
196
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

A Parallel implementation on a Multi-Core
Architecture of a Dynamic Programming Algorithm

applied in Cognitive Radio Ad hoc Networks

Badr Benmammar1, Youcef Benmouna1, Asma Amraoui1, Francine Krief2

1LTT Laboratory, University of Tlemcen, Algeria

2LaBRI Laboratory, Bordeaux INP, Talence, France

Abstract: Spectral resources allocation is a major problem in

cognitive radio ad hoc networks and currently most of the research
papers use meta-heuristics to solve it. On the other side, the
term parallelism refers to techniques to make programs faster by
performing several computations in parallel. Parallelism would be
very interesting to increase the performance of real-time systems,
especially for the cognitive radio ad hoc networks that interest us in
this work. In this paper, we present a parallel implementation on a
multi-core architecture of dynamic programming algorithm applied
in cognitive radio ad hoc networks. Our simulations approve the
desired results, showing significant gain in terms of execution time.
The main objective is to allow a cognitive engine to use an exact
method and to have better results compared to the use of meta-
heuristics.

Keywords: Parallel computing, dynamic programming, cuckoo
search, cognitive radio ad hoc networks.

1. Introduction

The rapid development of wireless communications
increasingly leads to scarcity of spectrum due to the fixed
policy of frequency allocation. To solve this lack of spectral
resources, researchers thought to develop new wireless
communication technologies such as cognitive radio (CR).
CR is considered to be one of the most promising
technologies for future wireless communication networks
because it is based on the dynamic spectrum allocation and
therefore makes it possible to use it more effectively. CR
system uses its intelligence to optimize the user’s quality of
service by adapting its transmission parameters.
The idea of CR was officially presented in 1998 by Joseph
Mitola III in a seminar at KTH, the Royal Institute of
Technology, later published in an article by Mitola and
Gerald Q. Maguire Jr in 1999 [1]. CR is a form of wireless
communication in which a transmitter/receiver can
intelligently detect which communication channels are in use
and which are not, and can transfer to the unused ones. This
allows optimum use of the available radio frequencies in the
spectrum, whilst minimizing interference with other users
[2].
In CR, there are two types of users: primary users (PU),
those with assigned frequency bands and secondary users
(SU) who do not have a license. These will be through CR
allowed to use the free parts of the frequency bands of PUs
without harmful interference.
CR system requires four major functions that enable it to
opportunistically use the spectrum [3]. These functions
consist in the CR terminal’s main steps for spectrum
management. They are: spectrum sensing, spectrum decision,
spectrum sharing, and spectrum mobility.

Parallel computing is a type of computation in which the
execution of processes is carried out simultaneously. The
term parallelism refers to techniques to make programs faster
by performing several computations in parallel. This requires
hardware with multiple processing units. Parallel computing
is closely related to concurrent computing, they are
frequently used together, and often conflated, though the two
are distinct: it is possible to have parallelism without
concurrency (such as bit-level parallelism), and concurrency
without parallelism (such as multitasking by time-sharing on
a single-core CPU) [4].
Since the minimization of the task execution time in
cognitive radio ad hoc networks (CRAHNs) is very
important for increasing the performance of this type of
network, we are interested in this work to the implementation
of an exact method (dynamic programming) using multi core
architecture in CRAHNs. We also implement a meta-
heuristic (cuckoo search) and compare it to our dynamic
programming implementation in order to make a wider
validation of our contribution.
In this paper, we start by giving an overview on exact
methods and meta-heuristics. We will focus, in particular on
dynamic programming for the exact methods and cuckoo
search for the meta-heuristics. We will then establish a state
of the art on the use of dynamic programming and cuckoo
search in communication networks. Then, we present our
contribution in this paper which consists in implementing a
parallel dynamic programming algorithm on a multi-core
architecture applied in CRAHNs. We also implement cuckoo
search and compare it to our dynamic programming
implementation using threads. We conclude our work at the
end of the paper.

2. Resolution methods

In the literature, there are 2 types of algorithms. Exact
algorithms that find the optimal solution and can take an
exponential number of iterations and approximate algorithms
that produce a suboptimal solution and do not take an
exponential number of iterations.

2.1. Exact methods

Exact methods such as branch and bound [5], cutting planes
 [6] or dynamic programming, guarantee finding an optimal
solution of a problem for an instance of finite size in a
limited time and of prove optimality.
In this article we will use dynamic programming and it is for
this reason that we will present it in the following with a
state of the art on its application in communication networks.

