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Abstract: Spectral resources allocation is a major problem iParallel computingis a type of computation in vbhithe

cognitive radio ad hoc networks and currently nafsthe research

execution of processes is carried out simultangoubhe

papers use meta-heuristics to solve O the other side, the tarm parallelism refers to techniques to make pnor faster

term parallelism refers to techniques to make pogr faster by
performing several computations in parallearallelism would be
very interesting to increase the performance oftie® systems,
especially for the cognitive radio ad hoc netwdhe interest us in
this work. In this paper, we present a parallellementation on a
multi-core architecture of dynamic programming aitjon applied

in cognitive radio ad hoc networks. Our simulatiapprove the
desired results, showing significant gain in teohgxecution time.
The main objective is to allow a cognitive engioeuse an exact
method and to have better results compared to skeeofi meta-
heuristics.

Keywords: Parallel computing, dynamic programming,
search, cognitive radio ad hoc networks.

1. Introduction

cuckod

by performing several computations in parallel.sTitgquires
hardware with multiple processing units. Parall@nputing

is closely related toconcurrent computing, theye ar
frequently used together, and often conflated, ghathe two
are distinct: it is possible to have parallelismthout
concurrency (such as bit-level parallelism), andctmrency
without parallelism (such as multitasking by tinfegng on

a single-core CPU) [4].

Since the minimization of the task execution time i
cognitive radio ad hoc networks (CRAHNS) is very
important for increasing the performance of thipetyof
network, we are interested in this work to the iempéntation
of an exact method (dynamic programming) using incoite
architecture in CRAHNs. We also implement a meta-
heuristic (cuckoo search) and compare it to ouradyin

The rapid development of wireless communicationﬁrogramming implementation in order to make a wider

increasingly leads to scarcity of spectrum dueh® fixed
policy of frequency allocation. To solve this laskspectral

validation of our contribution.
In this paper, we start by giving an overview onax

resources, researchers thought to develop new essel yaihods and meta-heuristics. We will focus, inipakar on

communication technologies such as cognitive rddiR).

dynamic programming for the exact methods and coicko

CR is considered to be one of the most promisingasrch for the meta-heuristics. We will then esshbh state

technologies for future wireless communication roeks
because it is based on the dynamic spectrum albocand
therefore makes it possible to use it more effetyivCR
system uses its intelligence to optimize the usguality of
service by adapting its transmission parameters.

The idea of CR was officially presented in 1998 Jogeph
Mitola Il in a seminar at KTH, the Royal Institutef
Technology, later published in an article by Mitadad
Gerald Q. Maguire Jr in 1999 [1]. CR is a form dfekess
communication in which a transmitter/receiver
intelligently detect which communication channeks i use
and which are not, and can transfer to the unused.dr his
allows optimum use of the available radio frequesdn the
spectrum, whilst minimizing interference with othesers
[2].

In CR, there are two types of users: primary ugend),

those with assigned frequency bands and secondsass u

(SU) who do not have a license. These will be tghoCR
allowed to use the free parts of the frequency bafdPUs
without harmful interference.

CR system requires four major functions that enabl®
opportunistically use the spectrum [3]. These fiomg

of the art on the use of dynamic programming anckea
search in communication networks. Then, we presemt
contribution in this paper which consists in impenting a
parallel dynamic programming algorithm on a mutire
architecture applied in CRAHNSs. We also implemantkoo
search and compare it to our dynamic programming
implementation using threads. We conclude our vairkhe
end of the paper.

car?. Resolution methods

In the literature, there are 2 types of algorithrExact
algorithms that find the optimal solution and caket an
exponential number of iterations and approximagerhms
that produce a suboptimal solution and do not take
exponential number of iterations.

