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Abstract: Spectral resources allocation is a major problem in 

cognitive radio ad hoc networks and currently most of the research 
papers use meta-heuristics to solve it. On the other side, the 
term parallelism refers to techniques to make programs faster by 
performing several computations in parallel. Parallelism would be 
very interesting to increase the performance of real-time systems, 
especially for the cognitive radio ad hoc networks that interest us in 
this work. In this paper, we present a parallel implementation on a 
multi-core architecture of dynamic programming algorithm applied 
in cognitive radio ad hoc networks. Our simulations approve the 
desired results, showing significant gain in terms of execution time. 
The main objective is to allow a cognitive engine to use an exact 
method and to have better results compared to the use of meta-
heuristics. 
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1. Introduction 
 

The rapid development of wireless communications 
increasingly leads to scarcity of spectrum due to the fixed 
policy of frequency allocation. To solve this lack of spectral 
resources, researchers thought to develop new wireless 
communication technologies such as cognitive radio (CR). 
CR is considered to be one of the most promising 
technologies for future wireless communication networks 
because it is based on the dynamic spectrum allocation and 
therefore makes it possible to use it more effectively. CR 
system uses its intelligence to optimize the user’s quality of 
service by adapting its transmission parameters. 
The idea of CR was officially presented in 1998 by Joseph 
Mitola III in a seminar at KTH, the Royal Institute of 
Technology, later published in an article by Mitola and 
Gerald Q. Maguire Jr in 1999 [1]. CR is a form of wireless 
communication in which a transmitter/receiver can 
intelligently detect which communication channels are in use 
and which are not, and can transfer to the unused ones. This 
allows optimum use of the available radio frequencies in the 
spectrum, whilst minimizing interference with other users 
[2]. 
In CR, there are two types of users: primary users (PU), 
those with assigned frequency bands and secondary users 
(SU) who do not have a license. These will be through CR 
allowed to use the free parts of the frequency bands of PUs 
without harmful interference. 
CR system requires four major functions that enable it to 
opportunistically use the spectrum [3]. These functions 
consist in the CR terminal’s main steps for spectrum 
management. They are: spectrum sensing, spectrum decision, 
spectrum sharing, and spectrum mobility. 

Parallel computing is a type of computation in which the 
execution of processes is carried out simultaneously. The 
term parallelism refers to techniques to make programs faster 
by performing several computations in parallel. This requires 
hardware with multiple processing units. Parallel computing 
is closely related to concurrent computing, they are 
frequently used together, and often conflated, though the two 
are distinct: it is possible to have parallelism without 
concurrency (such as bit-level parallelism), and concurrency 
without parallelism (such as multitasking by time-sharing on 
a single-core CPU) [4].   
Since the minimization of the task execution time in 
cognitive radio ad hoc networks (CRAHNs) is very 
important for increasing the performance of this type of 
network, we are interested in this work to the implementation 
of an exact method (dynamic programming) using multi core 
architecture in CRAHNs. We also implement a meta-
heuristic (cuckoo search) and compare it to our dynamic 
programming implementation in order to make a wider 
validation of our contribution. 
In this paper, we start by giving an overview on exact 
methods and meta-heuristics. We will focus, in particular on 
dynamic programming for the exact methods and cuckoo 
search for the meta-heuristics. We will then establish a state 
of the art on the use of dynamic programming and cuckoo 
search in communication networks. Then, we present our 
contribution in this paper which consists in implementing a 
parallel dynamic programming algorithm on a multi-core 
architecture applied in CRAHNs. We also implement cuckoo 
search and compare it to our dynamic programming 
implementation using threads. We conclude our work at the 
end of the paper. 

 

2. Resolution methods 
 

In the literature, there are 2 types of algorithms. Exact 
algorithms that find the optimal solution and can take an 
exponential number of iterations and approximate algorithms 
that produce a suboptimal solution and do not take an 
exponential number of iterations. 