197
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

2.1.1. Dynamic programming

Dynamic programming was first coined by Richard Bellman
in the 1950s [7], a time when computer programming was an
esoteric activity practiced by so few people. Back then
programming meant "planning" and "dynamic programming"
was conceived to optimally plan multistage processes.
Dynamic programming is a powerful technique that can be
used to solve many problems in time O(n²) or O(n3) for
which a naive approach would take exponential time.
Dynamic programming is a design paradigm that can be seen
as an improvement or adaptation of the divide-and-conquer
method except that unlike divide-and-conquer, the sub
problems with dynamic programming will typically overlap.
The effectiveness of this method is based on the principle of
optimality stated by the mathematician Richard Bellman:
"Every optimal policy is composed of optimal sub-policies".
The design of a dynamic programming algorithm consists of
four steps [8]:
• Characterization of the structure of an optimal solution.
• Recursive definition of the value of the optimal solution.
• Ascending calculation of the value of the optimal

solution.
• Construction of the optimal solution from the information

obtained in the previous step.
For instance, we can say that finding the shortest path in a
graph or the knapsack example are problems that can be
solved using dynamic programming.
The first property of dynamic programming corresponds to
being able to write down a recursive procedure for the
problem we want to solve. The second property corresponds
to making sure that this recursive procedure makes only a
polynomial number of different recursive calls.

2.1.2. Application of dynamic programming in
communication networks

In what follows, we will cite some works that have been
interested to the application of dynamic programming in
communication networks.
Fontes et al. have defined a dynamic programming approach
to solve optimally the single-source incapacitated minimum
cost network flow problem with general concave costs [9].
The new dynamic programming approach proposed by the
authors does not based on the type of cost functions
considered and on the number of nonlinear arc costs.
Computational experiments were performed using randomly
generated problems. The computational results reported for
small and medium size problems indicate the effectiveness of
the proposed approach.

Fonoberova et al. presents an approach for resolving some
power systems problems by using optimal dynamic flow
problems [10]. The classical optimal flow problems on
networks are prolonged and generalized for the cases of
nonlinear cost functions on arcs, multicommodity flows, and
time-and flow-dependent transactions on arcs of the network.
All network parameters are pretended to be dependent on
time. The algorithms for solving such kind of problems are
developed by using special dynamic programming
techniques based on the time-expanded network method
together with classical optimization methods.
Ilyas et al. have suggested the use of an operational and low-
complexity dynamic programming algorithm (DPA), which

is used in conjunction with four different route discovery
algorithms [11]. The authors accomplish complexity
analysis, statistical evaluation of changes in power
consumption rates effected, and verify spatial redistribution
of energy consumption of sensors in the network. The results
on multihop networks of 100 randomly placed nodes show
that, on average, the two best performing variants of DPA
yield a reduction of up to 28% and 36% in power
consumption rate variance at the cost of raising average
power consumption by 15% and 21%, respectively.
Computational complexities of DPA variants range from
O(N�) to O(N�), which is significantly lower than linear
search of the solution space of O(N!�). Analysis by diffusion
plots shows that DPA decreases power consumption of
sensors that experience the highest power consumption under
the shortest path routes.
In the area of interest (CRAHNs), there are few research
papers that have used dynamic programming. For example,
Liang et al. have proposed a dynamic programming based
power control algorithm with the consideration of primary
user’s QoS by a rate loss constraint criterion [12]. In the
suggested algorithm the occupancy for each subcarrier by
primary users is modeled as a discrete-time Markov chain
and the concept of rate loss constraint is used to guarantee
primary user’s desired rate. Simulation results show that the
proposed algorithm can obtain a maximum average data rate
over a finite time horizon and effectively guarantee primary
users’ QoS.
Wang et al. have presented a novel power allocation
algorithm to maximize the throughput under the bit error rate
(BER) constraint and the total power constraint in cognitive
radio [13]. Although water filling (WF) algorithm is the
optimal power allocation in theory, it ignores the fact that the
allocated power in use is discrete, and it doesn’t take the
waste power into consideration. In the improved algorithm,
the total power is asymmetrically quantized to apply to the
practice and reduce the computation complexity before
adopting the dynamic programming which is commonly used
to solve the knapsack problem, so this improved algorithm is
called as asymmetrically quantized dynamic programming
(AQDP). Moreover, AQDP reused the residual power to
maximize the throughput further. The simulation results
show that AQDP has improved the transmit throughput of all
CR users compared with the classical power allocation
algorithms referred as WF in this paper.
Gao et al. have discussed power and rate control schemes for
a single cognitive radio channel in the presence of licensed
primary radios (PRs) [14]. A dynamic programming based
algorithm is proposed to maximize the long-term average
rate for the CR link under constraints on the total energy
budget and the CR-to-PR disturbance. In the suggested
algorithm, the behavior of PRs is modeled as a two-state
Markov chain. Based on such a model, the optimal power
and rate control strategy for each time slot is derived, which
is a function of the energy level at the beginning of current
time slot and the previous behavior of PRs. Simulation
results show that the proposed algorithm can lead to an
important performance improvement in term of the long-
term average rate while keeping the probability of CR-to-PR
disturbance below a given level.

