
241
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

Distributed Fault-Tolerant Algorithm for Wireless
Sensor Network

Chafiq Titouna1,2, Mourad Gueroui2, Makhlouf Aliouat3, Ado Adamou Abba Ari2,4 and Adouane Amine5

1Computer Science Departement, Faculty of Technology, University of M'sila, 28000 M'sila, Algeria

2LI-PaRAD Laboratory, University Paris Saclay, University of Versailles Saint-Quentin-en-Yvelines, France
3Computer Science Departement, Faculty of Sciences, University of Setif1, 19000 Setif, Algeria

4Mathematics and Computer Science Department, Faculty of Sciences, University of Maroua, Cameroon
5Mathematics and Computer Science Department, Faculty of Sciences, University of Alger 1, 16000 Alger 1, Algeria

Abstract: Wireless Sensor Networks (WSNs) are a set of tiny

autonomous and interconnected devices. These nodes are scattered
in a region of interest to collect information about the surrounding
environment depending on the intended application. In many
applications, the network is deployed in harsh environments such as
battlefield where the nodes are susceptible to damage. In addition,
nodes may fail due to energy depletion and breakdown in the
onboard electronics. The failure of nodes may leave some areas
uncovered and degrade the fidelity of the collected data. Therefore,
establish a fault-tolerant mechanism is very crucial. Given the
resource-constrained setup, this mechanism should impose the least
overhead and performance impact. This paper focuses on recovery
process after a fault detection phase in WSNs. We present an
algorithm to recover faulty node called Distributed Fault-Tolerant
Algorithm (DFTA). The performance evaluation is tested through
simulation to evaluate some factors such as: Packet delivery ratio,
control overhead, memory overhead and fault recovery delay. We
compared our results to a referenced algorithm: Fault Detection in
Wireless Sensor Networks (FDWSN), and found that our DFTA
performance outperforms that of FDWSN.

Keywords: Wireless sensor networks, fault tolerance,
connectivity restoration.

I. Introduction

A wireless sensor network (WSN) consists of a possibly
large number of wireless devices able to take environmental
measurements. Typical examples include temperature, light,
sound, and humidity. These sensed data are transmitted over
a wireless channel to a base station (BS) that makes
decisions based on these data [1, 2]. WSNs have infiltrated
our daily life, such as medical monitoring [3], military
surveillance [4, 5], vehicle monitoring [6], home automation
monitoring [7], habitat monitoring [8], building structures
monitoring, and industrial plant monitoring [9–11].
However, in some applications, nodes are deployed in
remote and harsh environments (forest fire, earthquake or
chemical spill). In such areas, nodes can be failed due to the
energy depletion, hardware failures, communication link
errors and even intrusion from attackers. These problems
reduce the quality of the gathered data and the entire
network. At this stage, it is necessary to set up a mechanism
to ensure the quality of the collected data in order to allow
taking suitable decision. Therefore, WSN should possess a
mechanism of fault tolerance. It can be defined as the ability
of a system to deliver a desired level of functionality in the
presence of faults [12]. Fault tolerance should be seriously
considered in many sensor network applications. Actually,
extensive work has been done on fault tolerance and it has
been one of the most important topics in WSNs [13, 14, 26].

In this paper, in order to recover the system after fault
detection phase, a distributed fault-tolerant algorithm for
WSN called DFTA is proposed. To achieve the proposal, an

extension of our previous work [15] is done. This later
ensures a detection phase and it can detect faulty nodes. The
performance analysis shows that the proposed algorithm
outperforms the compared algorithm in terms of packet
delivery ratio, fault recovery delay, control and memory
overhead. In short, our main tasks can be summarized as
follows:

• Elimination of faulty nodes detected in detection
phase (described in details in [15]);

• Selection of recovery nodes to replace the faulty
nodes;

• Simulation of the DFTA in order to highlight its
performance.

The rest of the paper is organized as follows: Section 2
presents some related work. In Section 3, we describe our
recovery algorithm and illustrate it through examples. We
provide in Section 4 performance results and in Section 5 we
conclude the paper.

