
17 
International Journal of Communication Networks and Information Security (IJCNIS)                                             Vol. 6, No. 1, April 2014 

 

Improved Sensing Accuracy using Enhanced 

Energy Detection Algorithm with Secondary User 

Cooperation in Cognitive Radios 
  

Muthumeenakshi. K, Radha.S 
 

ECE Department, SSN College of Engineering, Kalavakkam, India 

muthumeenakshik@ssn.edu.in, radhas@ssn.edu.in 

 

 

Abstract: Spectrum sensing is indispensable for cognitive radio 

to identify the available white spaces. Energy detection is 

considered as a preferred technique for spectrum sensing in 

cognitive radio networks. It is because of its simplicity, 

applicability and low computational complexity, energy detection is 

employed widely for spectrum sensing. This paper proposes an 

enhanced energy detection based spectrum sensing algorithm which 

incorporates the features of traditional energy detection and 

cooperative detection. The false alarm and detection probabilities of 

the proposed algorithm are derived theoretically under AWGN 

channel conditions. The performance of the proposed algorithm is 

evaluated analytically for various decision thresholds. The 

performance evaluations indicate that the proposed enhanced 

energy detection algorithm outshines the traditional energy 

detection algorithm and greatly improves the spectrum sensing 

accuracy under varying SNR conditions.  
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1. Introduction 

Radio spectrum is a limited and scarce resource and is 

completely regulated by authorized bodies such as the 

Federal Communication Commission [1]. The demand for 

the radio spectrum is increasing with both the competing 

wireless applications and the number of users. The current 

static spectrum assignment approach could not increase 

spectrum utilization. To improve the spectrum utilization 

Cognitive Radio Technology is proposed [2]. This 

technology could be made use of in the future to make 

flexible, opportunistic use of the licensed spectra by 

unlicensed users. That is, unlicensed users equipped with 

cognitive radio may in future be able to sense and 

opportunistically utilize a licensed spectrum when the 

corresponding licensed user is not making use of it. In the 

existing cognitive radio terminology, licensed users are 

called the primary users and unlicensed users are called the 

secondary users [2]. Secondary users are allowed to share the 

licensed spectrum when it is found idle, which requires the 

knowledge about the primary user access patterns. Thus the 

main challenge of cognitive radio is to reliably identify the 

presence or absence of the primary users and not to cause 

harmful interference to the primary users. There are number 

of such primary user detection algorithms called spectrum 

sensing algorithms reported in the literature. Few existing 

spectrum sensing algorithms include energy detection, 

matched filtering and cyclostationary feature detection, 

eigen-value based detection, covariance based detection, 

radio mode identification approach and filter bank spectrum 

estimation techniques [2]-[7]. The existing spectrum sensing 

algorithm provides various trade-offs between the sensing 

accuracy, sensing time, computational complexity, practical 

applicability, etc., Energy detection based spectrum sensing 

algorithms can be used when no information about the 

primary signal is known. Energy detectors are well known for 

their low computational complexity, low implementation 

cost, simplicity and applicability. The main drawback of 

energy detection is its performance degradation under low 

Signal to Noise Ratio (SNR) conditions. It could not reliably 

detect the primary user signal under varying noise conditions, 

signal fading and shadowing. Cooperative spectrum sensing 

schemes [8], [9] are proposed to improve the detection 

performance under these conditions. Performance 

improvements are achievable with cooperative spectrum 

sensing but at the expense of increased sensing time and 

complexity. Apart from the cooperative sensing, there are 

many hybrid sensing schemes [10] reported in the literature. 

Hybrid schemes are sequential or parallel combinations of 

existing single stage algorithms like combined energy and 

feature detection, combined energy and eigen-value 

detection, etc., The studies on the hybrid schemes have also 

reported considerable performance improvements.  

In this paper, an enhanced energy detection based spectrum 

sensing algorithm is proposed. The main objective of the 

proposed algorithm is to combine the features of the 

traditional energy detection algorithm [11], improved energy 

detection algorithm [12] and cooperative schemes and to 

intelligently detect whether the primary user is operating in 

the spectrum. This enhanced energy detection algorithm 

considerably improves the detection performance under low 

SNR regime.  

Further this paper is organized as follows. In Section 2 

various existing approaches to spectrum sensing is discussed. 

