attacks. The first is a 
novel de-synchronization attack in which the reader and tag 
will hold mismatching keys and will not be able to prove 
their identities to each other. The second attack leads to the 
full disclosure of all the secrets shared between the reader 
and the tag. This allows the attacker to track the tag, 
impersonate the tag in responding to the reader or vice versa, 
and to maintain possession of the secrets values, even after 
the update that takes place at the end of each session. 

Preliminaries 

To lay the foundation for presenting the attacks, we 
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Figure 1. The LPCP message exchange [2] 
 

discuss the two main cryptographic functions used in LPCP: 
the CRC and permutation (Per) operations. Then we present 
observations related to the message structure and these 
functions. 
There are various implementations of the 16-bit CRC 
functions that differ based on the initial value and the 
polynomial. The CRC function used on EPC compliant tags 
produces a 16-bit value based on the input value and the 

generator polynomial 16 12 5 1x x x+ + +  [1]. For illustration 
purposes, we adopt the CRC-CCITT (XModem) in which the 
computation of the CRC is done by initializing a register 
with 0 0000x  and then clocking the data one bit at a time to 
be encoded (from MSB to LSB). Once all bits have been 
clocked, the result in the register is taken as the CRC value. 
Note, however, that the discussion in this paper would be 
applicable to any other variant of the 16-bit CRC 
function.CRC functions are not suitable for cryptographic 
operations due to their linear properties  [30-32]. The 
cryptanalysis presented provides a further case against 
adopting these functions for cryptographic purposes. 
As for the second function, Per, the definition is as follows 
[19]: 

For two n-bit strings, X  and Y , in the form 

1 2      ,   {0,1},  1,  2,   ,  n iX x x x x i n= … ∈ = …  

1 2      ,   {0,1},  1,  2,   ,  n iY y y y y i n= … ∈ = …  
The Hamming weight of Y , ( )wt Y , is  (0  )m m n≤ ≤  and 

1 2  1k k kmy y y= =… = =  and 1 2  0km km kny y y+ += =… = =  

where 1 1 2k k km n≤ < < … < ≤  and 

1 1 2km km kn n≤ + < + < … < ≤ , then 

1 2 1 2 1( , )        k k km kn kn km kmPer X Y x x x x x x x− + += … …  (1) 

As an example, assume we have two 8-bit arrays, 
1001 0011X =  and 11101 010Y =  then 
( , ) 10001 101Per X Y = . The details are shown in Fig. 2. 

 
Figure 2. Permutation example 

 

From the example, we see that we start from the leftmost 
position of Y  and scan for the values of 1. Whenever a 
match is found, the corresponding bit of X  is taken. When 
the rightmost bit is reached, we scan Y  in the opposite 
direction but this time we look for a match with zero and 
copy the corresponding bit. 
Observation 1:  The way the CRC function is used in the 
LPCP protocol makes it a reversible function. 
The CRC function may be used with any size of input data. 
However, with the LPCP protocol, the authors restricted the 
size of the inputs to 16 bits. This is a serious flaw because 

there will be 162  possible inputs with 162  possible outputs. 
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By examining all input combinations and the resulting 
outputs, we find that the CRC becomes a one-to-one 
function. In other words, given ( )y CRC x=  it is possible to 

find 1 ) (x CRC y−= . 

Observation 2: Given 

1 2 3 2 1( , )    n n nA Per X Y a a a a a a− −= = …       then  

1 2 3 2 1( , )   n n nB Per X Y a a a a a a− −= = …   (2) 

Where Y  is the complement of Y .  
To illustrate this observation, we consider a case of 4-bit 

arrays where 1 2 3 4    X x x x x=  and we find A  and B  for all 

possible values of  Y  and Y , as shown in Table 1. Note that 
each entry in column A  is a mirror image of that in column 
B . This can be extended to any array size, n. 

Observation 3: For an n-bit string X  with a Hamming 
weight of X , ( )  ,  (0  )wt x m m n= ≤ ≤   

1 2 1 2 1( , )      k k km kn kn km kmA Per X X x x x x x x x− + += = … …   (3) 