 

2.1. Exact methods 
 

Exact methods such as branch and bound [5], cutting planes 
 [6] or dynamic programming, guarantee finding an optimal 
solution of a problem for an instance of finite size in a 
limited time and of prove optimality. 
In this article we will use dynamic programming and it is for 
this reason that we will present it in the following with a 
state of the art on its application in communication networks. 
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2.1.1. Dynamic programming 

Dynamic programming was first coined by Richard Bellman 
in the 1950s [7], a time when computer programming was an 
esoteric activity practiced by so few people. Back then 
programming meant "planning" and "dynamic programming" 
was conceived to optimally plan multistage processes. 
Dynamic programming is a powerful technique that can be 
used to solve many problems in time O(n²) or O(n3) for 
which a naive approach would take exponential time. 
Dynamic programming is a design paradigm that can be seen 
as an improvement or adaptation of the divide-and-conquer 
method except that unlike divide-and-conquer, the sub 
problems with dynamic programming will typically overlap. 
The effectiveness of this method is based on the principle of 
optimality stated by the mathematician Richard Bellman: 
"Every optimal policy is composed of optimal sub-policies". 
The design of a dynamic programming algorithm consists of 
four steps [8]: 
• Characterization of the structure of an optimal solution. 
• Recursive definition of the value of the optimal solution. 
• Ascending calculation of the value of the optimal 

solution. 
• Construction of the optimal solution from the information 

obtained in the previous step. 
For instance, we can say that finding the shortest path in a 
graph or the knapsack example are problems that can be 
solved using dynamic programming. 
The first property of dynamic programming corresponds to 
being able to write down a recursive procedure for the 
problem we want to solve. The second property corresponds 
to making sure that this recursive procedure makes only a 
polynomial number of different recursive calls. 

2.1.2. Application of dynamic programming in 
communication networks 

In what follows, we will cite some works that have been 
interested to the application of dynamic programming in 
communication networks. 
Fontes et al. have defined a dynamic programming approach 
to solve optimally the single-source incapacitated minimum 
cost network flow problem with general concave costs [9]. 
The new dynamic programming approach proposed by the 
authors does not based on the type of cost functions 
considered and on the number of nonlinear arc costs. 
Computational experiments were performed using randomly 
generated problems. The computational results reported for 
small and medium size problems indicate the effectiveness of 
the proposed approach. 

Fonoberova et al. presents an approach for resolving some 
power systems problems by using optimal dynamic flow 
problems [10]. The classical optimal flow problems on 
networks are prolonged and generalized for the cases of 
nonlinear cost functions on arcs, multicommodity flows, and 
time-and flow-dependent transactions on arcs of the network. 
All network parameters are pretended to be dependent on 
time. The algorithms for solving such kind of problems are 
developed by using special dynamic programming 
techniques based on the time-expanded network method 
together with classical optimization methods.  
Ilyas et al. have suggested the use of an operational and low-
complexity dynamic programming algorithm (DPA), which 

is used in conjunction with four different route discovery 
algorithms [11]. The authors accomplish complexity 
analysis, statistical evaluation of changes in power 
consumption rates effected, and verify spatial redistribution 
of energy consumption of sensors in the network. The results 
on multihop networks of 100 randomly placed nodes show 
that, on average, the two best performing variants of DPA 
yield a reduction of up to 28% and 36% in power 
consumption rate variance at the cost of raising average 
power consumption by 15% and 21%, respectively. 
Computational complexities of DPA variants range from 
O(N�) to O(N�), which is significantly lower than linear 
search of the solution space of O(N!�). Analysis by diffusion 
plots shows that DPA decreases power consumption of 
sensors that experience the highest power consumption under 
the shortest path routes.  
In the area of interest (CRAHNs), there are few research 
papers that have used dynamic programming. For example, 
Liang et al. have proposed a dynamic programming based 
power control algorithm with the consideration of primary 
user’s QoS by a rate loss constraint criterion [12]. In the 
suggested algorithm the occupancy for each subcarrier by 
primary users is modeled as a discrete-time Markov chain 
and the concept of rate loss constraint is used to guarantee 
primary user’s desired rate. Simulation results show that the 
proposed algorithm can obtain a maximum average data rate 
over a finite time horizon and effectively guarantee primary 
users’ QoS.  
Wang et al. have presented a novel power allocation 
algorithm to maximize the throughput under the bit error rate 
(BER) constraint and the total power constraint in cognitive 
radio [13]. Although water filling (WF) algorithm is the 
optimal power allocation in theory, it ignores the fact that the 
allocated power in use is discrete, and it doesn’t take the 
waste power into consideration. In the improved algorithm, 
the total power is asymmetrically quantized to apply to the 
practice and reduce the computation complexity before 
adopting the dynamic programming which is commonly used 
to solve the knapsack problem, so this improved algorithm is 
called as asymmetrically quantized dynamic programming 
(AQDP). Moreover, AQDP reused the residual power to 
maximize the throughput further. The simulation results 
show that AQDP has improved the transmit throughput of all 
CR users compared with the classical power allocation 
algorithms referred as WF in this paper.  
Gao et al. have discussed power and rate control schemes for 
a single cognitive radio channel in the presence of licensed 
primary radios (PRs) [14]. A dynamic programming based 
algorithm is proposed to maximize the long-term average 
rate for the CR link under constraints on the total energy 
budget and the CR-to-PR disturbance. In the suggested 
algorithm, the behavior of PRs is modeled as a two-state 
Markov chain. Based on such a model, the optimal power 
and rate control strategy for each time slot is derived, which 
is a function of the energy level at the beginning of current 
time slot and the previous behavior of PRs. Simulation 
results show that the proposed algorithm can lead to an 
important performance improvement in term of the long-
term average rate while keeping the probability of CR-to-PR 
disturbance below a given level. 
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2.2. Approximate methods  
 