Section 3 describes the spectrum sensing problem and the 

proposed system model to achieve improved sensing 

accuracy. In  Section 4, the operating principle of the 

proposed enhanced energy detection algorithm is explained. 

Simulation results and performance analysis are discussed in 

Section 5 and Section 6 is the conclusion of the paper. 
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2. Related Works 

Spectrum sensing is the key function of cognitive radio 

networks. There are many existing methodologies reported in 

the literature which improves the performance of spectrum 

sensing. A comprehensive summary of the existing spectrum 

sensing algorithms with their merits and demerits are listed in 

the Table 1.  
 

Table 1. Summary of existing sensing algorithms 
Sensing Algorithm Observations 

Matched Filtering Optimum if the primary signal type is 

known. 

High implementation complexity. 

Accuracy is high. 

Able to achieve certain probability of false 

alarm or misdetection in short time. 

Large Power Consumption. 

Energy Detection Does not require knowledge about the 

primary signals. 

Low computational and implementation 

complexity. 

Accuracy is low, but can be improved by 

refining the algorithm. 

Accuracy depends on the SNR and 

sensing time.  

Cyclostationary 

Feature Detection 

Exploits the hidden periodicity of the 

signals. 

Sensing time is more. 

May fail under strong channel fading 

conditions. 

Moderate implementation complexity. 

Accuracy is better than energy detection. 

Radio Identification 

based sensing 

Knowledge about the transmission 

technology used by the primary users is 

essential. 

Features extraction can be using any of the 

signal processing algorithms such as 

energy detection, feature detection, etc., 

Complexity and accuracy are moderate. 

Waveform based 

sensing 

Exploits known patterns used in wireless 

systems for sensing. 

Applicable to systems with known signal 

patterns. 

Reliable with low sensing time  

Autocorrelation / 

Covariance based 

sensing  

Statistical covariance of signal and noise 

are different, which helps to detect signals 

from noise.  

Effective to detect DTV signals. 

Autocorrelation of the signal is exploited 

for detection.  

Better performance than energy detection. 

Others Other algorithms include multitaper 

spectral estimation, eigen value based 

sensing and further enhancements to the 

existing algorithms.  
 

Improvements in spectrum sensing are focused both in local 

sensing and cooperative sensing. In local sensing, the 

secondary user individually performs sensing algorithms and 

arrives at a decision on its own. In [13], the traditional energy 

detection algorithm is examined for complex Gaussian signal 

and the effect of various sensing parameters on the error 

probability is evaluated. The performance analysis of 

traditional energy detection algorithm is analyzed for signals 

under both AWGN and Rayleigh fading in [14]. A sequential 

hybrid detector using both the energy detection algorithm and 

cyclostationary feature detection is proposed in [15]. In [16], 

a fuzzy logic based spectrum sensing scheme is proposed.  

 

 

In stage one, the sensing is performed using the common 

techniques like energy detection, feature detection and 

matched filtering. The result of the first stage is combined 

with a fuzzy logic algorithm to decide about the presence or 

absence of the primary user. SNR based adaptive sensing 

scheme is proposed in [17]. This scheme is two staged, where 

in stage one the SNR is estimated. In the second stage, the 

secondary user performs either energy detection or 

cyclostationary detection based on the estimated SNR. Many 

other techniques which uses wavelet transforms, SVD, 

covariance measures, eigen values are also proposed in the 

literature [18, 19]. The performance degradation due to 

unreliable spectrum sensing directly affects the throughput of 

the secondary users. The impact of unreliable sensing for an 

opportunistic sharing system is studied in [20]. So it is 

necessary to further improve the sensing performance.  

Alternatively, techniques to improve the performance of the 

traditional energy detection algorithm are well studied in the 

literature. In [12], an improved energy detection algorithm is 

proposed for spectrum sensing.  The improved energy 

detection scheme initially employs the traditional energy 

detection algorithm and additionally confirms the threshold 

with the average of past M energy values along with the 

previous energy value. This algorithm is able to avoid any 

missed detection due to instantaneous energy drops and 

improves the detection performance. The computational 

complexity of the improved energy detection algorithm is 

analyzed and is found to be similar to that of the traditional 

energy detection algorithm. Another approach to improve the 

traditional energy detection algorithm is proposed in [21]. 