2.1. Exact methods

Exact methods such as branch and bound [5], cutliziges
[6] or dynamic programming, guarantee finding gotiroal
solution of a problem for an instance of finite esim a
limited time and of prove optimality.

consist in the CR terminal's main steps for speutru In this article we will use dynamic programming ani$ for

management. They are: spectrum sensing, spectraisiale
spectrum sharing, and spectrum mobility.

this reason that we will present it in the folloginvith a
state of the art on its application in communiaati@tworks.
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2.1.1. Dynamic programming is used in conjunction with four different routesclvery

Dynamic programming was first coined Bychard Bellman &lgorithms  [11]. - The authors accomplish ~ complexity
in the 1950s [7], a time when computer programmiag an  analysis, statistical evaluation of changes in powe
esoteric activity practiced by so few people. Bablen consumption rates _ef'fected, and v_erlfy spatial steidhiution
programming meant "planning” and "dynamic programghi of energy consumption of sensors in the networle fdsults
was conceived to optimally plan multistage processe®n multihop networks of 100 randomly placed nodesws
Dynamic programming is a powerful technique that be that, on average, the two best performing vanmﬁtﬁ)PA
used to solve many problems in time O(n?) or Y (or yield a (eductlon of_ up to 28% and 36% in power
which a naive approach would take exponential tim&onsumption rate variance at the cost of raisingrage
Dynamic programming is a design paradigm that easden POwer consumption by 15% and 21%, respectively.
as an improvement or adaptation of the divide-ajoer COMPputational complexities of DPA variants rangentr
method except that unlike divide-and-conquer, thé s ON®) to OWN*), which is significantly lower than linear
problems with dynamic programming will typicallyevap.  search of the solution space ofNDY). Analysis by diffusion
The effectiveness of this method is based on theipte of ~ plots shows that DPA decreases power consumption of
optimality stated by the mathematici®ichard Bellman sensors that experience the highest power consomptider

"Every optimal policy is composed of optimal subigies”.  the shortest path routes.

The design of a dynamic programming algorithm cstsspf In the area of interest (CRAHNS), there are feweaesh
four steps [8]: papers that have used dynamic programming. For gbeam

« Characterization of the structure of an optimaligoh. Liang et al.have proposed a dynamic programming based

power control algorithm with the consideration ofnpary
pser's QoS by a rate loss constraint criterion .[18] the
suggested algorithm the occupancy for each sulecalbs
primary users is modeled as a discrete-time Markio®in
and the concept of rate loss constraint is usegutrantee
primary user’s desired rate. Simulation resultsnskizat the
proposed algorithm can obtain a maximum average rdeé
over a finite time horizon and effectively guaranf@imary
users’ QoS.
Wang et al. have presented a novel power allocation
algorithm to maximize the throughput under theebibr rate
(BER) constraint and the total power constraintagnitive
radio [13]. Although water filling (WF) algorithmsithe
optimal power allocation in theory, it ignores faet that the
2.1.2. Application of dynamic programming in allocated power in use is discrete, and it doetake the
communication networks waste power into consideration. In the improvedatgm,

In what follows, we will cite some works that habeen the total power is asymmetrically quantized to gdpl the
interested to the application of dynamic prograngmin Practice and reduce the computation complexity feefo
communication networks. adopting the dynamic programming which is commardgd
Fontes et alhave definech dynamic programming approacht0 Solve the knapsack problem, so this improvedrétiym is

to solve optimally the single-source incapacitatéidimum called as asymmetrically quantized dynamic progrargm
cost network flow problem with general concave sdsf. (AQDP). Moreover, AQDP reused the residual power to
The new dynamic programming approach proposed by tRaximize the throug_hput further. The s_|mulat|on ufess
authors does not based on the type of cost furstiofhow that AQDP has improved the transmit througlopat|
considered and on the number of nonlinear arc cosfsR users compared with the classical power alloati
Computational experiments were performed usingoeng ~ algorithms referrgd as WF in this paper.

generated problems. The computational results tegpdor ~Gao et alhave discussed power and rate control schemes for
small and medium size problems indicate the effeotiss of @ Single cognitive radio channel in the presencécehsed
the proposed approach. primary ra_d|os (PRs) [14]. A er!amlc programmingséxd
Fonoberova et alpresents an approach for resolving somalgorithm is proposed to maximize the long-termrage
power systems problems by using optimal dynamiov flo rate for the CR link under constraints on the taaérgy
problems [10]. The classical optimal flow problerns budget and the CR-to-PR disturbance. In the sugdest
networks are prolonged and generalized for the scade algorithm, the behavior of PRs is modeled as a state
nonlinear cost functions on arcs, multicommodityn, and Markov chain. Based on such a model, the optimalgpo
time-and flow-dependent transactions on arcs oh#teiork. and rate control strategy for each time slot isvéer, which
All network parameters are pretended to be dependen IS @ function of the energy level at the beginnaigcurrent
time. The algorithms for solving such kind of preinis are time slot and the previous behavior of PRs. Sinitat
developed by using special dynamic programmin@esuns show that the proposed algo_rlthm can leadhrt
techniques based on the time-expanded network miethénPortant performance improvement in term of theglo
together with classical optimization methods. term average rate while keeping the probabilitC&¥-to-PR
llyas et al.have suggested the use of an operational and logisturbance below a given level.