Exact resolution methods ensure an optimal solution, but 
their use in practice is very rare because of their complexity. 
These methods can take a long time, especially when 
problems are large. In some cases, the user may prefer a 
reduced calculation time instead of an optimal solution. For 
this purpose, approximate resolution methods are applied in 
order to find an approximate solution to a problem and thus 
to speed up the resolution process. In the literature, we speak 
about heuristics and meta-heuristics. A heuristic comes from 
the Greek word "heureka" which means "to find". It is an 
approximate method that seeks good solutions that are close 
to optimality in polynomial time. Faced with the difficulties 
encountered by heuristics in obtaining a realizable solution 
of good quality for difficult optimization problems, meta-
heuristics have appeared. They generally make it possible to 
obtain a solution of very good quality for problems whose 
methods are not known to be effective to treat them or when 
the resolution of the problem requires a high time or a large 
storage memory. Most meta-heuristics use random and 
iterative processes as a means of gathering information and 
exploring the search space. Meta-heuristics can be classified 
in many ways. One can distinguish between local search 
methods and global optimization methods. Others can 
distinguish single solution methods and population of 
solution methods. 
Single solution methods use only one solution. Algorithms 
such as: Hill climbing [15], simulated annealing [16] and 
Tabu search [17] are part of this class of meta-heuristics. 
Genetic Algorithms (GA) [18], Particle Swarm Optimization 
(PSO) [19], Ant Colony Optimization (ACO) [20] and 
Cuckoo Search (CS) algorithms are the best known examples 
in methods that manipulate a population of solution. In this 
article we will use cuckoo search and it is for this reason that 
we will present it in the following with a state of the art on 
its application in communication networks. 

2.2.1. Cuckoo search 
Cuckoo search (CS) is an optimization algorithm developed 
by Xin-she Yang and Suash Deb in 2009 [21]. CS is one of 
the latest meta-heuristic optimization algorithms; it is 
inspired from the brood parasitism of some cuckoo species. 
They lay eggs from other birds' nests and even remove host 
eggs to increase the probability of their eggs getting hatched. 
Three types of brood parasitism exist: Intra-specific, 
cooperative breeding and nest takeover. Some species of host 
birds simply throw out cuckoo’s eggs or even leave their nest 
and put up a new one when alien eggs are discovered. 
Certain cuckoo species are expert to imitate the color and 
texture of the eggs of chosen host species, as a result of 
which, the probability of their eggs to be abandoned reduces 
and intensifies their reproductively.  
In general the parasitic eggs hatch slightly earlier than that of 
the host eggs. In addition, when the first cuckoo chick is 
hatched, the first instinct action it will take is to evict the 
host eggs randomly out of the nest for the sake of its own 
existence and food. Studies also show that cuckoo chicken 
imitates the sound of host chicken to gain access to more 
feeding opportunity.   
The cuckoo searches for food in a random manner; the next 
move of this animal is based on the current location/state and 

the transition probability to the next location. It explores 
their landscape using a series of straight flight paths 
punctuated by a sudden 90 degree turn, according to [21]. 
The cuckoo utilizes a search pattern called Lévy flight. 