198
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

2.2. Approximate methods

Exact resolution methods ensure an optimal solution, but
their use in practice is very rare because of their complexity.
These methods can take a long time, especially when
problems are large. In some cases, the user may prefer a
reduced calculation time instead of an optimal solution. For
this purpose, approximate resolution methods are applied in
order to find an approximate solution to a problem and thus
to speed up the resolution process. In the literature, we speak
about heuristics and meta-heuristics. A heuristic comes from
the Greek word "heureka" which means "to find". It is an
approximate method that seeks good solutions that are close
to optimality in polynomial time. Faced with the difficulties
encountered by heuristics in obtaining a realizable solution
of good quality for difficult optimization problems, meta-
heuristics have appeared. They generally make it possible to
obtain a solution of very good quality for problems whose
methods are not known to be effective to treat them or when
the resolution of the problem requires a high time or a large
storage memory. Most meta-heuristics use random and
iterative processes as a means of gathering information and
exploring the search space. Meta-heuristics can be classified
in many ways. One can distinguish between local search
methods and global optimization methods. Others can
distinguish single solution methods and population of
solution methods.
Single solution methods use only one solution. Algorithms
such as: Hill climbing [15], simulated annealing [16] and
Tabu search [17] are part of this class of meta-heuristics.
Genetic Algorithms (GA) [18], Particle Swarm Optimization
(PSO) [19], Ant Colony Optimization (ACO) [20] and
Cuckoo Search (CS) algorithms are the best known examples
in methods that manipulate a population of solution. In this
article we will use cuckoo search and it is for this reason that
we will present it in the following with a state of the art on
its application in communication networks.

2.2.1. Cuckoo search
Cuckoo search (CS) is an optimization algorithm developed
by Xin-she Yang and Suash Deb in 2009 [21]. CS is one of
the latest meta-heuristic optimization algorithms; it is
inspired from the brood parasitism of some cuckoo species.
They lay eggs from other birds' nests and even remove host
eggs to increase the probability of their eggs getting hatched.
Three types of brood parasitism exist: Intra-specific,
cooperative breeding and nest takeover. Some species of host
birds simply throw out cuckoo’s eggs or even leave their nest
and put up a new one when alien eggs are discovered.
Certain cuckoo species are expert to imitate the color and
texture of the eggs of chosen host species, as a result of
which, the probability of their eggs to be abandoned reduces
and intensifies their reproductively.
In general the parasitic eggs hatch slightly earlier than that of
the host eggs. In addition, when the first cuckoo chick is
hatched, the first instinct action it will take is to evict the
host eggs randomly out of the nest for the sake of its own
existence and food. Studies also show that cuckoo chicken
imitates the sound of host chicken to gain access to more
feeding opportunity.
The cuckoo searches for food in a random manner; the next
move of this animal is based on the current location/state and

the transition probability to the next location. It explores
their landscape using a series of straight flight paths
punctuated by a sudden 90 degree turn, according to [21].
The cuckoo utilizes a search pattern called Lévy flight.

In the whole process, we consider these three conditions:
• One egg will be laid at a time by each cuckoo in any nest

chosen randomly.
• Nests that have better eggs are postponed to the next

generation.
• The probability that the host species discovers the

cuckoo's egg is within the probability range pa ∈ [0, 1]
and the total number of nests is fixed.

The cuckoo search algorithm starts with initial an initial
population of solutions generated randomly. When the host
species discovers the cuckoo’s egg in its nest, it will abandon
the nest or throw away that egg. The implementation of this
last point is done by replacing pa of worse nests and builds
new ones at new locations. Each egg corresponds to a
feasible solution and its fitness value is calculated.

Levy flights are more efficient than Brownial random
walks in exploring unknown, large-scale search space [22].
So, a new solution is formed using the concept of Lévy flight
(1)

��	
 + �=��	
+α ⊕ Lévy 	� (1)
Where α > 0 is the step size which should be related to the
scales of the problem of interests. In most cases, we can use
α = 1. The above equation is essentially the stochastic
equation for random walk. In general, a random walk is a
Markov chain whose next status/location only depends on
the current location (the first term in the above equation) and
the transition probability (the second term). The product ⊕
means entrywise multiplications. This entrywise product is
similar to those used in particle swarm optimization, but here
the random walk via Lévy flight is more efficient in
exploring the search space as its step length is much longer
in the long run.
The Lévy flight essentially provides a random walk while the
random step length is drawn from a Lévy distribution (2):

Lévy ∼ u = t −λ; 1 < λ≤3 (2)
An efficient nonlinear relationship of variance of Lévy flight
(3) is used to explore large unknown search spaces.