2. Related work

Several works are proposed to detect and recover faulty
nodes in wireless sensor networks. In [16], the authors
proposed a detection technique to eliminate all erroneous
sensed data generated by faulty node. Wang et al. [17] have
proposed an approach based on cascaded movement to
replace a faulty node by replacing it with a nearby node,
which in turn gets replaced with another and so on until
reaching a redundant node. The authors in [18], a block
movement of nodes is needed to sustain degree-two
connectivity even under link or node failure, by moving a
subset of nodes. However in DARA [19], the main idea was
to detect the failure of an actor and replace the failed actor in
a cascaded manner. The previous work was enhanced in
[20]. They use the connected dominating set (CDS) of the
whole network in order to detect the cut-vertex node. After
detecting these nodes, each node picks the appropriate
neighbor to handle its failure in the case of failure in future.
The objective is to choose a neighbor that may not partition
the network. However, iIn [21], the replacement of the failed
node is done only by its direct neighbors. Akkaya et al. [22]
presented the new distributed partition detection and
recovery algorithm (PADRA, PADRA+) to handle the
connectivity problem through detection of possible partitions
after the failure of the cut-vertex node is observed in the
network and restores the network connectivity through
controlled relocation of the movable nodes. Younis et al.
[23] proposed a localized distributed algorithm called
recovery through inward motion (RIM) for the network
partition recovery. The main idea is to move the entire
neighbor node(s) towards inward direction of the failed node

242
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

so that nodes can discover each other and recovery can take
place. A distributed fault detection algorithm for WSNs
named FDWSN has been proposed in [24]. Every node
discerns its own status in view of local comparisons of its
sensed data with the data of neighboring nodes for q times to
detect transient fault. The authors used a redundancy matrix
to save all results of comparison. After, the status of the node
is declared as good if the sensed data are similar. Finally,
each sensor node with a defined status will broadcast its
status to its neighbors to facilitate them for determining their
own status. This scheme can detect and isolate faulty nodes
with high detection accuracy. Transient faults are also
tolerated by using time redundancy.

In the present literature, it supposed that WSN is
previously requires a mobile nodes which they can move
without any constraint. This assumption is not easy to ensure
in real environment and in all applications. We noticed also
that some nodes with low battery power are incapable to do
the recovery process (i.e., which requires node's movement)
due to their low battery power and their position in the
network. The detection of faulty node in many previous
works is based on Hello message mechanism. This technique
is not efficient to identify all faulty nodes (i.e., malicious
node). Therefore, a novel algorithm is needed to detect and
recover faulty nodes without hard assumptions. Our
proposed algorithm uses our scheme (described in [15]) to
detect faulty nodes and assumes an efficient recovery
process.

3. Distributed Fault-Tolerant Algorithm

In this section, we present our proposed algorithm, named
Distributed Fault-Tolerant Algorithm (DFTA). We begin first
by defining some assumptions. We then provide details of
the mechanism used for recovering faulty nodes. DFTA
operates in two phases: (a) First, elimination of faulty nodes
from the network. (b) Second, selection of recovery nodes.

3.1 System Assumptions

A WSN is typically consisting of a large number of nodes
scattered over a region of interest to monitor a particular
physical phenomenon. Some assumptions, complying with
practical aspect, have to be considered in our algorithm. The
first assumption is that all sensed data are forwarded from
sources to a central node called Base Station (BS) via
Cluster-Heads (CH). The second is that, all nodes are
stationary and its batteries cannot be recharged. We
recognize that local processing may occur to reduce overall
communication costs. The next assumption we make is that
all nodes are homogeneous in terms of energy,
communication and processing capabilities. They are
assigned a unique identifier (ID). Finally, we also assume
that we do not have malicious attacks on the network.

 3.2 Algorithm Design

If a node is diagnosis as a faulty one, then it should be
eliminated from the network and replaced by a sleeping node
to ensure its functions (such as sensing and routing packets).
One of the sleeping nodes belongs to the same cluster, will
take the place of a faulty node. The same process of
replacement will continue until arriving:
• at the black list will be empty (i.e., if a faulty node is

recovered by a sleeping one, then it will removed from
the black list. This list contains all faulty nodes detected

in detection phase); or
• at a faulty node does not have any neighbor in sleeping

state (i.e., all sleeping nodes, belong to that faulty node,
and are already activated).

The idea is to substitute the faulty node by a sleeping one
with a connectivity degree higher and belongs to the same
cluster. Using this technique prolong the global network
lifetime by using a sleeping nodes and avoid partition of the
network by replacement of the faulty nodes. For that, our
algorithm consists of two phases: an elimination phase and a
recovery phase. We describe them in the following
subsections.

Figure 1. Example of cluster (CHi).