In the whole process, we consider these three conditions: 
• One egg will be laid at a time by each cuckoo in any nest 

chosen randomly. 
• Nests that have better eggs are postponed to the next 

generation. 
• The probability that the host species discovers the 

cuckoo's egg is within the probability range pa ∈ [0, 1] 
and the total number of nests is fixed. 

The cuckoo search algorithm starts with initial an initial 
population of solutions generated randomly. When the host 
species discovers the cuckoo’s egg in its nest, it will abandon 
the nest or throw away that egg. The implementation of this 
last point is done by replacing pa of worse nests and builds 
new ones at new locations. Each egg corresponds to a 
feasible solution and its fitness value is calculated. 

Levy flights are more efficient than Brownial random 
walks in exploring unknown, large-scale search space [22]. 
So, a new solution is formed using the concept of Lévy flight 
(1) 

��	
 + �
=��	

+α ⊕ Lévy 	�
    (1) 
Where α > 0 is the step size which should be related to the 
scales of the problem of interests. In most cases, we can use 
α = 1. The above equation is essentially the stochastic 
equation for random walk. In general, a random walk is a 
Markov chain whose next status/location only depends on 
the current location (the first term in the above equation) and 
the transition probability (the second term). The product ⊕ 
means entrywise multiplications. This entrywise product is 
similar to those used in particle swarm optimization, but here 
the random walk via Lévy flight is more efficient in 
exploring the search space as its step length is much longer 
in the long run. 
The Lévy flight essentially provides a random walk while the 
random step length is drawn from a Lévy distribution (2): 

Lévy ∼ u = t −λ; 1 < λ≤3    (2) 
An efficient nonlinear relationship of variance of Lévy flight 
(3) is used to explore large unknown search spaces. 

   ��	

~
���; � ≤ � ≤ �                                        (3) 
 

The CS algorithm can be summarized as follow [21]: 
 Begin 
  1: Define objective function f (x), x = (x1, x2, ..., xd) 
  2: Initial a population of n host nests xi (i=1,2,...,n) 
  3: While ((t < MaxGeneration) or (stop criterion)) do 
  4: Get a cuckoo (say i) randomly and generate a new   
      solution by Lévy flights 
  5: Evaluate its quality/fitness Fi 

  6: Choose a nest among n (say j) randomly 
  7: if (Fi > Fj) then 
  8:  Replace j by the new solution 
  9: end 
10: Abandon a fraction (pa) of worse nests and build new 

ones at new locations 
11: Keep the best solutions (or nests with quality solutions) 
12: Rank the solutions and find the current best 
13: end while 
14: Post process results and visualization 
End 
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2.2.2. Application of cuckoo search in communication 
networks 

Few studies are interested in the application of CS in 
wireless sensor networks and vehicular ad hoc network. 
However, we have not found credible work using CS in 
cognitive radio networks. 
Dhivya et al. have used CS to aggregate data in wireless 
sensor network [23]. In the recommended technique, the 
least energy nodes are formed as clusters for sensing the data 
and high energy nodes as Cluster Head for communicating to 
the Base Station (BS). The modified CS is suggested to get 
enhanced network performance incorporating balanced 
energy dissipation and results in the formation of optimum 
number of clusters and minimal energy consumption. The 
feasibility of the scheme is manifested by the simulation 
results on comparison with the traditional cluster based 
routing methods. Cheng et al. have introduced an effective 
CS algorithm for node localization in wireless sensor 
network [24]. Based on the modification of step size, this 
approach enables the population to approach global optimal 
solution rapidly, and the fitness of each solution is employed 
to build mutation probability for avoiding local convergence. 
In addition, this approach restricts the population in the 
certain range so that it can prevent the energy consumption 
caused by important search. Extensive experiments were 
conducted to study the effects of parameters like anchor 
density, node density and communication range on the 
proposed algorithm with respect to average localization error 
and localization success ratio. Furthermore, a comparative 
study was conducted by the authors to realize the same 
localization task using the same network deployment. 
Experimental results show that the proposed CS algorithm 
can not only increase convergence rate but also reduce 
average localization error compared with standard CS 
algorithm and particle swarm optimization algorithm. 
Ramakrishnan et al. have suggested a design of adaptive 
routing protocol based on CS algorithm in vehicular ad hoc 
network [25]. This new protocol integrates the features of 
both topology routing and geographic routing protocols 
which ensures the secured transmission of data with less 
delay and high packet delivery ratio. The proposed algorithm 
provides reliable and secure routes between source and 
destination node with optimal distance and low routing 
overheads. This algorithm uses a local stochastic 
broadcasting to find routes which reduces the network 
congestion thereby improving the packet delivery ratio. 

