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Abstract: Missing traffic is a commonly problem in large- There are three focusses of this research, whieh tae
scale network. Because the traffic information meded by reconstruction of the missing traffic matrix (TM}he
network engineering task for network monitoringerth are detection of link sensitivity, and the detection tine
several methods that recover the missing problenthis paper, sensitivity.
we proposed missing internet traffic reconstructioased on \y/e compare 4 CS reconstruction methods, which are
compressive sampling. The main contributions of gtudy are as Sparsity Regularized Singular Value Decomposition
follows: (i) explore the influence of the six misgipatterns on the (SRSVD) [1], L1 norm optimization [12], lteratively
performance of the traffic matrix reconstructiomgaithm; (ii) . ’ ’ .

Reweighted Least Square (IRLS) [13], Orthogonal diatg

trace the link sensitivity; and (iii) detect thené sensitivity of the . : L
network. Using Abilene data, the simulation resutow that Pursuit (OMP) [14]. To compare with standard tinegies

compressive sampling can perform internet traffionitoring analysis method, we use Interpolation techniqlie[15].
such as reconstruction from missing traffic, figlinink We apply various missing patterns as cases on t¢hela
sensitivity, and detecting time sensitivity. network. This missing scenario is randomly chosdth w
missing probability from 0.01-0.98. This observatams to
obtain whole internet traffic information from tHamited
source.
1. Introduction In this paper, the row of TM represents a connedbietween

_ ) _ nodes, whereas column represents the time series of
Nowadays, the growth of internet network increas@idly.  ,pservations. Link sensitivity indicates how a aertlink
As a result of this growth, network monitoring bew@Ss il affect the traffic on the whole network. Wemeve a
extremely difficult. Network monitoring is a proef 4, of TM one by one in order to know the sensitdfea
collecting and analyzing information from a netwakd oy that is currently influence the results of nesmuction.
utilize this information for managing the netwodsources peatection link sensitivity has a purpose of detaing the

effectively. The information that can be used fqmitori_ng best path that can be passed over the networksafaté the
are, such as traffic, packet loss, delay, etc. Tf@mation o4 jinks that cause the anomaly.

can be obtained from direct measurement of netderkces  Time sensitivity indicates how a certain part o time will
such as routers or switches. The measurement Sesilf ence the whole network. In this paper, we dome by
indicate information flow in a set of links betwesource ;e the column of TM in order to know which is very
nodes to destination nodes. The links connect duesIin  yominant on the results of reconstruction. Thisinfation is
_the network topology. In real_|ty, such informatiomay be very useful for decision-making in the network isegs.
incomplete due to nodes or links damages. Theefdis  This paper is arranged in a systematic Sectionotsws.
important to recover accurately information oflalks from e related work on CS approaches for network rodini
incomplete measurement because many network emgigee js presented in Section 2. Section 3 points outréisearch
tasks involved these information that very sensittd methods. The experiment results obtained from sitiar

mis.sing information. ) . ) using Matlab are given in Section 4. Finally, casabns are
A simple method to estimate the missing informai®local provided in the last Section, also the future work.

interpolation. It can recover the missing inforroatiat any

position based on the known information. Some metea 2. Related Work

have participated in this area, such as K-Nearesghbors . o o

(KNN) [1], interpolation [2], [3]. These methodswveagood Studies on CS applications for network monitoriragl theen

performance only for estimating low missing protiggibut  done, for example, by Roughan et al. [1], and Cre¢ral.
perform poorly when high missing probability occurs [16]. Roughan et al. proposed Sparsity Regularidedrix
Nowadays, there is an emerging method for recogetata Facto_rlzatlon (SRMF) for solving various of TM issu
from incomplete information named Compressive Sargpl COVering network tomography, detection an anomatyd

(CS). CS can recover missing values of a signédraas that Prediction of traffic [1]. In [16], Chen, et al. gposed LEN
signal is sparse [4], [5], [6]. Since sparse or poEssible decomposmor] technique that ena_\bles to pr_esenhlssﬁmg
signals are involved in many applications, CS hasnb data, calculation errors and traffic anomalies fetwork

employed in various fields such as image recongtnuig7],  2nalytics. _ o

direction of arrival estimation [8], radar deteetif9], [10], Huibin et al. used spatial traffic S|m|Iar|t3_/ a_ndmporal
waveform recovery [11], network traffic monitorifigj, etc. ~ Smoothness feature to reconstruct the missingidraifd
In this paper, we concentrate on the observatiofaaifs in "€POrted that CS has the capability of reconstngothissing

the network and solve these problems with CS teglei traffic up to 98% from the total traffic with error
reconstruction below 32% [17]. Nie et al.,, devebbpa