 3.2.1 Elimination phase

This phase is divided into three steps: creation of healthy
node’s vector step, selection of sleeping node step and
elimination of faulty node step. The following subsections
describe each step.

 (a) Creation of Healthy Node’s Vector Step

Each CH creates a vector of healthy node (VHN) which will
contain all nodes belong to this cluster. This step is launched
just after deployment of the network. We consider a cluster
CHi represented in Figure 1. So, the CHi will create a vector
of node VHNi (see Figure 2) and insert all IDs of nodes
belong to this cluster.

Figure 2. VHNi (case CHi).

 (b) Selection of Sleeping Nodes Step

In this step, the CH chooses which nodes should be in sleep
mode. The CH can take into account the energy remaining of
a node, the geographic position of a node, or the degree of
connectivity of a node. In this paper, we based on the degree
of connectivity of nodes, i.e., the CH selects the node that
has fewer neighbors. To start the selection of sleeping node,
the CH broadcasts a Req_nn message to know the number of
neighbors of each node. When a node receives a Req_nn
message, it will respond with Resp_nn message to inform the
CH about the number of neighbors in its transmission range.
When the CH receives all Resp_nn messages, the selection of
sleeping nodes is launched by selecting only nodes with
number of neighbors is less than α threshold (α can be equal
to the average number of node belongs to the same cluster).
The CH sends a Go_Sleep_msg message to all selected
nodes. A response like Resp_Sleep_msg message, it will be
sent by the selected nodes to indicate to CH that they will

36 35 21 22 30 27 28 40

243
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

Figure 3. Example of message exchanging between CHi and
selected sleeping nodes (35, 27 and 22).

switch to sleep mode. E.g., consider Figure 1. The CHi
selects for example nodes with IDs: 35, 27 and 22. The IDs
of selected nodes is encircled (see Figure 2). Figure 3
represents message exchanging required to select sleeping
nodes (the figure shows only message exchanging between
CHi and three nodes 35, 27 and 22).

 (c) VHN’s Update Step

After the phase of detection of faulty nodes (see more details
in [13]) the CH holds a black list (BL) which contains all the
faulty nodes detected. They should be eliminated and
removed from VHN. So, to do that, every CH updates its own
VHN by proceeding to an elimination of all faulty nodes’ID
from the vector. E.g., consider the example in Figure 1. We
suppose that node 30 in BL. So this node should be removed
from the vector (we just underlined its ID in Figure 2). The
next subsections describe the steps required for the recovery
phase.

 3.2.2 Recovery phase

This phase describes the recovery process launched by CH. It
is performed in two steps: selection of recovery node and
updating of VHN.

 (a) Principe

DFTA recognizes two transition states for nodes as shown in
Figure 4, active and sleeping. Initially all nodes in the
network are in active state. This means that all nodes will
turn their radio on until receiving a message (Go_Sleep_msg)
from the CH (see previous subsection) to switch their radio
off and move to sleep mode. Returns back to the active state
happens when the CH selects node (it is in sleeping state) to
recover one or more faulty nodes (more details in next
subsection).

Figure 4.The DFTA node state transitions.

Figure 6. Message exchanging required for selecting RN
(level 2).

To do that, CH will send a Wakeup_msg message to these
nodes (sleeping nodes selected). So, the transition between
the two states, active and sleeping, is ordered by the CH and
it is performed based on messages exchanging (see Figure 4).
We implement this technique in CH, to minimize the number
of active nodes. Such technique permits a maximization of
the lifetime of the entire network.

 (b) Selection of Recovery Nodes Step

The process of selection of recovery nodes implies an
activation of some sleeping nodes. The CH sends a
Wakeup_msg message to all sleeping nodes belong to the
same cluster of the faulty nodes. However, the sleeping node
belonging to other clusters, that do not contain any faulty
nodes, its corresponding CHs do not send any messages.
E.g., consider the previous example in Figure 1, the sleeping
nodes which receive the Wakeup_msg are: The nodes 22, 27
and 35.
At receiving the Wakeup_msg message, the sleeping nodes
turn their radio on and send back a wakeup
acknowledgement message (Wakeup_ack) to the CH to
indicate its new state (active state). The CH sends now a
request (Req_hop_reqr) to know the number of hops
required to reach the faulty nodes from these sleeping ones.
The sleeping nodes update their routing table and respond to
the CH using a simple packet (Resp_hop_reqr). The
structure of this packet is described in Figure 5.

Figure 5.Packet format.