Where , 

1 2  1k k kmx x x= = … = = and   1 2  0km km knx x x+ += = … = =  

Table 1. Possible Permutations of  X  Based on Y  and  Y  

Y  Y  ( , )A Per X Y=  ( , )B Per X Y=  

0000 1111 4 3 2 1   x x x x  1 2 3 4   x x x x  

0001 1110 4 3 2 1   x x x x  1 2 3 4   x x x x  

0010 1101 3 4 2 1   x x x x  1 2 4 3   x x x x  

0011 1100 3 4 2 1   x x x x  1 2 4 3   x x x x  

0100 1011 2 4 3 1   x x x x  1 3 4 2   x x x x  

0101 1010 2 4 3 1   x x x x  1 3 4 2   x x x x  

0110 1001 2 3 4 1   x x x x  1 4 3 2   x x x x  

0111 1000 2 3 4 1   x x x x  1 4 3 2   x x x x  

1000 0111 1 4 3 2   x x x x  2 3 4 1   x x x x  

1001 0110 1 4 3 2   x x x x  2 3 4 1   x x x x  

1010 0101 1 3 4 2   x x x x  2 4 3 1   x x x x  

1011 0100 1 3 4 2   x x x x  2 4 3 1   x x x x  

1100 0011 1 2 4 3   x x x x  3 4 2 1   x x x x  

1101 0010 1 2 4 3   x x x x  3 4 2 1   x x x x  

1110 0001 1 2 3 4   x x x x  4 3 2 1   x x x x  

1111 0000 1 2 3 4   x x x x  4 3 2 1   x x x x  

 
This means that the first m  bits of ( , )Per X X  will be 1’s 

and the remaining  n m−  bits will be 0’s. 
To illustrate this point, consider an example where 

10001011X =  then ( , ) 1111 0000Per X X =  

Finally, we use the theorem below  (detailed proof is given 
in [29]). 

Theorem 1: For any CRC and for any n-bit strings a and 
b, it holds that 

( ) ( ) ( )CRC a b CRC a CRC b⊕ = ⊕  (4) 

De-synchronization attack 

The LPCP protocol was originally proposed with the goal of 
overcoming the threat of a de-synchronization attack. 
However, it was shown in [29] that the LPCP is still 
vulnerable to de-synchronization within three sessions by 
replaying older messages.  

In this section, we show a new de-synchronization attack 
the exploits the weaknesses inherent in the CRC and Per 
functions. A major enhancement in this attack is that it 
succeeds in one session only. Furthermore, the updated IDS 
will be the same for both the tag and the reader which would 
make it harder to identify the attack. 

The premise of the attack is to influence the tag to accept 
false random numbers instead of those generated by the 
reader. As such, when the update process takes place, the 
reader and the tag will use different input values for the 
update. For this to happen, the attacker does not necessarily 
need to know the keys.  

First, we simplify the equation of β  using a property 

from [22] which states that 
( , ) ( , )  ( , )Per X Y Per Z Y Per X Z Y⊕ = ⊕  (5) 

Thus, message β  can be presented as 

 1, (( ( )))M H L MCRCCRC Per K K K K Rβ = ⊕ ⊕ ⊕  (6) 

From observation 1, we deduce that 
1

1( ) ( , ( ))M H L MT CRC Per K K K CRC K Rβ−= = ⊕ ⊕ ⊕  (7) 

For CRC-CCITT (XModem), we know that 
(0 84 ) 0CRC x CF xFFFF= . Thus, we take α  sent by the 

reader and modify it to ' 0 84x CFα α= ⊕ . The tag extracts 
the random number from 'α  and its value will be 

'
1 1 0 84R R x CF= ⊕ . For the attack to succeed, we need to 

replace β  with a new message (we call it 'β ) using the 

value of '
1R .  

'
1'  ( ( ,  ( )))M H L MCRC Per K K K CRC K Rβ = ⊕ ⊕ ⊕   (8)    

By considering theorem 1 we find that 
'
1 1( ) ( 0 84 )M MCRC K R CRC K R x CF⊕ = ⊕ ⊕  

1                           (  ) (0 84 )MCRC K R CRC x CF= ⊕ ⊕  

                          1 ( ) 0MCRC K R xFFFF= ⊕ ⊕  (9) 

This means negating all the bits of  1( )MCRC K R⊕ , thus 
'
1 1( ) ( )M MCRC K R CRC K R⊕ = ⊕ ,   

By substituting in (8) 

1'  ( ( ,  ( ) 0 ))M H L MCRC Per K K K CRC K R xFFFFβ = ⊕ ⊕ ⊕ ⊕                                                 

 (10) 
From observation 2, we note that 

1( ) 0 ), (M H L MCRCPer K K K K R xFFFF⊕ ⊕ ⊕ ⊕  is the 

mirror image of T . Thus, to find β ′ , we take the mirror 

image of T  (call it ')T  and then apply it to the CRC 

function   
( )CRC Tβ ′ = ′   (11) 

The tag receives 'α  and β ′  then accepts '
1R  as the 

random number, and generates the message γ'  
' '
1 1γ'  ( ( ( ), ( ))H MCRC Per CRC K R CRC K R= ⊕ ⊕ ⊕  

      '
1( ( ), ( )))L M LPer CRC K K CRC K R⊕ ⊕  (12) 

We need to convert γ'  to the original γ  such that the 

reader will authenticate the tag without recognizing the 
mismatched random numbers. For this to happen, the 
message should be based on the value of 1R . 