Keywords.  missing traffic, compressive  sampling,
reconstruction, link sensitivity, time sensitivity
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method to fix traffic from end to end increasinglgcurate we have the instantenous traffic matr¥, reshaped

using Flow Sensing Reconstruction (FSR) [18]. instantenous traffic matri¥’, and traffic matrix X which
In traffic anomaly (for example, unusual trafficikgs on are

several links), CS can detect, identify, and quignthe Y11 Y12 Y13

anomaly [19], [20], [21], [22]. Lakhina, et al.eicted the Y= [1/)21 L1298 1/)23], Q)
anomaly of time series traffic matrix using Priradip Wi W3y Y33

Component Analysis (PCA) [19]. This method does not

associate temporal correlation between the timesemn 2%

another work [20], the authors improved by detertamd Py

localizing congested links using greedy iteratidgogthm. Paq

In [21], Bandara, et al., proposed adaptive CS dchteves T

99% fault detection rate for network fault locatipa. P =|y,,|, @)
Davina, et al., study a complex correlation to desdtacks Vay

on the large-scale network [23]. Wi

In network tomography, CS provides internal perfance y

and QoS characteristics of a network using infoiomafrom 2

endpoint data [21], [24], [25]. Vardi created antemetwork P33

tomography that indicates to the issue of approtinmga _ -

traffic matrix from link measurement on the netwgg4]. Yria Vi Pur

He used Poisson distribution to represent traffatrix, but Yarg Y21z o Yaur

this method can not always model the real conditdn ' ' ' '

network traffic. In [25], the authors solved theiplems of X = ' ' ' ' 3)

link delay estimation in the congested network gskast
Reference-based Algorithm for Network Tomographg vi
Compressive Sensing (FRANTIC) algorithm.

In traffic forecasting, Principal Component Anak/¢PCA)

predicted the traffic that flows between sourcetidasion in Y331 P3zz o WYzl
the network for future user demands [26]. This pape

showed low effective rank in measurements usingpteai W22
matrix traffic. 4

3. Research Method

There are several parameters that can be observend i
network, such as the traffic flow, packet delayd @ackets
loss. These parameters are used to monitor angzentde
quality of the network.

Traffic is the amount of data that traverses inrith&vork. It WYii
often happens that due to nodes (routers or sereburst
down or links break, there is some missing trafficertain
nodes or links at a certain time. Missing traffit modei at
time j will correspond to a loss value on traffic matek
(i,j) position. Detail description on traffic matrix Wibe
discussed in the next section.

3.1 Traffic Matrix Representation As discussed previously, anyi, j) represents a traffic link

Traffic flow on a network that has nodes at a certain time from nod.e L to noFie J- lt. 'S Mmore convenience o
can be represented as a matixwith dimension ofn x n. rer)umtl)(erllngkall thi I'nLK;/’])’l. ;Lllilz’— '1'"2n; I= 21%
An element(i, j) on¥ represents traffic flow from nodeto r;},_lnto e lint nurr;} e( ff? wit 'X_ ' b 3 ' S'gg
nodej. This matrixW¥ is called instantenous traffic matrix. 'S conv.entu.)n,.t e traffic matrl ijk Can De epote as
Since the observation of traffic flow is done oeecertain Xtvx Which indicates the traffic at lirkLN at time k.
time interval (AT) and updated regularly, then it is Table 1 shows an example of link number assignraéat

convenience to rearrange the mat#xof dimensiomn x n~ Network in Figure 1. _ .