When all Resp_hop_reqr received, the CH creates a Hop
Required Table (HRT). This table is used to choose the
appropriate recovey node (RN). E.g., the Table 1 summarizes

srcid desid Fn(1)_id hops_nd Fn(2)_id hops_nd

….. …... …. …… fn(n)_id hops_nd recieve ‘Wakeup_msg ‘

sleeping active

recieve ‘Go_Sleep_msg ‘

244
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

the number of hops required for the nodes 22, 27 and 35 to
reach the faulty nodes 30.
The CH chooses nodes which require fewer hops to reach
faulty nodes. E.g., consider the Table 1, the node with ID 22
needs 1 hop to reach node 30. So, the CH selects it as RN. A
Go_Sleep_msg message is sent to the not selected nodes
(e.g., 27 and 35) to go back to sleep mode. A response
Resp_Sleep_msg message, it will be sent by the selected
nodes to the CH. Figure 6 shows the previous exchange
messages.

Table 1. HRT of cluster i (FN=30, Sleeping nodes=22, 27,
35)

 (c) VHN’s Update Step

The CH should update the vector of healthy node after a
recovery process. All sleeping nodes that are selected for
recovering faulty nodes should be mentioned in VHN. E.g.,
consider the example in previous section, the node with ID
22 will be considered as an active node.

Table 2. Simulation parameters.

Parameter Value
Area size 1000 × 1000
Number of nodes 20, 40, 60, 80, 100, 200
Transmission power 2mW, 4mW
Transmission channel Wireless channel
Propagation model log Normal path loss model
Data packet size 32 bytes
Bandwidth 200 Kilobytes/second
Radio layer CC2420 radio layer
Queue size 50 packets

4. Evaluation

We have conducted several series of simulations using the
TOSSIM simulator [25] in order to evaluate the performance
of our proposed algorithm. For comparison purposes, we
take as metric the packet delivery ratio (PDR), the control
overhead (CO), the memory overhead (MO) and the fault
recovery delay (FRD). The key simulation parameters are
summarized in Table 2.

4.1 Analysis of Packet Delivery Ratio (PDR)

Packet delivery ratio is calculated as the number of packets
received by a receiver divided by the number of packets sent
by a sender. This metric characterizes the percentage of
successful source data packet delivery; ideally, this should be
100%. Figure 7 shows the total number of data packets
received by the CH over the number of nodes (with node
transmission power (TP) set to 2 mW). We remark that the
amount of data collected by the BS from every sensor node is
much more important with our DFTA algorithm then the
FDWSN protocol. We can say that FDWSN generates more
trafic which causes a set of collision in wireless channel. The
retransmission will become more frequent and the PDA will
decrease. To test our algorithm’s performance, we made TP
= 4mW. The Figure 8 shows a good result, which confirms
the accuracy of our solution. When we increase the
transmission power, the number of neighbors of recovery
sensor node increases. However, for FDWSN, we noticed
that there is a less in packet delivery ratio because FDWSN

requires a set of iterations that consumes battery power
which increases faulty sensor nodes.

Figure 7. PDR vs. number of nodes, TP = 2mW.

Figure 8. PDR vs. number of nodes, TP = 4mW.

Figure 9. CO vs. number of nodes, TP = 2mW.

4.2 Analysis of control overhead (CO)

The detection and recovery of faulty node is an additional
task in WSN. It requires extra control packets. This metric
computes the additional control packets needed to perform
the recovery process. In Figure 9, we noticed that for both
DFTA and FDWSN increase with the increase of the number
of nodes. More nodes require more control packets to
achieve the recovery process. However, the FDWSN protocol
uses more control packet comparing with our DFTA since
the later does not need any iteration in detection process. The
FDWSN’s detection of faulty nodes process is very

Sleeping node ID Hop required
22 1
27 1
35 2

245
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

complicated and it based on collecting neighbors’
information to detect the faulty nodes. When we increased
the node transmission power to 4 mW (see Figure 10),
FDWSN needs more packet of control. However, our
algorithm performs better because the recovery node can
reach more nodes in the same cluster.

Figure 10. CO vs. number of nodes, TP = 4mW.

Figure 11. MO vs. simulation time (TP = 2mW, number of
node = 100).

Figure 12. MO vs. simulation time (TP = 4mW, number of
node = 100).

 Figure 13. FRD vs. number of faulty node (number of node
= 100).

Figure 14. FRD vs. number of faulty node (number of node
= 200).