Given 

  ( )1' γ'G CRC−=   
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           ' '
1 1( ( ), ( ))H MPer CRC K R CRC K R= ⊕ ⊕  

                 '
1( ( ), ( ))L M LPer CRC K K CRC K R⊕ ⊕ ⊕  (13) 

Which can be represented as ' '
1 2G G G′ = ⊕  , where 

' ' '
1 1 1( ( ), ( ))H MG Per CRC K R CRC K R= ⊕ ⊕   (14) 
' '
2 1( ( ), ( ))L M LG Per CRC K K CRC K R= ⊕ ⊕   (15) 

We need to find the value  

1 2G G G= ⊕  

    1 1( ( ), ( ))H MPer CRC K R CRC K R= ⊕ ⊕  

       1( ( ), ( ))L M LPer CRC K K CRC K R⊕ ⊕ ⊕  (16) 

By examining (14), we see that 
' ' '
1 1 1( ( ), ( ))H MG Per CRC K R CRC K R= ⊕ ⊕  

 1 1    ( ( ), ( ) 0 )H MPer CRC K R CRC K R xFFFF= ⊕ ⊕ ⊕  (17) 

This means that we find 1G  by complementing all the bits 

of '
1G  and then taking their mirror image. 

Also, by examining (15), we see that 
' '
2 1( ( ), ( ))L M LG Per CRC K K CRC K R= ⊕ ⊕  

  1 ( ( ), ( ) 0 )L M LPer CRC K K CRC K R xFFFF= ⊕ ⊕ ⊕  (18) 

This indicates that we find 2  G by taking the mirror image 

of the bits of '
2G .  

Since the mirror image of both '1G  and '
2G  is taken then 

the relative positions of adjacent bits will be the same. As a 
result, to find the original value of 1 2G G G= ⊕ , we take the 

mirror image of 'G and then complement the result (due to 
the complement used with 1G ). 

Finally, the value of γ  is found as ( )CRC Gγ =  and then 

sent to the reader. 
The reader verifies γ  and accepts the tag as authentic, it 

then generates the random number 2R  and sends the 

messages δ  and ζ . However, we modify δ  to 'δ  (Similar 

to the case of α  and 'α ) so the tag will extract '
2R  from it. 

As a final step, we need to convince the tag to accept the 
modified random number by sending ζ'  instead of ζ . 

We follow a similar approach in updating ζ . First we take  

( )1  ζZ CRC−=  

     1 2 ( ( ), ( ))H MPer CRC K R CRC K R= ⊕ ⊕ ⊕   

        2 1( ( ), ( ))M LPer CRC R K CRC K R⊕ ⊕   (19) 

Consider that 

1 1 2( ( ), ( ))H MZ Per CRC K R CRC K R= ⊕ ⊕  (20)  

2 2 1( ( ), ( ))M LZ Per CRC R K CRC K R= ⊕ ⊕   (21) 

We need to modify 1Z  and 2Z  to match with the values of 
'
1R  and '

2R . As such,  
' ' '
1 1 2( ( ), ( ))H MZ Per CRC K R CRC K R= ⊕ ⊕  (22)  
' ' '
2 2 1( ( ), ( ))M LZ Per CRC R K CRC K R= ⊕ ⊕  (23) 

For both (22) and (23), we see that the results are 
complemented and their mirror image is taken. Thus taking 

' '
1 2'Z Z Z= ⊕  results in eliminating the effect of the 

complements. What is left is the effect of taking the mirror 
image of Z  (i.e.; 'Z  is the mirror image of Z ) 

And   ζ ( )CRC Z′ ′=  

The tag accepts the values of the random numbers. Now, 
when both parties attempt to run their updates the results will 
not match. 

On the reader side 

1 2( ( , )  )new
H M LIDS CRC Per IDS R R K K K= ⊕ ⊕ ⊕ ⊕  (24) 

1 ( ( , )  )H H MK CRC Per K R K= ⊕   (25) 

2 ( ( , )  )M M HK CRC Per K R K= ⊕  (26) 

1 2( ( , ) )L LK CRC Per K R R IDS= ⊕ ⊕  (27) 

On the tag side 
' '
1 2( ( , ) )H M LIDS CRC Per IDS R R K K K= ⊕ ⊕ ⊕ ⊕  (28) 

'
1( ( , )  )H H MK CRC Per K R K= ⊕  (29) 

'
2 ( ( , )  )M M HK CRC Per K R K= ⊕       (30) 

' '
1 2( ( , ) )L LK CRC Per K R R IDS= ⊕ ⊕   (31) 

An interesting point is that that both the reader and the tag 

will still have similar IDS values because ' '
1 2 1 2R R R R⊕ = ⊕ . 