complexity dynamic programming algorithm (DPA), whi

* Recursive definition of the value of the optimalusion.

» Ascending calculation of the value of the optima
solution.

» Construction of the optimal solution from the infaation
obtained in the previous step.

For instance, we can say that finding the shopest in a

graph or the knapsack example are problems thatbean

solved using dynamic programming.

The first property of dynamic programming corresgero

being able to write down a recursive procedure tfoe

problem we want to solve. The second property spoads

to making sure that this recursive procedure makdyg a

polynomial number of different recursive calls.
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2.2. Approximate methods the transition probability to the next location. dkplores
their landscape using a series of straight fliglathp
punctuated by a sudden 90 degree turn, accordirjglfo
The cuckoo utilizes a search pattern called Léighfl

€Mn the whole process, we consider these three tondi

e One egg will be laid at a time by each cuckoo in aest
chosen randomly.

Nests that have better eggs are postponed to tke ne
generation.

The probability that the host species discovers the
cuckoo's egg is within the probability range € [0, 1]
and the total number of nests is fixed.

The cuckoo search algorithm starts with initial iaitial
population of solutions generated randomiyhen the host
species discovers the cuckoo’s egg in its nestliebandon
the nest or throw away that egg. The implementadibtiis
last point is done by replacinga of worse nests and builds
new ones at new locations. Each egg corresponda to

Exact resolution methods ensure an optimal solytimrt
their use in practice is very rare because of tt@mplexity.
These methods can take a long time, especially wh
problems are large. In some cases, the user mdgr pae
reduced calculation time instead of an optimal tsofu For
this purpose, approximate resolution methods aplieapin
order to find an approximate solution to a probkend thus
to speed up the resolution process. In the litegatue speak
about heuristics and meta-heuristics. A heuristines from °
the Greek word "heureka" which means "to find"isltan
approximate method that seeks good solutions tieatlase
to optimality in polynomial time. Faced with theffdiulties
encountered by heuristics in obtaining a realizeggkition
of good quality for difficult optimization problemsneta-
heuristics have appeared. They generally makesisipte to
obtain a solution of very good quality for problembose
methods are not known to be effective to treat tioerwhen . . g .
the resolution of the problem requires a high tone large feasible solution and its fitness value is caladat

storage memory. Most meta-heuristics use random andLeVY flights are more efficient than Brownial ramdo
iterative processes as a means of gathering infaymand walks in exploring unknown, large-scale search eflae].

exploring the search space. Meta-heuristics cadldssified So, a new solution is formed using the conceptéitflight

in many ways. One can distinguish between localcéea 1)

methods and global optimization methods. Others can Xi(t + D=Xi(t)+a @ LéVY(A) (1)
distinguish single solution methods and populatioh Wherea > 0 is the step size which should be related & th

solution methods scales of the problem of interests. In most caseszan use

Single solution methods use only one solution. Athmms ¢ ~ L The above equation is essentially the SF““*“"‘S
such as: Hill climbing [15], simulated annealings[land €duation for random walk. In general, a random walla
Tabu search [17] are part of this class of metaibtes. Markov chain vv_hose negt status/_locatlon only erend
Genetic Algorithms (GA) [18], Particle Swarm Optiration the curre_n.t location (t_he first term in the abog@ation) and
(PSO) [19], Ant Colony Optimization (ACO) [20] and the transition probablh_ty _(thg second_ term). T_hedmctE_B
Cuckoo Search (CS) algorithms are the best knowmgles Means entrywise multiplications. This entrywise quret is

in methods that manipulate a population of solutionthis ~ Similar to those used in particle swarm optimizaiout here
article we will use cuckoo search and it is fostréason that the random walk via Lévy flight is more efficient i
we will present it in the following with a state tife art on €XPloring the search space as its step length Ehrfanger

its application in communication networks. in the long run. _ _ _
The Lévy flight essentially provides a random waltkile the