4.3 Analysis of memory overhead (MO)

The memory overhead metric represents the average number
of bytes needed to be stored in the memory of all nodes that
are implied in recovery process. We computed for DFTA and
FDWSN the additional memory space needed to insure the
all process. We plotted the result in Figure 11. During the
simulation, we noticed a change in the quantity of bytes
required for both algorithms. This instability in memory
overhead is due to the mechanism deployed on nodes. We
observed that the memory overhead in DFTA is less than in
FDWSN because the later requires more memory to store
transient fault matrix and other parameters. In Figure 12
(node transmission power = 4 mW), we observed better
results comparing with previous curves (transmission power
= 2 mW) of two algorithms with DFTA less memory
overhead.

4.4 Analysis of fault recovery delay (FRD)

The last performance metric is fault recovery delay. FRD for
DFTA and FDWSN are shown in Figure 13 and 14 for 100
and 200 sensor faulty nodes. The fault recovery delay is an
important metric in the conception of a fault tolerance
protocol. It is defined as the average time taken to recover
from the effect of faulty node. From the Figure 13, it is clear
that our DFTA outperforms FDWSN. This is due mainly to

246
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 9, No. 2, August 2017

the fact that FDWSN requires more time to create and
compare transient fault matrices for each faulty node.
However, the DFTA can recover a multiple faulty nodes if
the position of recovery node selected is close of faulty
nodes (i.e., one sleeping node can recover multiple faulty
nodes). When we increased the number of node in network
to 200, we observed a small increase for DFTA compared
with FDWSN. The later requires more time to recover from
faulty nodes because it needs to compare transient fault
matrices.

5. Conclusion

In this paper, we introduced an extension of our previous
work. We presented a recovery algorithm to ensure a tolerate
process after a faulty node detection. Our algorithm is based
on using sleeping node as a recovering node to maximize the
lifetime of the entire network. It is divided into two phases,
an elimination phase and a recovery phase. These phases are
ordered by CHs in distributed manner and they are launched
just after the detection's process of faulty nodes (described in
the previous work). The main idea is to eliminate and replace
faulty nodes using selected sleeping nodes. This technique
restores the network connectivity and prolongs the lifetime
of the network. We have evaluated our DFTA algorithm with
FDWSN protocol under various metrics. The simulation
results show well that our algorithm outperforms compared
to the results of FDWSN.

References

[1] B.O. Yenké, D.W. Sambo, A.A.A. Ari and A. Gueroui, “

MMEDD: Multithreading Model for an Efficient Data
Delivery in wireless sensor networks,” International Journal of
Communication Networks and Information Security, Vol. 8,
No.3, pp. 179-186, 2016.

[2] J. Shobana and B. Paramasivan, “GCCP - NS: Grid based
Congestion Control protocol with N-Sinks in a Wireless
Sensor Network,” International Journal of Communication
Networks and Information Security, Vol. 7, No. 2, pp. 99-105,
2015.

[3] S. Nourizadeh, C. Deroussent, Y.Q. Song and J.P. Thomesse,
“Medical and home automation sensor networks for senior
citizens telehomecare,” IEEE International Conference on
Communications Workshops, Dresden, Germany, pp. 1-5,
2009.

[4] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G.
Zhou, Q. Cao, P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J.
Hui, B. Krogh, “ Vigilnet : An integrated sensor network
system for energy efficient surveillance” Journal ACM
Transactions on Sensor Networks, Vol. 2, No. 1, pp. 1-38,
2006.

[5] P. Vicaire, T. He, Q. Cao, T. Yan, G. Zhou, L. Gu, L. Luo, R.
Stoleru, J. A. Stankovic and T. Abdelzaher, “ Achieving long
term surveillance in vigilnet” Journal ACM Transactions on
Sensor Networks, Vol. 5, No. 1, pp. 1-39, 2009.

[6] H. Song, S.C. Zhu, G.H. Cao, “SVATS: A sensor-network-
based vehicle anti-theft system,” The 27th Conference on
Computer Communications, Phoenix, AZ, USA, pp. 2128-
2136, 2008.

[7] L. Yang, M. Ji, Z. Gao, W. Zhang and T. Guo, “Design of
home automation system based on ZigBee wireless sensor
network,” International Conference on Information Science
and Engineering, Nanjing, China, pp. 2610-2613, 2009.