However, the keys HK  and MK  will differ and the next 

session will not succeed.  
We illustrate this attack by an example with reduced 

length of 16-bit strings. Table 2 lists the initial values shared 
between the reader and the tag. We label them with a 
superscript of R  or T  to indicate whether it is a reader or a 
tag value; respectively. 

 
Table 2. Initial Values of Shared Parameters Between the 

Reader and the Tag 

Reader Side Tag Side 

RIDS  0xBEAF TIDS  0Xbeaf 

R
HK  0xE5AB T

HK  0xE5AB 

R
MK  0xA9AF T

MK  0xA9AF 

R
LK  0xA9AD T

LK  0xA9AD 

R
1R  0x2EA2 T

1R  Unknown yet 

R
2R  0x5555 T

2R  Unknown yet 

The reader initiates by sending the Hello message and 
receives 0IDS xBEAF= . The reader uses this IDS  value to 
acquire the shared keys from the database and then generates 

the random number 1
RR . The reader sends  

0 8xFE Eα =  and 0 9718xβ =  

These messages are modified by the attacker as 
0 84 0 7 41x CF x Aα α ⊕ =′ = . Also, β ′  is computed by first 

taking 1   0 9( ) 4T CRC x D Bβ−= =  

The mirror image of the value of T  is taken to find 
0 2 9T xD B′ = .  and ( ) 0 45 7CRC T x Bβ =′ ′= . The values of 

' α and β ′ are sent to the tag, which uses ' α to extract 

1 0 6TR xAA D= .  and verifies it by comparing its local value 

of β ′  with that received.  

Next, the tag generates γ 0 1x CAE′ =  and the attacker 

modifies it by finding 1(' 0 62) γG CRC xDC− ′= = . From the 
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discussion above, we need to take the mirror image of the 
bits and then invert them to find 0 9 4 G xB C= and 
γ ( ) 0 3 5CRC G x D D= = . The reader uses the received value 

of γ′  and compares it against its local value and then 

considers the tag authentic. The reader then generates 2
RR  

and sends 0 8 6x FECδ =  and ζ 0x515C= . 

The attacker modifies δ  to find 0 0 0 29x x Bδ =′  and ζ'  

by first taking 
1 ζ( )  0 668Z CRC xC−= =  

The mirror image 0 1663Z x′ =  and its corresponding 

ζ ( ) 0 510CRC Z xF=′ ′= . The tag extracts 2 0 19TR xD A=  

from these messages.  
Thus, the reader performs its update on its stored values 

using 1 0 2 2RR x EA=  and 2 0 5555RR x=  while the tag uses 

the values 1 0 6TR xAA D=  and 2 0 19RR xD A= . 

The new values after the session is completed are shown 
in Table 3. Note that although both tags have updated to the 
same IDS value, there is a mismatch between the values of 

HK  and MK   held by the tag and those held by the reader. 

This indicates that no future sessions would succeed in 
mutual authentication. 

This attack can be easily extended to cover the case of 
EPC compliant tags of 96-bit length. The only difference in 
that all strings would be divided into six 16-bit substrings to 
be processed as shown above. This can be done in one 
protocol run, similar to the 16-bit example. 
 

Table 3. New Values of Shared Parameters Between Reader 
& Tag 

Reader Side Tag Side 

RIDS  0x7A22 TIDS  0x7A22 

R
HK  0x170C T

HK  0x45C1 

R
MK  0x221E T

MK  0xE29A 

R
LK  0xB959 T

LK  0xB959 

R
1R  0x2EA2 T

1R  0xAA6D 

R
2R  0x5555 T

2R  0xD19A 

Full disclosure attack 

The full disclosure attack is more elaborate with the goal of 
finding all the secret information shared between the reader 
and the tag. The attacker deliberately forces the current 
session not to be completed by blocking the message γ  from 

reaching the reader. In such a case, no update will take place 
(thus the same secret information will be used). However, 
per the protocol specification, a new value for 1R  will be 

generated for each subsequent session.  
The following notation is used in presenting the attack 

 iX  Bit string X  sent in session i , where 
 { , , , , , }X Tα β γ δ ξ∈   

[ ] jX  The jth bit of string X  

1
iR  and  2

iR  Random numbers generated for session i  

[0] j  An n-bit array of all 0’s except at bit 
position j  

We run the attack in two steps. In the first step, we capture 
messages from several sessions for offline analysis. The 
second step involves an active attack phase where the 
messages are manipulated in order to reveal more 
information about the secret keys.  

Step 1: Message capture and offline analysis 
By examining (6) and (7), we see that for any two sessions 

i  and j , the values of iα  and iβ  will differ from jα  and 
jβ . With all secret keys constant, this change depends 

solely on the values 1
iR  and 1

jR .  