 ��	
~
���; � ≤ � ≤ � (3)

The CS algorithm can be summarized as follow [21]:
 Begin
 1: Define objective function f (x), x = (x1, x2, ..., xd)
 2: Initial a population of n host nests xi (i=1,2,...,n)
 3: While ((t < MaxGeneration) or (stop criterion)) do
 4: Get a cuckoo (say i) randomly and generate a new
 solution by Lévy flights
 5: Evaluate its quality/fitness Fi

 6: Choose a nest among n (say j) randomly
 7: if (Fi > Fj) then
 8: Replace j by the new solution
 9: end
10: Abandon a fraction (pa) of worse nests and build new

ones at new locations
11: Keep the best solutions (or nests with quality solutions)
12: Rank the solutions and find the current best
13: end while
14: Post process results and visualization
End

199
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

2.2.2. Application of cuckoo search in communication
networks

Few studies are interested in the application of CS in
wireless sensor networks and vehicular ad hoc network.
However, we have not found credible work using CS in
cognitive radio networks.
Dhivya et al. have used CS to aggregate data in wireless
sensor network [23]. In the recommended technique, the
least energy nodes are formed as clusters for sensing the data
and high energy nodes as Cluster Head for communicating to
the Base Station (BS). The modified CS is suggested to get
enhanced network performance incorporating balanced
energy dissipation and results in the formation of optimum
number of clusters and minimal energy consumption. The
feasibility of the scheme is manifested by the simulation
results on comparison with the traditional cluster based
routing methods. Cheng et al. have introduced an effective
CS algorithm for node localization in wireless sensor
network [24]. Based on the modification of step size, this
approach enables the population to approach global optimal
solution rapidly, and the fitness of each solution is employed
to build mutation probability for avoiding local convergence.
In addition, this approach restricts the population in the
certain range so that it can prevent the energy consumption
caused by important search. Extensive experiments were
conducted to study the effects of parameters like anchor
density, node density and communication range on the
proposed algorithm with respect to average localization error
and localization success ratio. Furthermore, a comparative
study was conducted by the authors to realize the same
localization task using the same network deployment.
Experimental results show that the proposed CS algorithm
can not only increase convergence rate but also reduce
average localization error compared with standard CS
algorithm and particle swarm optimization algorithm.
Ramakrishnan et al. have suggested a design of adaptive
routing protocol based on CS algorithm in vehicular ad hoc
network [25]. This new protocol integrates the features of
both topology routing and geographic routing protocols
which ensures the secured transmission of data with less
delay and high packet delivery ratio. The proposed algorithm
provides reliable and secure routes between source and
destination node with optimal distance and low routing
overheads. This algorithm uses a local stochastic
broadcasting to find routes which reduces the network
congestion thereby improving the packet delivery ratio.

3. Our implementation of parallel dynamic
programming on a multi-core architecture
in CRAHNs

In Amraoui et al. [26], we have already used dynamic
programming in order to solve the spectrum allocation
problem in CRAHNs. The algorithm was applied with the
first-price sealed-bid auction (FPSBA). Our CRAHNs
consisted of only 1 PU and n SU. The objective of the PU is
to maximize its gain. So, there is only one PU who shares its
spectrum and several SU who need to ensure free channels
for assuring the quality of their application.
Figure 1 illustrates the scenario that was dealt in Amraoui et
al.

Figure 1. Proposed scenario in Amraoui et al.

For example, in figure 1, there are 3 SUs who want to access
to the free resources at PU1. However there are only 4 free
resources at PU1 which is not sufficient to serve the needs of
all SUs (1+2+2 = 5 required resources). So which of SU1 or
SU2 or SU5 will access to the spectrum? To solve this kind
of problem, we have used dynamic programming.
To measure performance, we have used in Amraoui et al. a
simple machine (laptop with 4GO of RAM). The number of
SU was limited to 5 and the number of channels available on
the PU side was limited to 4. The execution time was too
short (3 milliseconds (ms)). In fact, we have treated a simple
matrix of size 5*4. The execution time will multiply by 1000
(3 seconds) by increasing the number of SU to 12000 and the
number of available channels on the PU side to 15000. This
is the maximum capacity of our machine (processing a
matrix of integers of size 12000*15000). In a real-time
system like cognitive radio networks, 3 seconds is
unacceptable.
However, and in order to improve this time and therefore,
increase network performance, we propose in this paper an
improvement of the algorithm proposed in Amraoui et al.
using threads. We also aim to guarantee scalability. Indeed,
having a fairly large number of users and communication
channels is a scenario that will soon happen with the
emergence of IoT (Internet of things) [27]. It should also be
noted that CR is a promising enabler communication
technology for IoT [28].
For our current work, we have used the multi-core
architecture available at the polytechnic faculty of Mons,
university of Mons Belgium [29]. We have used 32G of
RAM with 32 cores (threads). In this case, we were able to
process a matrix of size 30000*50000. 30000 is the number
of SU, 50000 is the number of channels available on the PU
side.
The code of dynamic programming implemented on the PU
side in Amraoui et al. is as follows:
 Function COUT (W, C, m)
 Begin
 1: n = C.length
 2: for j = 0 to m do
 3: T[0][j] = 0
 4: end for
 5: for i =1 to n do
 6: for j=1 to m do
 7: if (j>=W[i-1])
 8: T[i][j] = max(T[i-1][j],