 

3. Our implementation of parallel dynamic 
programming on a multi-core architecture 
in CRAHNs  

 

In Amraoui et al. [26], we have already used dynamic 
programming in order to solve the spectrum allocation 
problem in CRAHNs. The algorithm was applied with the 
first-price sealed-bid auction (FPSBA). Our CRAHNs 
consisted of only 1 PU and n SU. The objective of the PU is 
to maximize its gain. So, there is only one PU who shares its 
spectrum and several SU who need to ensure free channels 
for assuring the quality of their application.  
Figure 1 illustrates the scenario that was dealt in Amraoui et 
al. 

 

Figure 1. Proposed scenario in Amraoui et al. 
 

For example, in figure 1, there are 3 SUs who want to access 
to the free resources at PU1. However there are only 4 free 
resources at PU1 which is not sufficient to serve the needs of 
all SUs (1+2+2 = 5 required resources). So which of SU1 or 
SU2 or SU5 will access to the spectrum? To solve this kind 
of problem, we have used dynamic programming.  
To measure performance, we have used in Amraoui et al. a 
simple machine (laptop with 4GO of RAM). The number of 
SU was limited to 5 and the number of channels available on 
the PU side was limited to 4. The execution time was too 
short (3 milliseconds (ms)). In fact, we have treated a simple 
matrix of size 5*4. The execution time will multiply by 1000 
(3 seconds) by increasing the number of SU to 12000 and the 
number of available channels on the PU side to 15000. This 
is the maximum capacity of our machine (processing a 
matrix of integers of size 12000*15000). In a real-time 
system like cognitive radio networks, 3 seconds is 
unacceptable. 
However, and in order to improve this time and therefore, 
increase network performance, we propose in this paper an 
improvement of the algorithm proposed in Amraoui et al. 
using threads. We also aim to guarantee scalability. Indeed, 
having a fairly large number of users and communication 
channels is a scenario that will soon happen with the 
emergence of IoT (Internet of things) [27]. It should also be 
noted that CR is a promising enabler communication 
technology for IoT [28].  
For our current work, we have used the multi-core 
architecture available at the polytechnic faculty of Mons, 
university of Mons Belgium [29]. We have used 32G of 
RAM with 32 cores (threads). In this case, we were able to 
process a matrix of size 30000*50000. 30000 is the number 
of SU, 50000 is the number of channels available on the PU 
side. 
The code of dynamic programming implemented on the PU 
side in Amraoui et al. is as follows: 
 Function COUT (W, C, m)  
 Begin                 
  1:   n = C.length 
  2:   for j = 0 to m do 
  3:    T[0][j] = 0 
  4:  end for 
  5:  for i =1 to n do 
  6:   for j=1 to m do 
  7:     if (j>=W[i-1]) 
  8:       T[i][j] = max(T[i-1][j],     
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                                                         T[i-1][j-W[i-1]] + C[i-1]) 
  9:      else 
10:     T[i][j] = T[i-1][j] 
11:    end if 
12:  end for 
13:   end for  
14:    return T[n] [m]  // The total cost obtained by the PU 
End 
n is the number of SUs. 
m is the number of free channels at PU. 
W is an array of size n. 
W[i]  is the number of requested channels by SUi. 
C is an array of size n. 
C [i]  is the proposed price for W [i]  by SUi.   
The increasing monotonic function to be optimized is: 
Max ∑ �[�]�

� ! ∗ #�.  
The constraint is ∑ $[�]�

� ! ∗ #� ≤ %.   
xi is a binary values. If it is equal to 1 it means that the SUi is 
part of the solution (there is a spectrum that has been 
assigned to SUi). xi is equal to 0 otherwise.  
T is a matrix of size n*m.  
T [n] [m]  is the maximum gain obtained by the PU.  
As shown in figure 2, the matrix on which the previous 
program is working is of size n*m (see matrix T in the 
previous code).  
The code runs row by row and the result of the next row will 
depend on that of the previous row.                     