1( ( , ))  M HCRC Per K K Rα = ⊕  (32)

1 ( ( , ( )))M H L MCRC Per K K K CRC K Rβ = ⊕ ⊕ ⊕   (33)    

One fact about the permutation operation is that 
( ( , )) ( ( , ))wt Per X Y wt Per X W= . This is because we only 

change the positions of the bits of X  without any 
substitution. The same can be applied to (33) where 

 1( ( , ( )))i
M H L Mwt Per K K K CRC K R⊕ ⊕ ⊕ = .  

1( ( , ( )))j
M H L Mwt Per K K K CRC K R⊕ ⊕ ⊕   (34) 

Consider the scenario where the attacker has captured the 

tuples 1 1, α β and , i iα β ,  for any  2i ≥ . Thus, we have: 

1 1
1 ( ( , ))  M HCRC Per K K Rα = ⊕  (35) 

1 1
1 ( ( , ( )))M H L MCRC Per K K K CRC K Rβ = ⊕ ⊕ ⊕   (36) 

1 ( ( , ))  i
M H

iCRC Per K K Rα = ⊕  (37)

1 ( ( , ( )))i
M H L M

iCRC Per K K K CRC K Rβ = ⊕ ⊕ ⊕   (38) 

By taking  
1

1
1 1( ( , ))   ( ( , ))  

i

i
M H M HCRC Per K K R CRC Per K K R

α α⊕

= ⊕ ⊕ ⊕
  

1 1
1 1 1 1      i i i iR R R R= ⊕ = ∆ → = ⊕ ∆   (39) 

And substituting 1
iR  in (38), we have  

1
1 ( ( , ( )))i i

M H L MCRC Per K K K CRC K Rβ = ⊕ ⊕ ⊕ ⊕ ∆             

    1
1  ( ( , ( ) ( )))i

M H L MCRC Per K K K CRC K R CRC= ⊕ ⊕ ⊕ ⊕ ∆   

   (40) 
And since the effect of the outer CRC  operation in β  can 

be reversed based on observation 1, we get 
1 1 1) (T CRC β−=  

     1
1 ( , ( ))M H L MPer K K K CRC K R= ⊕ ⊕ ⊕   (41) 

1( ) i iT CRC β−=  

  1
1( , ( ) ( ))i

M H L MPer K K K CRC K R CRC= ⊕ ⊕ ⊕ ⊕ ∆  (42) 

The interpretation of this difference between (41) and (42) 
is that the bits of M H LK K K⊕ ⊕  are permuted by 

( )1
1 )(  MCRC K R CRC⊕ ⊕ ∆  instead of just 1

1( )MCRC K R⊕ . 

When ( )[ ] 0 , 1, 2,  , jCRC j n∆ = = … , then 

1 1
1 1( )[ ( ) [ ( )] ]M j M jCRC CRCK R CRC K R⊕ ⊕ ∆ = ⊕  and the 

permutation will not be affected. However, when 
[ ( )] 1,jCRC ∆ =  the result of 

1
1[ ( ) ( )]M jCRC K R CRC⊕ ⊕ ∆ will be inverted and it will 
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affect the result of the permutation operation. This bit 
inversion is very useful in reversing the result of the 
permutation to find its two inputs. The logic behind this is 
that if the bit was originally 1 and its corresponding bit, 
[ ]M H L jK K K⊕ ⊕ , was placed at position h  in the result of 

the permutation, then when we invert the bit to 0 its 
corresponding bit would be placed at position ,k  where 

k h> . The same logic applies if we invert the bit from 0 to 1 
the bit would be moved from position h  to position k  with 
h k> .  

We employ this idea to find the bits of M H LK K K⊕ ⊕  

and 1
1( )MCRC K R⊕ . By considering the leftmost bit 

0[ ]M H LK K K⊕ ⊕ , there are two possible positions for this 

bit to occupy in T , 0[ ]T  if 1
1 0[ ( )] 1MK RCRC ⊕ = or [ ] nT  if 

1
1 0[ ( )] 0MK RCRC ⊕ = . Thus, if we invert bit 
1

01[ ( )]MK RCRC ⊕  then either 0[ ]T  will appear as [ ] nT  

(meaning that 1
01[ ( )]MK RCRC ⊕ was originally 1) or [ ] nT  

will appear as 0[ ]T  ( 1
01[ ( )]MK RCRC ⊕ was originally 0). 

From this, we have determined the value of 
1

01[ ( )]MK RCRC ⊕  by the change of position and also we 

have determined the value of [ ]0M H LK K K⊕ ⊕  because 

that is the value of the bit [ ] iT  that got affected by the 

inversion. 
Once we know the value at the position 0, we can proceed 

iteratively from position 1 up to position 1n − . At the end of 
this step, we will have several possible values of 

M H LK K K⊕ ⊕  and 1
1MK R⊕ . In themselves, they  do not 

expose the values of the individual keys but are used in the 
second step of the attack.  