200
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

 T[i-1][j-W[i-1]] + C[i-1])
 9: else
10: T[i][j] = T[i-1][j]
11: end if
12: end for
13: end for
14: return T[n] [m] // The total cost obtained by the PU
End
n is the number of SUs.
m is the number of free channels at PU.
W is an array of size n.
W[i] is the number of requested channels by SUi.
C is an array of size n.
C [i] is the proposed price for W [i] by SUi.
The increasing monotonic function to be optimized is:
Max ∑ �[�]�

� ! ∗ #�.
The constraint is ∑ $[�]�

� ! ∗ #� ≤ %.
xi is a binary values. If it is equal to 1 it means that the SUi is
part of the solution (there is a spectrum that has been
assigned to SUi). xi is equal to 0 otherwise.
T is a matrix of size n*m.
T [n] [m] is the maximum gain obtained by the PU.
As shown in figure 2, the matrix on which the previous
program is working is of size n*m (see matrix T in the
previous code).
The code runs row by row and the result of the next row will
depend on that of the previous row.

Figure 2. Matrix of size n*m.

As we have already explained, dynamic programming is an
optimization approach that transforms a complex problem
into a sequence of simpler problems; its essential
characteristic is the multistage nature of the optimization
procedure.
In the case of 4 threads for example (see figure 2), our idea is
to run the first thread on the first row of the matrix, the
second thread on the second row, the third thread on the third
row, and so on. But as the processing of the second thread
depends on the result of the first thread and the processing of
the third thread depends on the result of the second thread
and so on. The second thread will be launched on the second
row when the first thread has processed m/4 cells of the first
row of the matrix (4 here is the number of thread). The third
thread will be launched on the third row when the first thread
has processed 2*m/4 cells of the first row. The fourth thread
will be launched on the fourth row when the first thread has
processed 3*m/4 cells of the first row. Thereafter, the first
thread will continue to work on the 5th row. The second

thread will continue to work on the 6th row, the third thread
on the 7th row and the 4th thread on the 8th row and so on
until the whole matrix runs.
The delay between the launch of the threads (time required to
process m/4 cells of the first row) is always the same because
the four threads handle similar sub problems. The following
function represents the behavior of the dynamic
programming but on a single row i and between the columns
of index begin and end.
Function dynamic (i, begin, end)
Begin
1: for j=begin to end do
2: While (T[i-1][j]==-1) do sleep(0)
 // To synchronize two successive threads. In the case
 // of 4 threads for example, the 3rd thread must not
 // exceed the 4th thread
3: End while
4: if (j>=W[i-1]) then
5: T[i][j]= max(T[i-1][j],T[i-1][j-W[i-1]] + C[i-1])
6: else
7: T[i][j]= T[i-1][j]
8: end if
9: end for
End

The thread implementation is represented by the following
function.

 Function run ()
 Begin
 1: n=C.length // The size of the matrix C represents the
 // number of SUs
 2: if (row==1) then // Only for the first thread
 3: dynamic(1,1,m/nbthread) // Launching the first thread
 // on the first m/nbthread cells
 4: Dyn thread=new Dyn(2, m, C, W, nbthread)
 // Create a thread to work on row 2
 // Dyn is the constructor of the thread
 5: thread.start() // Run the second thread's run method
 6: for k=1 to nbthread-2 do
 7: dynamic(1,k*m/nbthread+1,(k+1)*m/nbthread)
// The first thread always works on a part of cells of size //
m/nbthread
8: thread =new Dyn(k+2, m, C, W, nbthread)
// Create the (nbthread-2) threads to work on the
// corresponding rows
9: thread.start() // Run the thread's run method
10: end for
11:dynamic(1,(nbthread-1)*m/nbthread+1,m)
// The first thread continues to work on the last part of the first
// row
12: row=row+nbthread
//The first thread processes the matrix with a nbthread step
13: while (row<=n) do
14: dynamic(row,1,m)
//The first thread processes the entire row
15: row=row+nbthread
16: end while
17: else // For all threads that have already been started by
// the first thread
18: dynamic(row,1,m)
// The thread processes the entire row
19: row=row+nbthread
// The thread processes the matrix with a nbthread step
20: while (row<=n) do
21: dynamic(row,1,m)

T1

T1

T2

T2

T3
T4

T3
T4

T2↓ T3↓ T4↓ m columns

n rows

T1↓

201
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

// The thread processes the entire row
22: row=row+nbthread
23: end while
24: end if
End

The following main program is used to run nbthread threads.
 Function main ()
 Begin
 1: nbthread=2 // 4, 8, 16 or 32
 2: m=50000 // number of channels available on the PU
 // side
 3: n=30000 // number of SU
 4: row=1
 5: T : array of size (n+1)*(m+1)
 6: for j=0 to m T[0][j]=0 end for // There is only the first
 // row of T that is initialized to 0
 7: for i=1 to n do
 8: for j=0 to m do T[i][j]=-1 end for // Initialize the
 // remainder of T to synchronize two
 // successive threads
 9: end for
10: W : array of size n
11: for i=0 to n-1 do W[i]= i/1000+10 // number of channels
12: end for
13: C : array of size n
14: for i=0 to n-1 do C[i]= i/100+100 // price
15: end for
16: Dyn T1=new Dyn(row, m, C, W, nbthread) // The first
 // thread works on the first row
 // T1 will then launch the other threads
17: T1.start() // launching the run method
End

To compare correctly, we used the same matrices C and W
whatever the number of threads. So, we avoided generating
the two matrices in a random way. The following table
shows the obtained results for 1, 2, 4, 8, 16 and 32 threads
respectively.