[8] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson and D.
Culler, “An analysis of a large scale habitat monitoring
application,” The 2nd international conference on Embedded

networked sensor systems, Baltimore, Maryland, USA, pp.
214–226, 2004.

[9] G. Toll, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. G ay and W. Hong
“A macroscope in the redwoods,” The 3rd international
conference on Embedded networked sensor systems 5, San
Diego, California, USA, pp. 51–63, 2005.

[10] P. Sikka, P. Corke, P. Valencia, C. Crossman, D. Swain and G.
B. Hurley, “Wireless adhoc sensor and actuator networks on
the farm” The 5th international conference on Information
processing in sensor networks, Nashville, Tennessee, USA, pp.
492–499, 2006.

[11] G. Werner, P. Swieskowski and M. Welsh, “Demonstration:
real-time volcanic earthquake localization,” The 4th
international conference on Embedded networked sensor
systems, Boulder, Colorado, USA, pp. 357–358, 2006

[12] M. Demirbas, “ Scalable design of fault-tolerance for wireless
sensor networks”, Ph.D. thesis, The Ohio State University,
Columbus, OH, 2004.

[13] S. Chouikhi, I. Elkorbi, Y. Ghamri-Doudane and L. A.
Saidane, “A survey on fault tolerance in small and large scale
wireless sensor networks,” Elsevier Computer
Communications, Vol. 69, pp. 22-37, 2015.

[14] L. Paradis and Q. Han, “A Survey of Fault Management in
Wireless Sensor Networks,” Journal of Network and Systems
Management, Vol. 15, No. 2, pp. 171-190, 2007.

[15] C. Titouna, M. Aliouat and M. Gueroui, “ FDS: Fault
Detection Scheme for Wireless Sensor Networks,” Wireless
Personal Communication, Vol. 86, No. 2, pp. 549-562, 2016.

[16] C. Titouna, M. Aliouat and M. Gueroui, “Outlier detection
approach using bayes classifiers in wireless sensor networks,”
Wireless Personal Communication, Vol. 85, No. 3, pp. 1009-
1023, 2015.

[17] W. Wang, V. Srinivasan and K.C. Chua, “Using mobile relays
to prolong the lifetime of wireless sensor networks,” The 11th
international conference on mobile computing and networking,
Cologne, Germany, pp. 270-283, 2005.

[18] P. Basu and J. Redi, “Movement control algorithms for
realization of fault-tolerantad-hoc robot networks,” IEEE
Network, Vol. 18, No. 4, pp. 36-44,

[19] A. A. Abbasi, K. Akkaya and M. Younis, “A Distributed
Connectivity Restoration Algorithm in Wireless Sensor and
Actor Networks,” The 32nd IEEE Conference on Local
Computer Networks IEEE Computer Society, pp. 496-503,
2007.

[20] K. Akkaya, A. Thimmapuram, F. Senel and S. Uludag,
“Distributed recovery of actor failures in wireless sensor and
actor networks,” IEEE Wireless Communications and
Networking Conference, pp. 2480-2485, 2008.

[21] N. Tamboli, and M. Younis, “ Coverage-aware connectivity
restoration in mobile sensor networks,” Journal of Network
and Computer Applications, Vol. 33, No. 4, pp. 363-374, 2010.

[22] K. Akkaya, F. Senel, A. Thimmapuram and S. Uludag,
“Distributed recovery from network partitioning in movable
sensor/actor networks via controlled mobility,” IEEE
Transactions on Computers, Vol. 59, No. 2, pp. 258-271, 2010.

[23] M. Younis, S. Lee, S. Gupta and K. Fisher, “A localized self-
healing algorithm for networks of moveable sensor nodes,”
IEEE international conference on global communications
(Globecom’08), New Orleans, LA, USA, pp. 1–5, 2008.

[24] M. H. Lee and Y. H. Choi, “ Fault detection of wireless sensor
networks,” Computer Communications, Vol. 31, No. 14, pp.
3469-3475, 2008.

[25] P. Levis, N. Lee, M. Welsh and D. Culler, “ TOSSIM: accurate
and scalable simulation of entire TinyOS applications”. The
1st international conference on Embedded networked sensor
systems (SenSys), Los Angeles, California, USA, pp. 126-137,
2003.

[26] Y. Zeng, L. Xu and Z Chen, “Fault-Tolerant Algorithms for
 Connectivity Restoration in Wireless Sensor Networks,”
 Sensors, Vol. 16, No. 3, 2015.