To illustrate the steps of the offline analysis, we use a 
reduced size example with the same initial values from Table 
2. The goal is to find M H LK K K K= ⊕ ⊕  and 

1
1( )MC CRC K R= ⊕  based on the differences between 

session 1 and its subsequent sessions.  

Initially, the attacker captures 1α  and 1β  which are 

created based on the keys and the random number 1
1R . 

Message 1γ  is stored by the attacker and blocked form the 

reader to force it to generate a new random number, 2
1R , and 

its corresponding 2α  and 2β . The process is repeated 

several times until we have a sufficient set of iα  and iβ  

messages. Table 4 lists the values of iα  and iβ  for 7 

protocol sessions generated by implementing the protocol in 
C code. 

To find 0[ ]K , we consider all cases for which 

0[ ( )] 1iCRC ∆ = . This applies to sessions 2 and 7. By 

comparing 1T  with 2T  and 7T , the attacker can extract 
some information regarding the unknown bits. 

Considering 1 9 4 10011 101 01001 011 T D B= =  and 
2 565 1110 0101 0110 0101T E= = , we see that 1 2

0 15[ ] [ ]T T=  

and also 1 2
15 0[ ] [ ]T T= . Thus, it is not possible to determine 

the effect of the bit flip of 0[ ( )]iCRC ∆  because either 1
0[ ]T  

has become 2
15[ ]T  or 1

15 [ ]T has become 2
0[ ]T . However, if 

we consider Fig. 3, we observe that 1 7
0 15[ ] [ ]T T≠  and 

1 7
15 0[ ] [ ]T T= . This leads to the conclusion that 1 15[ ]T  must 

have changed its position and became 7
0[ ]T . In other words, 

the bit which was originally permuted with a [ ]0
C = 0 to 

appear as the 1
15[ ]T  has now been permuted with a 1 to 

appear as the 7
0[ ]T . 

To confirm this result, assume that the bit was originally 

permuted with [ ]0
1C = , instead of 0. This would mean that 

the bit should appear as 1 0[ ]T  and when the permuting bit is 

flipped, [ ]0
1C = , it should appear as 7

15[ ]T . However, since 

1 7
0 15[ ] [ ]T T≠ , this confirms that the assumption is incorrect 

and asserts the conclusion that [ ] 1
150

[ ] 1K T= =  and 

[ ]0
0C = . 

 
Figure 3. Bit transition after flipping 0[ ( )]iCRC ∆  

Next, to find the bits 1[ ]K  and 1[ ]C , the attacker considers 

the cases for which 1[ ( )] 1iCRC ∆ = . The sessions of interest 

are 4, 5, and 6. Not all cases would yield a result but by 

considering Fig. 4 to examine 1 T  and 4T . 

Note that 1
15[ ]T  is set to 1 and since 

[ ] [ ]4
00 0

[ ( )]C CRC C⊕ ∆ = , then the permutation of that bit 

for both strings will not be affected (i.e.; 1 4
15 15[ ] [ ]T T= ). 

For illustration purposes, all known bits are shown 
highlighted. 

 
 

TABLE 4. Values of Captured Messages iα  and iβ  and their Corresponding i∆  

Session (i) iα  iβ  1( )i iT CRC β−=  1i iα α∆ = ⊕  ( )iCRC ∆  
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1 0xFE8E 0x9718 0x9D4B ---  
2 0x7EB6 0xD344 0xE565 0x8038 0xAAC3 
3 0x76B6 0xAAF7 0xD58D 0x8838 0x256A 
4 0x34B6 0x72CB 0x34D7 0xCA38 0x4EC4 
5 0x342C 0x59D3 0x965B 0xCAA2 0x6C37 
6 0x8579 0x0F91 0x2B2F 0x7BF7 0x4B5B 
7 0x8D7E 0x7A8E 0xFC64 0x73F0 0xB215 

 

 
Figure 4. Bit transition after flipping 1[ ( )]iCRC ∆  

Our interest now is on bit positions 0 and 14.  Note that 
1 4

14 0[ ] [ ]T T≠  while 1 4
0 14[ ] [ ]T T= . This leads to the 

conclusion that 1
0[ ]T  must have changed its position and 

became 4
14[ ]T . In other words, the bit which was originally 

permuted with [ ]1 1C =  to appear as 1
0[ ]T  has now been 

permuted with a bit 0 to appear as the 4
14[ ]T . This means that 

the value of the bit [ ] 1
01

[ ] 1K T= =  and that it was originally 

permuted with [ ]1 1C = . 