Table 1. Obtained results.
Number of

threads
Execution
time (Ti)

Reduction
rate (Ri)

Improvement
ratio (Ii)

1 5656 ms 0 1

2 3106 ms 45,08% 1,82

4 1614 ms 71,46% 3,50

8 880 ms 84,44% 6,42

16 722 ms 87,23% 7,83

32 768 ms 86,42% 7,36

Ri = (T1-Ti) / T1: the reduction rate obtained with the use of
multiple threads related to the use of a single thread.
Ii=T1/Ti: the improvement ratio obtained with the use of
multiple threads related to the use of a single thread.
For the different executions (whatever the number of
threads), the gain obtained by the PU is equal to 525573. It is
always the same because it is an exact method.
We note that the execution time for 32 threads was not
improved compared to the case of 16 threads. Using more
threads does not necessarily decrease execution time. Indeed,
with a large number of threads, we have more parallelism
and therefore more communications that impact the
execution time.
The following three figures represent the obtained results.

Figure3. Execution time related to the number of threads.

Figure 4. Reduction rate related to the number of threads.

Figure 5. Improvement ratio related to the number of
threads.

The best results are obtained with 16 threads. The execution
time is reduced to more than 87% compared to the use of a
single thread and the improvement ratio is greater than 7.
The improvement ratio which is equal to 7.83 (in the case of
16 threads) is very interesting because for a cognitive engine
that does a processing of 1 minute using one thread; this
processing can be done in less than 8 seconds using 16
threads.

0

1000

2000

3000

4000

5000

6000

1 2 4 8 16 32

Execution time

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32

Reduction rate

0

1

2

3

4

5

6

7

8

9

1 2 4 8 16 32

Improvement ratio

202
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

To validate even more the obtained result, we have
implemented the same problem of spectrum allocation with a
meta-heuristic. For that we opted for the Cuckoo Search
(CS). We made this choice because it is possible that we will
encounter a scenario in which the cognitive user will be
interested much more by the execution time than by the
obtained gain. A meta-heuristic is faster than an exact
method, but its result is less exact than that of the exact
method.
The advantage of cuckoo search algorithm is that the number
of tuning parameters is very less when compared to other
algorithms like genetic algorithm or particle swarm
optimization and hence can be easily applied to a wider
range of optimization problem [30].

4. Our implementation of CS in CRAHNs

For our implementation with CS, each nest represents a
solution for the spectrum allocation problem and a
population of nest is used for finding the best solution of the
problem. The formulation of the problem is the same that
was used for dynamic programming. So, the increasing
monotonic function to be optimized is: Max ∑ �[�]�

� ! ∗ #�
and each newly obtained solution should be satisfied
according to the constraint: ∑ $[�]�

� ! ∗ #� ≤ %.
Where : n is the number of SUs. m is the number of free
channels at PU. W is an array of size n, W[i] is the number of
requested channels by SUi. C is an array of size n, C[i] is the
proposed price for W [i] by SUi.

A population of N host nests is represented by S = [S1,
S2,…..,SN] where each nest Si=[x 1,x2,.,…,.,xn] represents a
solution for the spectrum allocation problem.
xi is a binary values. If it is equal to 1 it means that the SUi is
part of the solution (there is a spectrum that has been
assigned to SUi). xi is equal to 0 otherwise.
The problem often encountered with meta-heuristics is the
initialization of the parameters used for the simulation. So
we started by choosing the size of the initial population as
well as the number of iteration used to ensure the
convergence of the meta-heuristic.
To choose the size of the initial population, we varied it from
25 to 200 with a step of 25. We chose the value of 0.1 for pa
and 300 iterations for each population size. We also perform
10 simulations for each population size and we calculate the
average of all the values found in order to make a good
estimation of the obtained results. Table 2 shows the
obtained results.
Table 2. Gain related to the population size.

Population
size Gain

Convergence
interval

25 179550 70-80

50 180109 60-70

75 191166 90-100

100 205472 115-125

125 176898 75-85

150 188550 80-90

175 180459 70-80

200 196511 105-115

Note that regardless of the population size, the CS converges
in all cases between 60 iterations (minimum value) and 125
iterations (maximum value).