W33
Figurel. A network with 3 nodes

3.2 Link Numbering Assignment

1. Mathematically, any elemeit(i, j) € W is translated into Link (i, ) Link Number Assignment
Y@, 1) ePwherep=i+nx(—1);i=12,..,n and (1,1) 1
j =12, .., n. As the observation is done on regular time @n 2
interval T, (k = 1,2, ..., T), the traffic matrix® at each G 3
time interval T, can be collected column-wise to produce (;'5) g’
n? x T link-time traffic matrixX. Any columnk of matrix X E3:23 6
represents the traffic of network at tirae (1,3) 7
Consider a simple example of a network consistihthiee (2,3) 8
nodes as shown in Figure 1. Using this particukstwork, (3.3 9
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3.3 Missing Pattern

Generally, traffic measurement on a network mayoanter
incomplete data sincknks or nodes can f; which yields
missing values. n this paper, we evalui six kinds of
missingpatterns on traffic matrix as shown in Figure

a)

b)

d)

f)

Missing Row Elements (MRE): this event simulate
the loss of randomly selected TM elements fror
random row. The row is randomly chosen, and the
elements in the row are randomly chosen with mig
probability p. This simulation illustrates the quality
the certain link stat at a specific tim

Missing Column Elements (MCE): this simulates the
loss by selecting a column randomly and missing
elements from it at random with missing probabip.
This simulation illustrates some missing data e¢ain
time. This events caused, for example, by overload
at router data monitoring.

Missing Rows at Random (MRR): this simulates the
loss by selecting entire rows randomly with miss
probability p. This event ilustrates some links failure
routers down for a long time.

Missing Columns at Random (MCR): this simulates
the entire column loss that selected randomly '
missing probabilityp. There is no data at a certain tir
In real situation, this case corresponds to thevat
breaks down or the software for nitoring in router
fails.

Missing Elements at Random (M ER): this simulates
missing elements of TMat random with missin
probability p. This represents data loss on a partic
link in a certain time.

Combine Missing Patterns (CM P): this simulation is
combination of missing rowsmissin¢ columns, and
missing elements. Eacmissing component is chos
randomly with missing probability.

[X1,1 X1,2 X1,r [X1,1 X1,2 X1,T
X21 X22 X2, X2,2 X2,T
X3.1 X3,1 X3 X3T
=|¥131 X132 ..X13T X =|%131 X132 ..X137T
X251 X252  X257T “1 X252  X257T
| X1441X1442 X1447T] 1 X144,1%1442  X144,T ]
(a). MRE (b). MCE
[X1,1 X1,2 X1, ] (X1 X122 X4r
X21 X272 X2,T N1 X2.2 XAT
B s —— e X1 X322 XA
=|%131 X132 ..X13T X =|*31 *132 ..XBT
S ——s Y51 X252 XET
[X144,1X144,2  X144,T ] | Xf44,1X144,2  Xffaa,T]
(c). MRR (d). MCR
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1,1 X122 ]
” X372 X1
31 X3.2 X371
X =|X131 * Sk X =
X251 X252  XogT
,x144,1x“2 X447
(e). MER (. CMP

Figure 2. Missing patter, (a). MRE, (b). MCE, (c).
MRR, (d). MCR, (e). MER, (f). CMP

34 Low-rank Representation using Singular Value
Decomposition (SVD)

It is important to tanslate the traffic matriinto a basis such
that the TM is sparse or compressible in that b&3e of
such basis iSingular Value Decomposition (SVD), whi
can be used to decompose the 1X). Formally, the SVD
of aN x T matrix X is denoted b[27]:

X=UxT, (4)
where U is an N X N orthcnormal matrix, i.e.UUT =
UTU=1.V is anT x T orthogonal matrix,i.e. VVT =
VTV = I, with V7 is the transpose V, andZ is aN xT
diagonal matrixthat has conte non-zero entries referred to
as the singular values of X. These values are structured
with the result that; > o, = -+ = g;. The total number of
non-zero singular values indici the number of rank matrix.
If i « min (N,T), thenTM is a low-rank matrix. For low-
rank approximationEquation (4 can be rewritten as:

min (N,T) min (N,T)

X = z O'l'uiv;r: z 0; Bi'

i=1 i=1

®)

whereu; andv; are thei*”® columns olU andV. TheB,; is a
matrix constructed by rank- Hence, a rar-r approaches to
X using the SVD by holdinghe greatest singular values in
the addition and discardirtbe others is equivalent

r

XZZUiBi

i=1

(6)

Since X can be represented usiti elements of singular
value of SVD and « min (N,T) thenX is sparse in SVD
base.