The same result could be obtained by considering 1 T  

along with 6 00101 101 00101 111T = .  
Up to this point, we know the first two bits of  
 K =  1   1 
C =   0  1 
The process is continued to find the bits at position 2. By 

taking session 2, and knowing that 2( ) 0 3CRC xACC∆ = , 

then [ ] 2
0,10,1

[ ( )] 01 10 11C CRC⊕ ∆ = ⊕ = . Thus, 0,1[ ]K  will 

be permuted with 11 to yield the first 2 bits of 2T , 2
0,1[ ]T . 

 
Figure 5. Bit transition after flipping 2[ ( )]iCRC ∆  

From Fig. 5, 1 2

14 2
T T   =   

 and 1 2

1 15
T T   ≠   

 and we 

conclude that [ ] 1
2 14

1K T = = 
 and this bit was permuted 

with [ ]2
0C = , giving 

K =  1   1   1 
C =   0  1    0 
The same procedure is repeated to find all the remaining 

bits. Note, however, that in some cases we may not be able 
to use the procedure to find a conclusive result. For example, 
when considering position 8, the applicable sessions are 2 
and 4. We notice that for none of the sessions produces the 

case where  1[ ] [ ]ih jT T=  and 1[ ] [ ]ik lT T≠ . In such a case, 

there are two options, either we capture more messages or 

examine the case when bit 8[ ( )] 0iCRC ∆ = . Looking for a 

case for which the bits on the boundaries are equal and this 
would give us  8[ ] .K  

By studying the case of 3T  in Fig. 6, the boundary bits 
3

5[ ]T  and 3
13[ ]T  are equal. Regardless of the initial position 

of these bits, we can safely say that 
3 3

8 5 13[ ] [ ] [ ] 1.K T T= = =  

Furthermore, from  1 1001110101001011T = , we see that 

the boundary bits are 1
4[ ] 1T =  and 11

1[ ] 0T = . As such, we 

know that 8[ ]K  certainly appears as 1 4[ ]T . Hence, 8[ ] 1C = . 

 By proceeding with the steps, and getting to position 14, 

we have two bits only to consider 1 7[ ] 0T =  and 1
8[ ] 1T = . 

 
Figure 6. Bit transition after flipping 8[ ( )]iCRC ∆  

When these bits are swapped there will be no conclusive 
result to determine which of them is 13[ ]K or 14[ ]K . 

As a result, we have two possible values for K , denoted 
by 1K  and 2K  given along with the corresponding possible 

values of C ; respectively. 

1 111001011 0101 0 01  

01010011 101 00010

01010011 101 00011

K

C

C

=

=

=

          

2 111001011 0101 010

01010011 101 000 00

01010011 101 000 01

K

C

C

=

=

=

 

To summarize,  the results of the first step of the full 
disclosure attack are given in Table 5. 
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Table 5. Results of First Step of Full Disclosure Attack. 

M H LK K K⊕ ⊕  1
1( )MCRC K R⊕  1

1MK R⊕  

0xE5A9 
0x53A2 0x870D 
0x53A3 0x1A7C 

0xE5AA 
0x53A0 0xADCE 
0x53A1 0x30BF 

Step 2: Active attack by manipulating the random 
numbers 

Knowing M H LK K K⊕ ⊕  and 1
1MK R⊕  does not expose 

the values of the individual keys. However, we utilize them 

in the next step of the attack to manipulate 1α  and 1β  that 

were captured at the beginning. The goal behind this step is 

to convince the tag to accept a modified value for 1
1R  in a 

manner that would give more information about the secret 
values. Since we have four sets of possible values, as shown 
in Table 5, then this step needs to be repeated four times, 
once for each set. 

The attacker manipulates α  by XORing it with 1
1MK R⊕  

as shown in (43) 
1
1MK Rα α′ ⊕ ⊕=  

 1 1
1 1( , ))( hM MCRC Per K K R K R= ⊕⊕ ⊕  

 , )( )( hM MCRC Per K K K= ⊕    (43) 
When the tag receives α ′ , it extract the value of 

1
1 MR K= . 

Now, to find the corresponding 'β  that would be accepted 

by the tag, we take 
1
1 ( ( , ( )))M H L MCRC Per K K K CRC K Rβ = ⊕ ⊕ ⊕  (44)  

1( )T CRC β−=  

    1
1( , ( ))M H L MPer K K K CRC K R= ⊕ ⊕ ⊕   (45) 

By substituting 1
1 MR K= , 

' ( , ( ))M H L M MT Per K K K CRC K K= ⊕ ⊕ ⊕  

 ( , (0 0000))M H LPer K K K CRC x= ⊕ ⊕  

  ( , 0 0000)M H LPer K K K x= ⊕ ⊕   (46) 

This, as mentioned previously, indicates that 'T  is the 
mirror image of M H LK K K⊕ ⊕  which is already known. 