The algorithm computes an arbitrary positive power 

operation on the received signal instead of squaring operation 

and shows better performance.  

 Apart from the local sensing techniques, cooperative 

sensing techniques are proposed to improve the detection 

performance. A collaborative spectrum hole detection 

scheme and optimization of decision threshold using energy 

detection is proposed in [22]. Sensing throughput tradeoff 

using energy detection is formulated and the optimal sensing 

time which maximizes the secondary user throughput is 

obtained for cooperative schemes in [23]. Cooperative 

sensing scheme with imperfect feedback channel is analyzed 

in [24]. A detailed focus on the performance analysis and 

comparison on the hard decision and soft decision based 

fusion schemes is accomplished in [25].  

Thus there are various local and cooperative sensing schemes 

reported in the literature. There always exists a tradeoff 

between the detection performance and the computational 

complexity for the sensing algorithms. Hence, in this paper, a 

spectrum sensing scheme using enhanced energy detection 

algorithm is proposed and analyzed. The detection and false 

alarm probabilities are derived for the proposed algorithm. 

The decision threshold is chosen according to maximize 

detection probability or to increase spectrum access 

opportunities for the secondary users or to negotiate between 

the two. The performance analysis of the proposed algorithm 

is well studied under all the possible situations. 
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3. The Spectrum Sensing Problem and the 

System Model 

The spectrum sensing problem is formulated as a binary 

hypothesis testing model defined by the two hypotheses, 

defined as 

 

                       
0

1

                if 

     if 


 



v( n ) H
y( n )

s( n ) v( n ) H
                 (1) 

 

where y(n) is the signal received over the primary band by 

the cognitive radio, s(n) is the transmitted primary user signal 

and v(n) is the AGWN and n = 1,2,3….N.  Hypothesis H0 

indicates that the channel is unoccupied and contains only 

noise. Hypothesis H1 indicates the presence of the primary 

user signal. N refers to the finite number of samples collected 

over the observation period based on which the sensing 

decision is made. Under ideal conditions, the spectrum 

sensing decision has to be hypothesis H1 if the primary user 

is operating on the spectrum and hypothesis H0 if the 

spectrum is free. Practically, spectrum sensing algorithms are 

prone to errors which lead to erroneous decisions. The two 

common errors are false alarms and missed detections. False 

alarms occur when the spectrum sensing algorithm decides 

hypothesis H1 and the sensed spectrum is free. A false alarm 

results in low spectrum utilization due to missed transmission 

opportunities for the secondary users. Alternatively, missed 

detection occurs when the spectrum sensing algorithm 

decides hypothesis H0 and the sensed spectrum is actually 

occupied by the licensed user. A missed detection may result 

in harmful interference to the primary user which is 

undesirable. Thus the performance of any spectrum sensing 

algorithm is evaluated by means of the two probabilities: the 

probability of false alarm, denoted by Pf = Prob(H1/H0) and 

the probability of detection, denoted by Pd = Prob(H1/H1). 

The probability of missed detection is the complementary Pd 

given by Pmd = 1 – Pd. Any spectrum sensing algorithm 

should result in low Pf and high Pd. However, there is always 

a trade-off between the two probabilities. To explore the 

relationship between the two probabilities of a spectrum 

sensing algorithm, Receiver Operating Characteristic (ROC) 

curves are helpful. ROC curves are generally obtained by 

plotting the probability of detection with respect to the 

probability of false alarm against various parameters of the 

algorithm.  

The system model for the proposed enhanced energy 

detection based spectrum sensing is shown in Figure 1. The 

main objective of the proposed algorithm is to improve the 

probability of detection without much increase in algorithm 

complexity. The enhanced spectrum sensing scheme 

primarily begins with the traditional energy detection and 

combines the feature of cooperative detection with the other 

secondary users in the cognitive radio network to maximize 

the probability of detection. The traditional energy detector 

compares the received signal energy on a primary channel 

over an observation period with a properly set threshold and 

declares the state of the channel as occupied or unoccupied. 

The procedure for threshold setting is explained in section 4. 