3.5 Routing Matrix Representation

The routing matrix4 is aM x N dimension, wher@/ is the
number of links anaV is the number of sour-destination
pairs. The matrix4 = a;; is defined asa;; = 1 if link i is
part of the path for souredestination pairj, otherwise
a;; = 0. The routing matrix4 is used as the sensing matrix

for the compression of the approximation maX [17].
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3.6 Compressive Sampling (CS)

CS is a new paradigm in signal processing [4], [28lh a
capability to reconstruct data from an incomplet
measurement. In order to perform successful renactiin,
CS exploit the special structure in the data stmectvhich is
the data sparsity. Data is called sparse if itloamxpressed
by a small number of significant components. In THd
case using SVD as the base, sparsity means |ldwasthe
energy spectrum composed of low-rank singular \saloke
the matrix. It is well known that TM can be estiethfrom a
low-rank matrix [19], [26].
Elements missing in traffic matrix can be consideses
elements loss in compression. Therefore, it can
considered as a compression step in CS. On the
reconstruction using CS, there is relationship ketwthe
measured traffi¥ and the TM(X) that expressed in a linear
matrix equation as follows

Y = AX , (7)

X

[12

with Y,4, X are MXT, MxXN, and N XT matrix
respectively. A is a routing matrix which performs asly
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where 1 is a parameter of regularization that keeps the
tendency of precise measurement with the low-ranget.
érhis technique is known as SRSVD that proposed]in [

SvDL1

The reconstruction of TM is discovering optimalwgadn for
into equation (7) of the measured traffic that
approaches the originXl as near as possible, i.e.,

min || X — )A(||1 subject tdX =Y, (13)

_Il_?/%erell. ||} states thé, norm that used to calculate the error
k%tween the original TMX) and the reconstructed TNKY

IRLS

IRLS finds the optimal solution for rank minimizati using
norm, where0 <p <1. IRLS sets weight W,) to

measurement matrix in CS. It satisfies the Germedli €stimate TM X) and a parameter of regularizati¢p) to
Uncertainty Property (GUP) [29]. Corresponding witte guargntee thaly, is proper selected. The procedure of the
theory of CS, the minimum number of rowsdris given as algorithm are as follows [13]:

follows [30] .
M=C(Rlogy), @ O

where C is determined empirically with a range in value
from 1 to 2, whileR is the total of rank matrix used. (i)

3.7 Reconstruction Algorithm

371 SRSVD
SRSVD expressed SVD as a matrix factorizat®nand

(i)

applied a regularization parameter to optimize the

reconstruction of missing value. The factorizatohX is

equivalent to the form: (iv)
X =UzVT = LR", (9)

whereL = UZY?2 and R = VE/2, The low-rank feature has
proved that it is possibl® restore the missing values in a
matrix. Theminimization oflow-rank composition can be
expressed as follows:

minrank(X), subjectto A(X) =B, (20)

where rank(:) as the rank of a matrixA(-) is a linear
operator that executes on matrk and B denotes the
collection of actual measurements. Low norm faztdion
from (9) satisfies Frobenius so that (10) is eqeivato:

Initialize the weight Wg =1, regularization
parametery; > 0, and the iteration countér= 1.
While not convergen do:
Solve the minimum solution:
X* = argming T,(WE 1 XTX), stA(X) =B (14)
Find the new weight:
W = [(X¥ Xk A (15)
Choose regularization parameter:

0 < yktl <yk (16)
Increasek and return to (ii) until convergence. This

algorithm reduces weighted using Frobenius norm
of the traffic matrix X) at each iteration, which is

T, (WEXTX) = [|wh) x|} (17)

3.74 OMP

OMP estimates TMX) which determines columns dftake
part in the calculation of. The concept of the algorithm is

to choose columns in a greedy model. A columd efhich

minrank||L||? + ||R||? , subject to A(LRT) = B (11)

has very high correlation with the remaining pait B is

chosen at each iteration. Then teesidue is substracted

In addition, because the TNK) is uncertain low-rank, then With the result generate the new residue. The piureeof
the regularized parameterl)( is added to solve the algorithm uses the columns to recognize the prepeafter

optimization problem:

min||A(LR") — Bl + AIILIIZ + IRI?) . (12)

K iteration. The algorithm processes are given dsvis:
[14].
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0] Set the residuaR, =Y, index setA, = @, and the
iteration countek = 1.
(i) Select the parameter, that resolves the case of
optimization:
A = argmax;—y y|(Rg_1, A}l (18)
If the dot product produces maximum value the
solve the tie deterministically.
(iii) Add 2, to the the index set:
A=D1 U {4} (19)
The matrix of chosen atoms:
Ay = [Ar-1 ay, ] (20)
We take A4, initialization parameter aan empty
matrix.
(iv)
procedure:
X, = argminy ||Y — A X||, (22)
(V)
residual:
a, = Aka , Rk =Y - ay (22)

Increment the iteratiork and returns to equation
step (ii) untilk < K,K is the sparsitas level. The

n
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estimate ofX for the best possible matrix has non-
zero denotes at the index listag. The estimation
result X in component]; is equivalent to the,,
component oX,,.