Hence, 
'  ( )CRC Tβ ′=   (47) 

When the tag verifies 'β , if will accept the value of  
1
1 MR K=  and proceed to generate  
1 1 1

1 1γ  ( ( ( ), ( )))H MCRC Per CRC K R CRC K R= ⊕ ⊕ ⊕                  

      1
1( ( ), ( ))L M LPer CRC K K CRC K R⊕ ⊕   (48)       

By substituting 1
1 MR K= , (9) is reduced to 

1γ  ( ( ( ), ( )))H M M MCRC Per CRC K K CRC K K= ⊕ ⊕ ⊕        

      ( ( ), ( ))L M L MPer CRC K K CRC K K⊕ ⊕   (49) 

Thus, 
1γ  ( ( ( ), (0 0000)))H MCRC Per CRC K K CRC x= ⊕ ⊕  

   ( ( ), ( ))L M L MPer CRC K K CRC K K⊕ ⊕    (50) 

From (50), we can find  

1 1 1( )γG CRC−=  

      ( ( ),0 0000)H MPer CRC K K x= ⊕ ⊕  

        ( ( ), ( ))L M L MPer CRC K K CRC K K⊕ ⊕   (51) 

 These values are used offline without any further message 
collection needed.  Based on observation 3, we see that  

( ( ), ( ))L M L MPer CRC K K CRC K K⊕ ⊕  will results in a 

string consisting of  m  ones and 16 m−  zeros, where m  
is the Hamming weight of ( )L MCRC K K⊕ . Note that this 

value is unknown to us but it will be one of 16 possible 
values (000 0, 1 00 0,1 10 0,1 11 0,1 11 1)K K K K K .  

Thus,  we take the value of 1G  and run it in a loop for which 
in each iteration we XOR it with one of the possible 16 
values to get the value of  ( ( ),0 0000)H MPer CRC K K x⊕  for 

that iteration. By taking the mirror image of these bits, we 
find the value of ( )H MCRC K K⊕  which can be easily 

converted to H MK K⊕ . 

Within the iteration, we run another loop that takes all 
possible values of 

HK  ranging from 0x0000 to 0xFFFF. 

From these values and 
H MK K⊕ , we can find the 

corresponding 
MK . And from the known 

M H LK K K⊕ ⊕  

we can further extract LK . Moreover, since we have the 

value of 1
1MK R⊕  then we can find the corresponding 11R . 

The procedure above yields 162  cases. For each case, we 

compute α  and compare it with 1α . If they do not match 
then we proceed to the next case. However, if a match is 
found then we verify the result by computing γ  and 

comparing the result with the stored value 1γ . There will 

only be one matching case which would give all the secret 
information.  

As mentioned earlier, there are four possible cases and 
when all of them are attempted offline only one solution will 
result. Moreover, Since this step is done offline, it can be 
easily computed on a machine in minimal time and 
complexity. 

Once this step is complete, we know MK , , HK , LK , and 

1
1R . To find the last unknown value, we wait for the reader 

to initiate a new session, j , and passively collect messages 

ja  and jb  from which we extracts 1
jR  and also captures 

jδ  and ζ j  from which we can easily compute 2
jR . At this 

stage, we have all the secret values and can update the set of 
keys after every successful session. Furthermore, we can 
impersonate a reader or a tag by falsifying messages based 
on the known secret values in our possession. 

The complexity of the attack is very low in terms of the 
number of messages collected and the time needed for the 
offline analysis. Even if the EPC tags are used for a size of 

96n =  bits, the complexity is still low. Since the strings 
will be divided into six substrings of 16-bits. For the first 
step of the attack, each substring will be analyzed separately 
from the others to yield four possibilities. For an attacker to 

manipulate a  and b , he will need to find a combination in 
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which the concatenation of the six substrings would be 
accepted by the tag. As such, the attacker will need to run 46 
= 212 cases instead of 4 with the reduced size example. Once 
that is done, the computation can be performed in which 
each substring is dealt with separately with a linear increase 
in the complexity compared to the reduced size example.  

 

4. Conclusion 
 

In this paper, we analyzed the LPCP protocol and presented 
two serious vulnerabilities that lead to desynchronization and 
full disclosure of the secret values shared between the reader 
and the tag. In particular, the use of CRC as a cryptographic 
function is not a suitable choice due to its linear properties. 
Furthermore, the permutation operation taken from the 
RAPP protocol was shown to be of little cryptographic value 
and easily reversible. The complexity of the attacks is very 
low in terms of number of captured messages and the offline 
computation time.  
For more secure constructions of protocols, it is 
recommended that the CRC function is not used. Protocol 
designers can make use of the PRNG functions available on 
the tags instead of the CRC. Short inputs of 16-bit length 
should be avoided to guarantee that no one-to-one 
relationship between the inputs and outputs is established. 
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