2.2.1. Cuckoo search random step length is drawn from a Lévy distribait{@):
Cuckoo search (CS) is an optimization algorithmelieyed Lévy~u=1t7% 1<2<3 2
by Xin-she Yang and Suash Deb2009 [21].CS is one of An efficient nonlinear relationship of varianceldgvy flight
the latest meta-heuristic optimization algorithmis; is  (3) is used to explore large unknown search spaces.
inspired from the brood parasitism of some cuckpeckes.

They lay eggs from other birds' nests and even venhost a?()~t*F1<p<2 3)

eggs to increase the probability of their eggsimgthatched. The cs algorithm can be summarized as follow [21]:
Three types of brood parasitism exist: Intra-specif

d . Begin
cooperative breeding and nest takeover. Some spetleost ;. %eﬁne objective function f (x), X = (X1, Xz, ..., Xa)
birds simply throw out cuckoo’s eggs or even lethwedr nest 2. nitial a population of n host nests x; (i=1,2,...,n)
and put up a new one when alien eggs are discavered 3: While ((t < MaxGeneration) or (stop criterion)) do
Certain cuckoo species are expert to imitate tHercand  4: Get a cuckoo (say i) randomly and generate a new

texture of the eggs of chosen host species, asut ref solution by Lévy flights

which, the probability of their eggs to be abandbreduces 5: Evaluate its quality/fitness Fi -

and intensifies their reproductively. 6f Choose a nestamong n (say j) randomly

In general the parasitic eggs hatch slightly eattian that of ;j it (F ;gj)leisgr']b the new solution

the host eggs. In addition, when the first cuckbdclc is 9 end P e

hatched, the first instinct action it will take tig evict the 10. Apandon a fraction (pa) of worse nests and build new

host eggs randomly out of the nest for the sakésobwn ones at new locations

existence and food. Studies also show that cuckdcken 11: Keep the best solutions (or nests with quality solutions)
imitates the sound of host chicken to gain accessdre 12: Rank the solutions and find the current best

feeding opportunity. 13: end while

The cuckoo searches for food in a random mannernéxt 14: Post process results and visualization

move of this animal is based on the current locésiate and End
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2.2.2. Application of cuckoo search in communicatio
networks

Few studies are interested in the application of iBS

wireless sensor networks and vehicular ad hoc m&two

However, we have not found credible work using @S
cognitive radio networks.

Dhivya et al.have used CS to aggregate data in wireless

sensor network [23]. In the recommended technidhe,
least energy nodes are formed as clusters forrgptise data
and high energy nodes as Cluster Head for commiimicep
the Base Station (BS). The modified CS is suggetteget
enhanced network performance
energy dissipation and results in the formatioropfimum
number of clusters and minimal energy consumptibime
feasibility of the scheme is manifested by the s$ation
results on comparison with the traditional clustesed

incorporating balanced
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Used resources
byPU1=3  Free resources = 4
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Figure 1. Proposed scenario Amraoui et al.

routing methodsCheng et alhave introduced an effective For example, in figure 1, there are 3 SUs who wamiccess

CS algorithm for node localization in wireless s@ns
network [24]. Based on the modification of stepesithis
approach enables the population to approach globtanal
solution rapidly, and the fitness of each solui®employed
to build mutation probability for avoiding local mweergence.
In addition, this approach restricts the populatianthe
certain range so that it can prevent the energguwoption

to the free resources at PULl. However there arg #ritee

resources at PUL which is not sufficient to seheerteeds of
all SUs (1+2+2 = 5 required resources). So whickUf or

SU2 or SU5 will access to the spectrum? To solige kimd

of problem, we have used dynamic programming.