3.75 Interpolation

Interpolation is an easy method that takes theevdlam
closest neighbor to construct incomplete valueg Tl (X)
interpolation is performed for each column with tkagth
of X rows and for each row with the length ¥fcolumns.
Interpolation formula is shown as follows [1] [15].

X(l']) = mean ()_(row(i) + )_(col(i)) ) (23)
Xyow(D) = mean(Xpo (i + 1) + X, (i— 1)), (24)
Xcol(i) = mean(xcol(i +1) + Xcol(i - 1)) , (25)

where X(i,j) as an estimation oX(i,j). X0, (i) is an
estimation in row, wher& ., (i + 1) represents the nearest
neighbor row abov& (i), while X,.,,, (i — 1) represents the

Calculate the estimation using a least squard§arest neighbor row belod(i). X, (j) is an estimation

in column, whereX ,;(j + 1) expresses the nearest neighbor
column on the right oX(j), andX,.,;(j — 1) expresses the
nearest neighbor on the left Xfj).

Count the new approach of the data and the 3.7.6 ThePrOpO%d Method of Internet Traffic Matrix

Reconstruction

This section describes the proposed method of ngssi
internet traffic reconstruction using compressiaenpling.
The process of traffic matrix reconstruction instihesearch
is shown in Figure 3.

Traffic Matrix (X) > \':/i th missin representation BN
babili s using SVD Reconstruction
probability (p) Compressive Algorithm Reconstructed
Sampling -» (SRSVD, SVD- [»| Traffic Matrix
11, IRLS, OMP),
Routing Matrix
representation (4) >
A
Performance
N Parameter .
Evaluation: [« Scaling Process
NMAE, NMSE

Figure 3. Missing internet traffic reconstruction processirging compressive sampling

Traffic that we used is actual traffic on the netko
The TM is deleted with missing probability After SVD
analysis, the significant singular values are uged
construct the estimated TM as given in (6). Th& i€
applied on this estimated TM by using sensing mairi
The missing elements are recovered by CS recoimtuct
algorithms which are SRSVD, SVDL1, IRLS, OMP, and
compared with Interpolation technique. The scaling
function is applied on the reconstructed CS in otdeget
the comparable amplitude value for each algoritfime

performance of reconstruction algorithms are exqudny
comparing reconstructed value to the original TMerm
of the NMAE and NMSE.

4. Experiment Resultsand Analysis
4.1 Data

We use the backbones of Abilene topology that aash
in Figure 4. The Abilene is a high speed networdufor
research and education which operates in the UShand



International Journal of Communication Networks &mfdrmation Security (IJCNIS)

information is available online [31]. This netwar&nsists
of 12 nodes { = 12) so that there ard2 x 12 links
between source-destination N & 144). Traffic
measurement performed every 5 minutes, hencedaya
there are 288-time serieB & 288).

Figure 4. Abilene Topology [31]
4.2 Performance Parameter

The performancef CS algorithms is analyzed through
parameters as given below which are commonly used i
traffic matrix application [17], [1]. The metricssed to
evaluate the accuracy of the error are NormalizeshiM
Absolute Error (NMAE) and Normalized Mean Square
Error (NMSE).

N s Tges
Neagp=olXGN-X )|

oy 2
NMAE(X,X) =
(¥, X) 2 acij)=o X @D

(26)

~ 2
_lxan-xapl,

NMSE(X,X) = IXGh)I3 0

where X is the reconstruction traffic matrix(i, j) = 0
represents matrix with the values eliminated Xy, j).
NMAE just counts the errors on the lost values.

4.3 Comparison of Reconstruction Algorithmsin
Different Missing Patterns

We analyze the impact of the missing patterns an th
reconstruction algorithms performance. TM data ohagt
are discarded randomly with probability) (from 0.02 to
0.98. We assume the missing pattern follows thé&tmi
distribution so that all value of the TM has anntieal
probability to be discarded. For this particulapestment,
we use Abilene traffic data on Aprif'12004.