Figure 6. Gain related to the population size.
In the previous figure, we note that the maximum gain
obtained by the PU corresponds to an initial population size
equal to 100. In this case, the convergence is between 115
and 125 iterations. The gain obtained by the PU is equal to
205472. It is calculated at iteration number 125 (at the end of
the convergence).
In the following, and in order to solve the spectrum
allocation problem with CS, we set the initial population size
to 100 and we use 125 iterations (to ensure the convergence
of the meta-heuristic). The following table shows the
obtained result step by step in terms of obtained gain by the
PU and execution time.
Figure 7 shows the convergence interval between the two
iterations 115 and 125. In this case, the PU obtained a gain of
205472 after a run time of 2219 ms.

Figure 7. Obtained gain by the PU related to the number
of iteration.

0

50000

100000

150000

200000

250000

25 50 75 100 125 150 175 200

0

50000

100000

150000

200000

250000

1 20 40 60 80 100 115 125

Gain

Iteration

203
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

Table. 3 Obtained result in terms of obtained gain by the PU
and execution time.

5. Comparison between parallel dynamic
programming and cuckoo search

In the following, we will make a comparison between
parallel dynamic programming and cuckoo search. The
cuckoo search meta-heuristic allowed the PU to gain 205472
after a run time of 2219 ms. This gain represents 39% of that
obtained with dynamic programming (525573).
Figure 8 shows the obtained results by dynamic
programming and cuckoo search in terms of gain. This is not
a surprise for us; the exact method provided a gain more
interesting than meta-heuristic.

Figure 8. Comparison in terms of obtained gain by the
PU.

Concerning the execution time, the dynamic programming
provides the maximum gain with a single thread after more
than 5 seconds. The cuckoo search provided 39% of this gain
after more than 2 seconds.
On the other hand, we note, according to figure 9, that the
execution time of the cuckoo search exceeds that of the
parallel dynamic programming using more than 4 threads
(cores).

Figure 9. Comparison in terms of execution time

The best execution time for parallel dynamic programming is
provided with 16 threads (722 ms).
With parallelism, dynamic programming (exact method) has
exceeded performance in terms of execution time of a meta-
heuristic which is the cuckoo search. This result is very
interesting because the dynamic programming always
provides the exact result (maximal gain in our case), a thing
that cannot be guaranteed by a meta-heuristic.
So we can affirm the following result: cognitive engines
typically using meta-heuristics can also use exact methods
with threads to guarantee both a better execution time but
also the results accuracy.

6. Conclusion

In this paper, we have presented a parallel version of
dynamic programming applied in cognitive radio ad hoc
networks. To measure the performance of our contribution,
we have used the multi-core architecture available at the
polytechnic faculty of Mons, university of Mons Belgium.
Our simulations approve the desired results, showing
significant gain in terms of execution time. The main
objective is to allow a cognitive engine to use an exact
method and to have better results compared to the use of
meta-heuristics. Moreover, we compared the parallel
dynamic programming with the cuckoo search meta-heuristic
and we proved that with our parallel dynamic programming,
in addition to having an exact result, we also have a very
important gain in terms of execution time. As perspectives,
we aim to study parallel dynamic programming but with
more criteria (multi-objective fitness functions). In this
paper, we have treated only channel prices as a single selling

0

100000

200000

300000

400000

500000

600000

1

Parallel

dynamic

programming

Cuckoo Search

0

1000

2000

3000

4000

5000

6000

1 2 4 8 16 32

Cuckoo Search

Parallel dynamic

programming

Iteration
number Gain Time (ms)

1 147101 154

10 159259 335

20 162461 511

30 170148 682

40 177400 848

50 179768 1009

60 184546 1171

70 186318 1332

80 190262 1492

90 195556 1655

100 199739 1816

110 201362 1978

115 205472 2059

120 205472 2140

125 205472 2219

204
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

criterion used by the PU. Other criteria may be envisaged
such as the allocation time or the transmission quality. We
will also try to parallelize other exact methods such as
branch and bound, cutting plane and branch and cut.

References

[1] J. Mitola, G. Q. Maguire. "Cognitive radio: making
software radios more personal." IEEE personal
communications, Vol. 6, No. 4, pp. 13-18, 1999.

[2] B. Benmammar, A. Amraoui, F. Krief. "A survey on
dynamic spectrum access techniques in cognitive radio
networks." International Journal of Communication
Networks and Information Security, Vol. 5, No 2, pp.
68, 2013.

[3] Ian F. Akyildiz et al. "NeXt generation/dynamic
spectrum access/cognitive radio wireless networks: A
survey." Computer networks, Vol. 50, No 13, pp. 2127-
2159, 2006.

[4] G. S. Almasi, A. Gottlieb. "Highly parallel computing".
1988.

[5] A. H Land, A. G. Doig. "An automatic method of
solving discrete programming problems."
Econometrica: Journal of the Econometric Society, pp.
497-520, 1960.

[6] R. Gomory. An algorithm for the mixed integer
problem. No. RAND-P-1885. RAND CORP SANTA
MONICA CA, 1960.