To measure performance, we have use@riraoui et al.a

simple machine (laptop with 4GO of RAM). The numioér

caused by important search. Extensive experimemse w SU was limited to 5 and the number of channelslalvi on

conducted to study the effects of parameters likehar

the PU side was limited to 4. The execution times w@o

density, node density and communication range o tRhort (3 milliseconds (ms)). In fact, we have teglaa simple

proposed algorithm with respect to average loctdinaerror
and localization success ratio. Furthermore, a eoatjve

matrix of size 5*4. The execution time will multjpby 1000
(3 seconds) by increasing the number of SU to 120@Dthe

study was conducted by the authors to realize H#mees number of available channels on the PU side to A5U8is

localization task using the same network deploymeng the maximum capacity of our machine (processing
Experimental results show that the proposed CSrithgo matrix of integers of size 12000*15000). In a reale

can not only increase convergence rate but alsoceed system like cognitive radio networks, 3 seconds

average localization error compared with standarf Cunacceptable.

algorithm and particle swarm optimization algorithm However, and in order to improve this time and ¢fimre,

Ramakrishnan et alhave suggested a design of adaptivgicrease network performance, we propose in thipan

routing protocol based on CS algorithm in vehicwdrhoc
network [25]. This new protocol integrates the feas of
both topology routing and geographic routing protec

improvement of the algorithm proposed Amraoui et al.
using threads. We also aim to guarantee scalabiliteed,
having a fairly large number of users and commuitna

which ensures the secured transmission of data legh
delay and high packet delivery ratio. The propoasgdrithm
provides reliable and secure routes between soarmk
destination node with optimal distance and low ir@it technology for 0T [28].

overheads. This algorithm uses a local stochastitor our current work,we have used the multi-core
broadcasting to find routes which reduces the ne&twoarchitecture available at the polytechnic faculfy Mons,
congestion thereby improving the packet delivetipra university of Mons Belgium [29]. We have used 326 o
RAM with 32 cores (threads). In this case, we waée to
process a matrix of size 30000*50000. 30000 isrinaber
of SU, 50000 is the number of channels availabl¢henPU
side.

The code of dynamic programming implemented onRble
Cside inAmraoui et alis as follows:

Function COUT (W, C, m)

Begin

channels is a scenario that will soon happen with t
emergence of [oT (Internet of things) [27]. It skibalso be
noted that CR is a promising enabler communication

3. Our implementation of parallel dynamic
programming on a multi-core architecture
in CRAHNSs

In Amraoui et al.[26], we have already used dynami
programming in order to solve the spectrum allacati
problem in CRAHNs.The algorithm was applied with the

first-price sealed-bid auction (FPSBA). Our CRAHNS 1. n = C.length
consisted of only 1 PU and n SU. The objectivehefPU is  2: forj=0tomdo
to maximize its gain. So, there is only one PU whares its  3: T[O]] =0
spectrum and several SU who needto ensure fremelma 4 end for
for assuring the quality of their application. 5: fori=1tondo
Figure lillustrates the scenario that was dealAimraoui et 6 forj=ltomdo
al. 7 if (j>=WI[i-1])
8 THI0] = max(T{i-1](],
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T[i-1][-WT[i-1]] + C[i-1])

THO] = TO-1]0]

9:
10:
11:
12:
13:
14:
End

else

end if
end for
end for
return T[n] [m] // The total cost obtained by the PU

n is the number of SUs.

mis the number of free channels at PU.

W is an array of siza.

WIi] is the number of requested channels by SU

Cis an array of siza.

C [i] is the proposed price fo¥ [i] by SU.

The increasing monotonic function to be optimizexd
Max Y-, C[i] * x;.

The constraint i§}}, W]i] * x; < m.

X is a binary values. If it is equal to 1 it meanattthe SUis
part of the solution (there is a spectrum that bagn
assigned to S x is equal to O otherwise.

T is a matrix of siz&*m.

T [n] [m] is the maximum gain obtained by the PU.

As shown in figure 2, the matrix on which the poms
program is working is of size n*m (see matrix T time
previous code).

The code runs row by row and the result of the newt will
depend on that of the previous row.

T1) T2| T3] T4| mcolumns

T1
T2
T3
T4
T1
T2
T3
T4

nrows

Figure 2. Matrix of size n*m.
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thread will continue to work on the 6th row, thédhthread
on the 7th row and the 4th thread on the 8th rod/smon
until the whole matrix runs.