 

 
Figure 2. Matrix of size n*m. 

As we have already explained, dynamic programming is an 
optimization approach that transforms a complex problem 
into a sequence of simpler problems; its essential 
characteristic is the multistage nature of the optimization 
procedure.  
In the case of 4 threads for example (see figure 2), our idea is 
to run the first thread on the first row of the matrix, the 
second thread on the second row, the third thread on the third 
row, and so on. But as the processing of the second thread 
depends on the result of the first thread and the processing of 
the third thread depends on the result of the second thread 
and so on. The second thread will be launched on the second 
row when the first thread has processed m/4 cells of the first 
row of the matrix (4 here is the number of thread). The third 
thread will be launched on the third row when the first thread 
has processed 2*m/4 cells of the first row. The fourth thread 
will be launched on the fourth row when the first thread has 
processed 3*m/4 cells of the first row. Thereafter, the first 
thread will continue to work on the 5th row. The second 

thread will continue to work on the 6th row, the third thread 
on the 7th row and the 4th thread on the 8th row and so on 
until the whole matrix runs.  
The delay between the launch of the threads (time required to 
process m/4 cells of the first row) is always the same because 
the four threads handle similar sub problems. The following 
function represents the behavior of the dynamic 
programming but on a single row i and between the columns 
of index begin and end. 
Function dynamic (i, begin, end)   
Begin    
1: for j=begin to end do 
2:    While (T[i-1][j]==-1) do sleep(0)   
        // To synchronize two successive threads. In the case    
        // of 4 threads for example, the 3rd thread must not     
        // exceed the 4th thread 
3:    End while 
4: if (j>=W[i-1]) then 
5:       T[i][j]= max(T[i-1][j],T[i-1][j-W[i-1]] + C[i-1]) 
6: else 
7:       T[i][j]= T[i-1][j] 
8: end if 
9: end for  
End 

 
The thread implementation is represented by the following 
function. 
 
  Function run ( )  
  Begin    
  1: n=C.length // The size of the matrix C represents the  
      // number of SUs 
  2: if (row==1) then  // Only for the first thread 
  3: dynamic(1,1,m/nbthread) // Launching the first thread    
      // on the first m/nbthread cells  
  4: Dyn thread=new Dyn(2, m, C, W, nbthread)  
     // Create a thread to work on row 2 
     // Dyn is the constructor of the thread 
  5: thread.start() // Run the second thread's run method  
  6: for k=1 to nbthread-2 do  
  7: dynamic(1,k*m/nbthread+1,(k+1)*m/nbthread)  
// The first thread always works on a part of cells of size    // 
m/nbthread 
8: thread =new Dyn(k+2, m, C, W, nbthread)  
// Create the (nbthread-2) threads to work on the   
// corresponding rows 
9: thread.start()  // Run the thread's run method 
10: end for 
11:dynamic(1,(nbthread-1)*m/nbthread+1,m)  
// The first thread continues to work on the last part of the first 
// row 
12: row=row+nbthread  
//The first thread processes the matrix with a nbthread step  
13: while (row<=n) do 
14: dynamic(row,1,m)  
//The first thread processes the entire row 
15: row=row+nbthread  
16: end while 
17: else // For all threads that have already been started by    
// the first thread 
18: dynamic(row,1,m)  
// The thread processes the entire row 
19: row=row+nbthread  
// The thread processes the matrix with a nbthread step 
20: while (row<=n) do 
21: dynamic(row,1,m)  

T1 

T1 

T2 

T2 

T3 
T4 

T3 
T4 

T2↓ T3↓ T4↓ m columns 

n rows 

T1↓ 
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// The thread processes the entire row 
22: row=row+nbthread 
23: end while 
24: end if 
End 