The simulation results of six data missing scenasing

5 CS reconstruction algorithms are shown in Figbire
The X-axis expresses the CS method, the Y-axiestae
missing pattern, and the Z-axis represents theevalu
NMAE.

In general, the reconstruction results depend am th
position of the missing data and the amount of imgss
data. NMAE increases along with missing probability
The performance shows that SRSVD is the best method
than others both in low and high missing probapilit

In MRE pattern simulation, the row is randomly obhos
then the elements in the row are randomly choseh wi
probability p. This missing pattern is easily reconstructed
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because the amount of data sample provided as timame
other patterns.

In MCE pattern simulation, the column is randomly
chosen, then elements in a column are randomlyechos
with probability p. Basically, MCE pattern is similar to
the MRE pattern where the number of samples pravide
is more than other so that it has a good valueMAR.

In MRR and MCR pattern, the reconstruction resatts
worse than MRE and MCE pattern. This is due to less
amount of sample data so that the CS reconstrubiign
difficulty to convert to the correct value.

NMAE Graphic (p=0.02)

NMAE

Interpolation
OmP

IRLS MER
VDL

SREVD

" MCR
MRR  Missing Type

CS Method
(a). Missing probability (p=0.02)
NMAE Graphic (p=0.98)

MRE

0.5
0.4}
0.3k

NMAE

0.2}
[IRN

Interpolation
OmP
IRLS
SWDL
SR3VD
CS Method

(b). Missing probability (p=0.98)

Figure 5. Comparison between reconstruction algorithms
for different missing patterns, (a). Missing prottiab
(p=0.02), (b). Missing probability (p=0.98)

In MER pattern simulation, the missing elements are
randomly chosen. The MER is a missing pattern liaat
difficult structure to be reconstructed for all
reconstruction algorithms, especially at a highbtmlity

of missing. It is because the random missing patier
MER has no correlation in the available sample el

In CMP pattern simulation, the missing patternas lsy
the combination of MRE, MCE, MRR, MCR, and MER.
Because the entire missing patterns are selected at
random, there is a chance that a few patterns yredd
same missing data. The pattern can still be rengsisd,
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although the results are worse as compared to tbhbse
MRE, MCE, MRR, and MCR.

4.4 Link Sensitivity Detection

The link sensitivity detection is done by elimimatione
by one the row of TM sequentially. The row représen
the link connection between a source node to dsgiim
node. The link connection number is shown in T&hle
The connections consist of loop connection,
connection, and indirect connection as shown infed.

131

—— =direct link-.._
,,,,,,,,,,,,,,,,, » =indirect link
=loop

Figure 6. Representation of link connection

direct
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We observed the effect of the missing link to NMSE
parameter for a month in April 2004. Figure 7 shdiwk
sensitivity detection for a particular day in difat
reconstruction algorithms. The X-axis represents th
missing of link connection, and the Y-axis représahe
NMSE value. All reconstruction algorithms have fagne
results for link sensitivity detection.

Table 3 shows the five highest sensitive links ol
during that particular month. Link number 87 is an
indirect link that connecting between node-3 to ex8d
while link number 32 is also an indirect link that
connecting between node-8 to node-3.

Table 2. Representation of link connection number betweamce node to destination node

Destination Node
1 2 3 4 5 6 7 8 9 10 11 12
1 1 13 25 37 49 61 73 85 97 109 121 183
2 2 14 | 26| 38| 50| 62 74 84 98 110 122 134
3 3 15 27 39 51 63 75 87 99 111 123 185
. 4 4 16 | 28| 40| 52| 64 76 8§ 100 112 124 136
E 5 5 17 | 29| 41| 53| 65 77 84 101 113 125 137
z 6 6 18 30 42 54 66 78 9( 102 114 126 188
§ 7 7 19| 31| 43| 55| 67/ 79 91 108 115 127 139
§ 8 8 20 32 44 56 68 8( 92 104 116 128 140
9 9 21 | 33| 45| 57| 69 81 93 106 117 129 141
10 | 10 | 22| 34| 46| 58 70 82 94 10p 118 130 142
11 11 23 35 47 59 71 83 94 10y 119 131 143
12 | 12 | 24| 36| 48| 60| 72 84 9 108 120 132 144

Table 3. The 5 highest link sensitivity detection for a rto(April 1%, 2004 — April 3, 2004)
Number Link Connection Sour ce-Destination Node Link
Number Representation Connectivity
1 87 3-8 Indirect
2 32 8-3 Indirect
3 89 5-8 Direct
4 134 2-12 Direct
5 141 9-12 Direct
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NMSE Graphic on April 274, 2004