If the spectrum is reported unoccupied, the concept of 

improved energy detection [12] is employed. The improved 

energy detection makes an additional check by comparing the 

average energy value of the past M sensing instants with the 

decision threshold. For this purpose, the energy value of the 

past M sensing instants is stored. This step is incorporated to 

avoid any misdetection due to instantaneous energy drops. If 

the average energy value of M sensing instants is greater than 

the threshold, the decision threshold is again compared with 

the energy value of the immediate past sensing instant. This 

step is essential to avoid any false alarm when the primary 

user has just vacated the channel. Sometimes, the algorithm 

may fail to detect the presence of primary user because to 

noise uncertainty. Thus in the proposed algorithm, to further 

improve the performance of the detector, the decision is 

corroborated with cooperative sensing. Cooperation among 

the other secondary users is required only if the algorithm is 

unable to obtain a stable decision in the first two stages. Thus 

the computational complexity of the algorithm is not as high 

as cooperative detection and it is comparable with that of the 

traditional energy detection.   

4. Operating Principle of the Proposed 

Enhanced Energy Detection Algorithm 

The operating principle of the proposed spectrum sensing 

algorithm is described as follows: First, the traditional energy 

detection is explained thoroughly. Its theoretical performance 

is analyzed comprehensively in terms of the false alarm and 

missed detection probabilities for varying number of 

samples. Then the algorithm design of the enhanced energy 

detection is explained and its theoretical performance is 

evaluated. Finally, the results of the proposed spectrum 

sensing are compared with the improved energy detector and 

traditional energy detector.  

 4.1  The Traditional Energy Detector 

The traditional energy detector [10] uses the measured signal 

energy over an observation interval as the test statistic and 

compares it with a predefined threshold , given by, 

                     
2

1

1



 
N

i

n

T ( y ) y( n )
N

                           (2) 

Ti(y) is the decision statistic computed at the i
th

 sensing 

instant. The spectrum sensing algorithm decision is 

hypothesis H1 if Ti(y)>. Otherwise, the decision is H0. The 

procedure to select the decision threshold  is explained 

below.  

The analytical expressions for Pd and Pf can be derived 

based on the test statistic which follows a central chi-square 

distribution under H0 and non central chi-square distribution 

under H1 with 2N degrees of freedom. If N is sufficiently 

large (required to achieve a certain performance), central 

limit theorem approximates the test statistic as Normal 

distribution as given by, 

          

2

0 0 0

2

1 1 1

    if 

    if 


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i

Normal( μ ,σ ) H
T ( y )

Normal( μ ,σ ) H
              (3) 

where 
2 2

0 1 0 1μ ,μ ,σ ,σ are the mean and variance of the 

distribution under H0 and H1 respectively. They are evaluated 

based on the following assumptions: 
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(i)   Both s(n) and v(n) are real and Gaussian.  

(ii)  s(n) and v(n) are independent of each other. 

(iii) The primary user SNR under H1 is given by 

2

2
 s

v

σ
γ

σ
     

The mean and variance of the test statistic under H0 is , 
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 Similarly the mean and variance of the test statistic 

under H1 is , 
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Thus the probability of false alarm and detection of the 

traditional energy detector can be obtained using the 

distribution of the test statistic as,  
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where Q(.) is the tail probability function of the normal 

distribution and defined as 
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4.2  Determination of Decision Threshold 
 

The decision threshold setting procedure is very crucial as it 

directly affects the performance of the detector. The 

threshold  should be chosen such that the probability of 

detection is maximized and the probability of false alarm is 

minimized. Achieving both these criteria cannot be realized 

in practice. Also, this requires the knowledge of signal and 

noise powers. The estimation of signal power is difficult 

whereas the noise power can be estimated. Thus the threshold 

is normally selected to satisfy a fixed Pf, which depends only 

on noise power. The decision threshold  for a target Pf, 

denoted as 
^

fP can be solved from equation (4) as, 
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The corresponding probability of detection is obtained as, 
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4.3  The Proposed Enhanced Energy Detection 

Algorithm 

The traditional energy detector has well-known detection 

performance drawbacks. Its performance depends on factors 

like SNR, number of samples N and hidden user problem. 