The delay between the launch of the threads (tegaired to
process m/4 cells of the first row) is always thee because
the four threads handle similar sub problems. Tewing
function represents the behavior of the
programming but on a single ravand between the columns
of indexbeginandend

Function dynamic (i, begin, end)

Begin

1: for j=begin to end do

2:  While (T[i-1][j]==-1) do sleep(0)

/I To synchronize two successive threads. In the case
/I of 4 threads for example, the 3rd thread must not
/I exceed the 4th thread

End while

if (j>=WI[i-1]) then

T[]0]= max(Ti-1]0], T{i-1](-W[i-1]] + C[i-1])

:else

T[i]0]= TL-110]

cend if

:end for

nd

The thread implementation is represented by thevidhg
function.

Function run ()
Begin
1: n=C.length // The size of the matrix C represents the
/I number of SUs
if (row==1) then // Only for the first thread
dynamic(1,1,m/nbthread) // Launching the first thread
/I on the first m/nbthread cells
Dyn thread=new Dyn(2, m, C, W, nbthread)
/I Create a thread to work on row 2
I/l Dyn is the constructor of the thread
5: thread.start() // Run the second thread's run method
6: for k=1 to nbthread-2 do
7: dynamic(1,k*m/nbthread+1,(k+1)*m/nbthread)
/I The first thread always works on a part of cells of size
m/nbthread
8: thread =new Dyn(k+2, m, C, W, nbthread)
/I Create the (nbthread-2) threads to work on the

2:
3:

4.

I

As we have already explainedynamic programming is an // corresponding rows

optimization approach that transforms a complexbjemm

into a sequence of simpler problems; its essenti%

characteristic is the multistage nature of the ropation

procedure.

In the case of 4 threads for example (see figure®)idea is
to run the first thread on the first row of the matthe

second thread on the second row, the third threatiethird

row, and so on. But as the processing of the setiomedd
depends on the result of the first thread and tbegssing of
the third thread depends on the result of the sbdbread
and so on. The second thread will be launched es¢cond
row when the first thread has processed m/4 célikeofirst

row of the matrix (4 here is the number of threddje third

thread will be launched on the third row when tingt thread
has processed 2*m/4 cells of the first row. Therttothread
will be launched on the fourth row when the fitstead has
processed 3*m/4 cells of the first row. Thereaftee first

thread will continue to work on the 5th row. Thecaed

9: thread.start() // Run the thread's run method

p: end for

1:dynamic(1,(nbthread-1)*m/nbthread+1,m)

/I The first thread continues to work on the last part of the first
I/l row

12: row=row+nbthread

/[The first thread processes the matrix with a nbthread step
13: while (row<=n) do

14: dynamic(row,1,m)

/[The first thread processes the entire row

15: row=row+nbthread

16: end while

17: else /I For all threads that have already been started by
/I the first thread

18: dynamic(row,1,m)

/I The thread processes the entire row

19: row=row+nbthread

/I The thread processes the matrix with a nbthread step

20: while (row<=n) do

21: dynamic(row,1,m)

dynamic
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/I The thread processes the entire row
22: row=row+nbthread

23: end while

24: end if

End

The following main program is used to robthreadthreads.

Function main ()
Begin
1: nbthread=2// 4, 8, 16 or 32
2: m=50000 // number of channels available on the PU
/I side
: n=30000 // number of SU
srow=1
: T : array of size (n+1)*(m+1)
: for j=0 to m T[O][j]=0 end for // There is only the first
/I row of T that is initialized to O
:fori=1ltondo
: for j=0 to m do T[i][j]=-1 end for // Initialize the
// remainder of T to synchronize two
/I successive threads
9: end for
10: W : array of size n
11: for i=0 to n-1 do WI[i]= i/1000+10 // number of channels
12: end for
13: C: array of size n
14: for i=0 to n-1 do CJi]=i/2100+100 // price
15: end for
16: Dyn T1=new Dyn(row, m, C, W, nbthread) // The first
/l thread works on the first row
/I T1 will then launch the other threads
17: T1l.start() // launching the run method
End

OO0~ W

o

To compare correctly, we used the same matricasdGN\a
whatever the number of threads. So, we avoidedrgtng
the two matrices in a random way. The followingléab
shows the obtained results for 1, 2, 4, 8, 16 ahdhBeads
respectively.