—&— SVDLU1
IRLS
—— Interpolation

—%— SRSVD

or NMSE Graphic on April 374, 2004

06

OmMP

0sr bl ﬂ x:1 3

04F

NMSE

03F

02t ”

01

!
0
0 60 ) 100 150
Link connection number missed

a). NMSE on April 2°. 2004
@ p

—&— SVDL1
IRLS

32 —s— Interpolation |

—#®— SRSVD

& omMP u
87

Link connection number missed

(b). NMSE on Aprif'32004
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Because the link number 87 and 32 are indirecs|itthen
we can trace for any links that composed theseslink
Some possible links compositions are as shown bieTa
4. To find out the problems as well as solutionsdach
sensitive link, we compare the scenarios by lookihthe
effect of the missing scenario to NMAE value.

Table 4. The missing scenarios for detecting link
sensitivity compositions

Sensitive Link Missing Scenario Composed by link

number

63-78-55-89
63-18-50-89
99-141-24-50-89
63-78-43-112-94
63-78-43-124-119-94

87

56-77-67-30
56-17-62-30
56-17-134-108-33
116-46-76-67-30
116-130-47-76-67-30

32

QB (WINFP|IORWIN(F

Figure 8 shows the comparison between all missing
scenarios using the NMAE value. It can be conclutiad
the worst link composition on the sensitive linkmer
87 is scenario 3 (arranged by link number 99-14624

89). The best link composition is scenario 4 whish
arranged by link number 63-78-43-112-94.

Whereas on the sensitive link number 32, the worst
composition is scenario 3 that composed by link Inemm
56-17-134-108-33. The best forming is scenario &t th
arranged by link number 116-46-76-67-30. The best
composition can be selected as a selected route for
improving the performance of the network

45 Detection of Time Sensitivity

Time sensitivity detection is done by eliminatingeoby
one the column of TM sequentially. As discussedizef

a column in TM represents a 5-minute traffic snapsh
hence one-day measurement will contain 288 coluofins
T™.

We investigate the effect of the missing time t@ th
NMSE parameter for TM matrix that collected fromrip
1% 2004 to April 38, 2004. Figure 9 shows an example
of time sensitivity detection for a day for eaclifetient
reconstruction algorithms. The X-axis represente th
missing of time, the Y-axis represents the NMSEugal
Test results show that the missing of one time duss
affect the value of NMSE, this is because the tgmges
values of traffic matrix have a high correlatiortiweach
other. This applies to all the reconstruction ations.
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The next simulation is to test the effect of migsblock
pattern of time. Missing block pattern indicatesssing
traffic during a certain period of time. We use thage of
missing block probability from0 <p, <0.9. The
missing block of time is chosen randomly.
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Figure 10. The missing block of time simulation
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Figure 10 shows the missing block of time for a daing

each different reconstruction algorithms. The Xsaxi

represents the probability of missing block of tiarel the
Y-axis represents the NMAE value. While the probgbi

of missing block of time is more than 0.8, the NMAE
increases significant, especially on SRSVD and SYDL

algorithm. The probability of missing 0.8 meansr¢hare
missing data during 1152 s or 19.2 hours. Due lerge
block time of missing data, the available data
insufficient for an accurate estimation. The sangfldata
does not correlate each other.

5. Conclusions

CS can be used in internet traffic monitoring, sashfor
reconstruction from missing traffic, detection ahkl
sensitivity, and time sensitivity. The results shethat

SRSVD outperforms other CS reconstruction algorghm

and Interpolation technique for estimating TM imrigas
missing patterns. In addition, CS is also abledtect the
sensitive link, thus it can increase the perforneaoicthe
network, by choosing the best link. In the missiigck
of time, the CS reconstruction algorithms fail siimate
the correct TM if the missing probability is greatban
0.8 or the missing data occur more than 19.2 hours.
Our future study will be develop our approach tdveo
large amount missing value, especially in the cake

Missing Element at Random (MER), Combine Missing
Patterns (CMP), and Missing Block of Time (MBT).

Because of random missing patterns in large gquestit

makes the TM element samples may have not any

correlation with each other. The next projects #oe
conduct correlation approach by considering locatiad
structures using interpolation technique and combin
with global data structures through low-rank apploan
™
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