[7] R. Bellman. "Dynamic programming and Lagrange
multipliers." Proceedings of the National Academy of
Sciences. Vol. 42. No 10, pp. 767-769, 1956.

[8] H. M. Pande. Design analysis and algorithm. Firewall
Media, 2008.

[9] D. BMM Fontes, E. Hadjiconstantinou, N. Christofides.
"A dynamic programming approach for solving single-
source uncapacitated concave minimum cost network
flow problems." European Journal of Operational
Research Vol. 174. No. 2. pp. 1205-1219, 2006.

[10] M. Fonoberova. "Algorithms for finding optimal flows
in dynamic networks." Handbook of Power Systems II.
Springer Berlin Heidelberg. pp. 31-54. 2010.

[11] M. U. Ilyas, H. Radha. "A dynamic programming
approach to maximizing a statistical measure of the
lifetime of sensor networks." ACM Transactions on
Sensor Networks (TOSN). Vol. 8. No. 2, pp. 18, 2012.

[12] H. Liang, Hui, X. H. Zhao. "Dynamic programming
based power control algorithm with primary user QoS
guarantee for cognitive radio networks." Chinese
Journal of Electronics. Vol. 22. No. 2, pp. 353-358.
2013.

[13] Q. Wang et al. "An Improved Dynamic Programming
for Power Allocation in Cognitive Radio." Information
Technology and Intelligent Transportation Systems.
Springer International Publishing, pp. 43-51, 2017.

[14] L. Gao, W. Peng, S. Cui. "Power and rate control with
dynamic programming for cognitive radios." IEEE
GLOBECOM 2007-IEEE Global Telecommunications
Conference. IEEE, 2007.

[15] S. J. Russell et al. Artificial intelligence: a modern
approach. Vol. 2. Upper Saddle River: Prentice hall,
2003.

[16] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi.
"Optimization by simmulated annealing." science Vol.
220, No.4598, pp. 671-680, 1983.

[17] F. Glover. "Tabu search-part I." ORSA Journal on
computing. Vol. 1. No. 3. pp. 190-206. 1989.

[18] J. H. Holland, "Genetic algorithms." Scientific
American. Vol. 267.No. 1. pp. 66-72. 1992.

[19] R. C. Eberhart, J. Kennedy. "A new optimizer using
particle swarm theory." Proceedings of the sixth
international symposium on micro machine and human
science. Vol. 1. 1995

[20] M. Dorigo, V. Maniezzo, A. Colorni. "Ant system:
optimization by a colony of cooperating agents." IEEE
Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics). Vol. 26. No. 1. pp. 29-41. 1996.

[21] X. S. Yang, S. Deb. "Cuckoo search via Lévy
flights." Nature & Biologically Inspired Computing,
2009. NaBIC 2009. World Congress on. IEEE, 2009.

[22] X. S. Yang, Nature-inspired metaheuristic algorithms.
Luniver press, 2010.

[23] M. Dhivya, M. Sundarambal. "Cuckoo search for data
gathering in wireless sensor networks." International
Journal of Mobile Communications. Vol. 9. No. 6, pp.
642-656. 2011.

[24] J. Cheng, L. Xia. "An Effective Cuckoo Search
Algorithm for Node Localization in Wireless Sensor
Network." Sensors. Vol. 16. No. 9. pp. 1390. 2016.

[25] B. Ramakrishnan, S. R. Sreedivya, M. Selvi. "Adaptive
routing protocol based on cuckoo search algorithm
(ARP-CS) for secured vehicular ad hoc network
(VANET)." International Journal of computer networks
and applications (IJCNA). Vol. 2. No. 4. pp. 173-178.
2015.

[26] A. Amraoui, B. Benmammar, F. Krief, F. T.
Bendimerad. Auction-based Agent Negotiation in
Cognitive Radio Ad Hoc Networks, Fourth
International ICST Conference, ADHOCNETS 2012,
Paris, France, October 16-17, 2012, Revised Selected
Papers Series: Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering, Vol. 111. pp. 119-
134, Springer Edition, 2013.

[27] D. Lavrova, A. Pechenkin. "Applying Correlation and
Regression Analysis Methods for Security Incidents
Detection in the Internet of Things." International
journal of communication networks and information
security (IJCNIS). Vol. 7. No. 3. pp. 131-137. 2015.

[28] P. Rawat, K. D. Singh, and J. M. Bonnin. "Cognitive
radio for M2M and Internet of Things: A
survey." Computer Communications. Vol. 94, pp. 1-
29. 2016.

[29] http://www.ig.fpms.ac.be/fr/content/cluster-de-calcul-ig
[30] B. M. Tharik. "A comparative study of firefly algorithm

and cuckoo search algorithm in optimizing turning
operation with constrained parameters." International
Journal of Engineering Research and Technology. Vol.
2. No. 4. ESRSA Publications, 2013.