The following main program is used to run nbthread threads. 
 Function main ( ) 
 Begin 
  1: nbthread=2 // 4, 8, 16 or 32 
  2: m=50000 // number of channels available on the PU      
      // side 
  3: n=30000 // number of SU 
  4: row=1 
  5: T : array of size (n+1)*(m+1) 
  6: for j=0 to m T[0][j]=0 end for // There is only the first  
      // row of T that is initialized to 0  
  7: for i=1 to n do  
  8: for j=0 to m do T[i][j]=-1 end for // Initialize the             
       // remainder of T to synchronize two   
       // successive threads   
  9: end for  
10: W : array of size n 
11: for i=0 to n-1 do W[i]= i/1000+10 // number of channels 
12: end for  
13: C : array of size n 
14: for i=0 to n-1 do C[i]= i/100+100 // price 
15: end for  
16: Dyn T1=new Dyn(row, m, C, W, nbthread) // The first     
      // thread works on the first row  
      // T1 will then launch the other threads 
17: T1.start() // launching the run method 
End 

To compare correctly, we used the same matrices C and W 
whatever the number of threads. So, we avoided generating 
the two matrices in a random way. The following table 
shows the obtained results for 1, 2, 4, 8, 16 and 32 threads 
respectively. 

Table 1. Obtained results. 
Number of 

threads 
Execution 
time (Ti) 

Reduction 
rate (Ri) 

Improvement 
ratio (Ii) 

1 5656 ms 0 1 

2 3106 ms 45,08% 1,82 

4 1614 ms 71,46% 3,50 

8 880 ms 84,44% 6,42 

16 722 ms 87,23% 7,83 

32 768 ms 86,42% 7,36 

Ri = (T1-Ti) / T1: the reduction rate obtained with the use of 
multiple threads related to the use of a single thread. 
Ii=T1/Ti: the improvement ratio obtained with the use of 
multiple threads related to the use of a single thread. 
For the different executions (whatever the number of 
threads), the gain obtained by the PU is equal to 525573. It is 
always the same because it is an exact method. 
We note that the execution time for 32 threads was not 
improved compared to the case of 16 threads. Using more 
threads does not necessarily decrease execution time. Indeed, 
with a large number of threads, we have more parallelism 
and therefore more communications that impact the 
execution time. 
The following three figures represent the obtained results. 

 

Figure3. Execution time related to the number of threads. 

 

Figure 4.  Reduction rate related to the number of threads. 

 

Figure 5. Improvement ratio related to the number of 
threads.  

The best results are obtained with 16 threads. The execution 
time is reduced to more than 87% compared to the use of a 
single thread and the improvement ratio is greater than 7. 
The improvement ratio which is equal to 7.83 (in the case of 
16 threads) is very interesting because for a cognitive engine 
that does a processing of 1 minute using one thread; this 
processing can be done in less than 8 seconds using 16 
threads. 
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To validate even more the obtained result, we have 
implemented the same problem of spectrum allocation with a 
meta-heuristic. For that we opted for the Cuckoo Search 
(CS). We made this choice because it is possible that we will 
encounter a scenario in which the cognitive user will be 
interested much more by the execution time than by the 
obtained gain. A meta-heuristic is faster than an exact 
method, but its result is less exact than that of the exact 
method.  
The advantage of cuckoo search algorithm is that the number 
of tuning parameters is very less when compared to other 
algorithms like genetic algorithm or particle swarm 
optimization and hence can be easily applied to a wider 
range of optimization problem [30]. 

 

4. Our implementation of CS in CRAHNs 
 

For our implementation with CS, each nest represents a 
solution for the spectrum allocation problem and a 
population of nest is used for finding the best solution of the 
problem. The formulation of the problem is the same that 
was used for dynamic programming. So, the increasing 
monotonic function to be optimized is: Max ∑ �[�]�

� ! ∗ #� 
and each newly obtained solution should be satisfied 
according to the constraint: ∑ $[�]�

� ! ∗ #� ≤ %. 
Where : n is the number of SUs. m is the number of free 
channels at PU. W is an array of size n, W[i]  is the number of 
requested channels by SUi. C is an array of size n, C[i]  is the 
proposed price for W [i]  by SUi.  
 

A population of N host nests is represented by S = [S1, 
S2,…..,SN]  where each nest Si=[x 1,x2,.,…,.,xn]  represents a 
solution for the spectrum allocation problem. 
xi is a binary values. If it is equal to 1 it means that the SUi is 
part of the solution (there is a spectrum that has been 
assigned to SUi). xi is equal to 0 otherwise.   
The problem often encountered with meta-heuristics is the 
initialization of the parameters used for the simulation. So 
we started by choosing the size of the initial population as 
well as the number of iteration used to ensure the 
convergence of the meta-heuristic. 
To choose the size of the initial population, we varied it from 
25 to 200 with a step of 25. We chose the value of 0.1 for pa 
and 300 iterations for each population size. We also perform 
10 simulations for each population size and we calculate the 
average of all the values found in order to make a good 
estimation of the obtained results. Table 2 shows the 
obtained results. 
Table 2. Gain related to the population size. 