Table 1. Obtained results.

Number of | Execution Reduction Improvement
threads time (T5) rate (Rj) ratio (I;)
1 5656 ms 0 1
2 3106 ms 45,08% 1,82
4 1614 ms 71,46% 3,50
8 880 ms 84,44% 6,42
16 722 ms 87,23% 7,83
32 768 ms 86,42% 7,36

R; = (T4-T;) / T4 the reduction rate obtained with the use of
multiple threads related to the use of a singleadr

[;=T4/T;: the improvement ratimbtained with the use of
multiple threads related to the use of a singleadr

For the different executions (whatever the numbér o
threads), the gain obtained by the PU is equaR8573. It is
always the same because it is an exact method.

We note that the execution time for 32 threads was
improved compared to the case of 16 threads. Usiage
threads does not necessarily decrease executien lticheed,
with a large number of threads, we have more paish
and therefore more communications that
execution time.

The following three figures represent the obtaireslilts.
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Figure3. Execution time related to the number of threads.
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Figure 4. Reduction rate related to the number of threads.
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Figure5. Improvement ratio related to the number of
threads.
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The best results are obtained with 16 threads.ekeeution
time is reduced to more than 87% compared to tkeofia
single thread and the improvement ratio is grethizen 7.

i The improvement ratio which is equal to 7.83 (ia tase of
impact  theg threads) is very interesting because for a tivgnéngine
that does a processing of 1 minute using one thrdasl
processing can be done in less than 8 seconds uU€ing

threads.
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To validate even more the obtained result, we hawote that regardless of the population size, the@®erges

implemented the same problem of spectrum allocatitm a
meta-heuristic. For that we opted for the Cuckoar&e
(CS). We made this choice because it is possilalieviie will
encounter a scenario in which the cognitive usdt be
interested much more by the execution time thanthsy
obtained gain. A meta-heuristic is faster than amace
method, but its result is less exact than thathef éxact
method.

The advantage of cuckoo search algorithm is tr@antimber
of tuning parameters is very less when comparedther
algorithms like genetic algorithm or
optimization and hence can be easily applied to idemw
range of optimization problem [30].

4. Our implementation of CSin CRAHNs

For our implementation with CS, each nest reprasent
solution for
population of nest is used for finding the bestisoh of the
problem. The formulation of the problem is the satmat

was used for dynamic programming. So, the increasin

monotonic function to be optimized i8ax}., C[i] * x;

particle swarm

the spectrum allocation problem and a

in all cases between 60 iterations (minimum vakm) 125
iterations (maximum value).

250000

200000

150000 4040800

100000 + 11—

50000 11—

O T T T
25 50 75 100

125 150 175 200

Figure 6. Gain related to the population size.
In the previous figure, we note that the maximuninga

and each newly obtained solution should be satisfieobtained by the PU corresponds to an initial pajodasize

according to the constraiftiL, W[i] * x; < m.

Where :n is the number of SUsn is the number of free
channels at PUNis an array of sizae, WI[i] is the number of
requested channels by SQ is an array of size, CJ[i] is the
proposed price fow [i] by SU.

A population of N host nests is represented By= [S,
S,.....{] where each nes§=[xy1,%,.,...,.,.¥] represents a
solution for the spectrum allocation problem.

X; is a binary values. If it is equal to 1 it meanattthe SUis
part of the solution (there is a spectrum that bagn
assigned to S x is equal to O otherwise.

The problem often encountered with meta-heurigscthe
initialization of the parameters used for the samioh. So
we started by choosing the size of the initial dapon as
well as the number of iteration used to ensure
convergence of the meta-heuristic.

To choose the size of the initial population, weieg it from
25 to 200 with a step of 25. We chose the value. bffor pa
and 300 iterations for each population size. We pkrform
10 simulations for each population size and weutate the
average of all the values found in order to makgoad
estimation of the obtained results. Table 2 shoWws t
obtained results.

Table 2. Gain related to the population size.