Population 
size Gain 

Convergence 
interval 

25 179550 70-80 

50 180109 60-70 

75 191166 90-100 

100 205472 115-125 

125 176898 75-85 

150 188550 80-90 

175 180459 70-80 

200 196511 105-115 

Note that regardless of the population size, the CS converges 
in all cases between 60 iterations (minimum value) and 125 
iterations (maximum value). 

 

Figure 6. Gain related to the population size. 
In the previous figure, we note that the maximum gain 
obtained by the PU corresponds to an initial population size 
equal to 100. In this case, the convergence is between 115 
and 125 iterations. The gain obtained by the PU is equal to 
205472. It is calculated at iteration number 125 (at the end of 
the convergence). 
In the following, and in order to solve the spectrum 
allocation problem with CS, we set the initial population size 
to 100 and we use 125 iterations (to ensure the convergence 
of the meta-heuristic). The following table shows the 
obtained result step by step in terms of obtained gain by the 
PU and execution time. 
Figure 7 shows the convergence interval between the two 
iterations 115 and 125. In this case, the PU obtained a gain of 
205472 after a run time of 2219 ms. 

 

Figure 7. Obtained gain by the PU related to the number 
of iteration. 
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Table. 3 Obtained result in terms of obtained gain by the PU 
and execution time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

5. Comparison between parallel dynamic 
programming and cuckoo search 

 

In the following, we will make a comparison between 
parallel dynamic programming and cuckoo search. The 
cuckoo search meta-heuristic allowed the PU to gain 205472 
after a run time of 2219 ms. This gain represents 39% of that 
obtained with dynamic programming (525573).   
Figure 8 shows the obtained results by dynamic 
programming and cuckoo search in terms of gain. This is not 
a surprise for us; the exact method provided a gain more 
interesting than meta-heuristic. 

 

Figure 8. Comparison in terms of obtained gain by the 
PU.  

Concerning the execution time, the dynamic programming 
provides the maximum gain with a single thread after more 
than 5 seconds. The cuckoo search provided 39% of this gain 
after more than 2 seconds.  
On the other hand, we note, according to figure 9, that the 
execution time of the cuckoo search exceeds that of the 
parallel dynamic programming using more than 4 threads 
(cores).  

 

Figure 9. Comparison in terms of execution time 
 

The best execution time for parallel dynamic programming is 
provided with 16 threads (722 ms). 
With parallelism, dynamic programming (exact method) has 
exceeded performance in terms of execution time of a meta-
heuristic which is the cuckoo search. This result is very 
interesting because the dynamic programming always 
provides the exact result (maximal gain in our case), a thing 
that cannot be guaranteed by a meta-heuristic. 
So we can affirm the following result: cognitive engines 
typically using meta-heuristics can also use exact methods 
with threads to guarantee both a better execution time but 
also the results accuracy.  
 

6. Conclusion  
 

In this paper, we have presented a parallel version of 
dynamic programming applied in cognitive radio ad hoc 
networks. To measure the performance of our contribution, 
we have used the multi-core architecture available at the 
polytechnic faculty of Mons, university of Mons Belgium. 
Our simulations approve the desired results, showing 
significant gain in terms of execution time. The main 
objective is to allow a cognitive engine to use an exact 
method and to have better results compared to the use of 
meta-heuristics. Moreover, we compared the parallel 
dynamic programming with the cuckoo search meta-heuristic 
and we proved that with our parallel dynamic programming, 
in addition to having an exact result, we also have a very 
important gain in terms of execution time. As perspectives, 
we aim to study parallel dynamic programming but with 
more criteria (multi-objective fitness functions). In this 
paper, we have treated only channel prices as a single selling 
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criterion used by the PU. Other criteria may be envisaged 
such as the allocation time or the transmission quality. We 
will also try to parallelize other exact methods such as 
branch and bound, cutting plane and branch and cut. 
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