Population Convergence

size Gain interval
25 179550 70-80
50 180109 60-70
75 191166 90-100
100 205472 115-125
125 176898 75-85
150 188550 80-90
175 180459 70-80
200 196511 105-115

the

equal to 100. In this case, the convergence isdmiwil5
and 125 iterations. The gain obtained by the PbEqigal to
205472. It is calculated at iteration number 125 (at the &nd o
the convergence).

In the following, and in order to solve the spentru
allocation problem with CS, we set the initial ptation size
to 100 and we use 125 iterations (to ensure theergence
of the meta-heuristic). The following table showse t
obtained result step by step in terms of obtaired gy the
PU and execution time.

Figure 7 shows the convergence interval betweentwite
iterations 115 and 125. In this case, the PU obthangain of
205472 after a run time of 2219 ms.

250000
200000 -
150000 -
100000
Gain
>0000 Iteration
O T T T T T T T T T T T T T TVl
1 20 40 60 80 100 115 125

Figure 7. Obtained gain by the PU related to the number
of iteration.
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Table. 3 Obtained result in terms of obtained gain by the PWConcerning the execution time, the dynamic programgm

and execution time. provides the maximum gain with a single threadraftere
than 5 seconds. The cuckoo search provided 39%iofain
Iteration after more than 2 seconds.
number Gain Time (ms) On the other hand, we note, according to figur¢éhff the
1 147101 154 execution time of the cuckoo search exceeds thathef
10 159259 335 parallel dynamic programming using more than 4 dtise
(cores).
20 162461 511
30 170148 682
6000
40 177400 848
50 179768 1009 5000 \
60 184546 1171 \
70 186318 1332 \
4000
80 190262 1492
—o— Cuckoo Search
90 195556 1655
100 199739 1816 3000
110 201362 1978 — N+
2000
115 205472 2059 \.\ —— Parallel dynamic
120 205472 2140 rogrammin
125 205472 2219 1000 N :
—a—3
5. Comparison between paralledd dynamic 0
programming and cuckoo sear ch 2 4 8 16 B2
In the following, we will make a comparison between Figure 9. Comparison in terms of execution time

parallel dynamic programming and cuckoo search. The

cuckoo search meta-heuristic allowed the PU to gas72 The best execution time for parallel dynamic prograng is
after a run time of 2219 ms. This gain represeft 8f that Provided with 16 threads (722 ms).

obtained with dynamic programming (525573). With parallelism, dynamic programming (exact methbes
Figure 8 shows the obtained results by dynamigxceeded performance in terms of execution time wieta-
programming and cuckoo search in terms of gan‘s Thhot heuristic which is the cuckoo search. This reSﬂltVéry

a surprise for us; the exact method provided a gaime interesting because the dynamic programming always
interesting than meta-heuristic. provides the exact result (maximal gain in our Lasehing

that cannot be guaranteed by a meta-heuristic.
So we can affirm the following result: cognitive gimes
600000 ; ; _ it

typically using meta-heuristics can also use exaethods
with threads to guarantee both a better executime but
also the results accuracy.

500000

dynamic 6. Conclusion

400000 programming

In this paper, we have presented a parallel vergibn
dynamic programming applied in cognitive radio agc h
networks. To measure the performance of our cartidb,
we have used the multi-core architecture availailehe
polytechnic faculty of Mons, university of Mons Baim.
Our simulations approve the desired results, shgwin
significant gain in terms of execution time. The ima
objective is to allow a cognitive engine to use exact
method and to have better results compared to seeofi
meta-heuristics. Moreover, we compared the parallel
dynamic programming with the cuckoo search metaisig

0 - and we proved that with our parallel dynamic prograng,

1 in addition to having an exact result, we also haveery
important gain in terms of execution time. As perdjves,
Figure 8. Comparison in terms of obtained gain by the we aim to study parallel dynamic programming buthwi

PU. more criteria (multi-objective fithess functions)n this
paper, we have treated only channel prices asglesielling

M Cuckoo Search

300000 -

200000 -

100000 -
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criterion used by the PU. Other criteria may beigsayed
such as the allocation time or the transmissiorityuaVe
will also try to parallelize other exact methodsclsuas
branch and bound, cutting plane and branch and cut.
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