Missed detections should be avoided as it is harmful to the 

primary user. The missed detections due to instantaneous 

signal energy drops could be avoided using an improved 

energy detector as in [12]. To further improve the accuracy 

of the energy detector and to avoid missed detections due to 

shadowing and fading, the proposed enhanced spectrum 

sensing algorithm additionally verifies with the decisions 

from the other secondary users present in the cognitive radio 

network. This requires the exchange of sensing decisions 

between the secondary users using a common control 

channel. The additional check using the cooperative decision 

(using soft combining scheme or hard combining scheme 

with AND/OR/MAJORITY fusion rules) will be useful in 

avoiding missed detection due to hidden users. The algorithm 

for the enhanced energy detector is explained in Algorithm 1. 

The traditional energy detection algorithm is also explained 

in Algorithm 2 for comparison. 

The proposed enhanced energy detection algorithm is 

explained as follows: At every i
th

 sensing instant, the signal 

energy value is calculated using N samples and compared 

with the decision threshold. If the signal energy is falls below 

the threshold, the average signal energy values of the past M 

sensing instants and the signal energy value of its pervious 

instant (i-1) are compared with the threshold. The average 

signal energy of the past M sensing instants is computed as, 
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The test statistic values of the past instants j = i, i-1, …i-M 

can be assumed to be normally distributed and their average 

value is also normally distributed, 

avg ( ) ~ ( , )
j avg avg

T y Normal μ σ
 

The average mean and variance of avg Tj(y) can be evaluated 

as [12], 
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where L is the number of times, the decision is H1 out of M. 

 

 

 

Additionally, one more check is performed to avoid any 

missed detections due to hidden user problem. This is 

achieved with the help of the other cooperating secondary 

users in the network. The other secondary users share their 

respected signal energy values calculated at the i
th

 instant 

with each other through a common control channel (soft 

combining). Now the average energy value of the other 

secondary users is given by, 
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The mean and variance of avg 
k

i
T  is given by, 
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If the signal energy value is still less than the decision 

threshold, the state of the channel is declared as unoccupied.  

Instead of sharing the signal energy values, the other 

secondary users can also share their decisions as a 1 bit value 

between them (hard combining). In such case, the probability 

of detection and false alarm is given by, 

   

   

1

1

K
l K lc

d d d

l X

K
l K l

c

f f f

l X

K
P P P

l

K
P P P

l









 
  

 

 
  

 




 

where X=1 indicates OR fusion rule, X=K indicates AND 

fusion rule and X=K/2 denotes the MAJORITY rule. 

 Hence, the probability of detection 
en

dP   for the enhanced 

energy detection algorithm is derived as, 
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The corresponding false alarm probability 
en

fP  is given by,  
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   

       
   

avgen c

f f f f f f

avg

λ μ
P P P Q P P P

σ
         (9) 
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Algorithm 1. The proposed algorithm 

Input: x(n), , N 

Output: H0, H1  

for every sensing instant i do 

    Compute Ti(y) 

    Compute avgTj(y), j = i, i-1,…i-M 

    if Ti(y) >  then 

        decide H1 

     else 

        if  avgTi(y) >  then 

            if  Ti-1(y) >  then 

                decide H1 

            else 

                Compute avg ( )
k

i
T y , k = 1,2,..K 

                if avg ( )
k

i
T y  >  then 

                    decide H1 

                       else 

                    decide H0 

               end if 

            end if 

        else 

            decide H0 

        end if 

    end if 

end for         

 

Algorithm 2 The traditional energy detection algorithm 

Input: x(n), , N, K,  

Output: H0, H1  

for every sensing instant i do 

    Compute Ti(y) 

    if Ti(y) >  then 

        decide H1 

     else 

        decide H0 

    end if 

end for         

4.4  Determination of Decision Threshold for the 

Proposed Enhanced Energy Detection Algorithm 
 

The determination of the decision threshold is very important 

for any signal detection scheme. The determination of the 

decision threshold for the traditional energy detection is 

explained in section 4.2. If the similar threshold as given in 

equation (6) is used for the proposed detection algorithm the 

lower and upper bound for the detection and the false alarm 

probabilities can be approximated as follows. From equation 

(9), 

 1 1( ) . ( )
avgen c

d d d d d d

avg

λ μ
P P P Q P P P

σ

   
       

     

We analyze the upper and lower bounds of the probabilities 

of detection and false alarm. The probability of the enhanced 

energy detection algorithm depends on the Q function. The 

value of Q(.) lies between 0 and 1. Hence, if Q(.) = 0,   

en

d d
P P

 

and if Q(.) = 1 and 1c

d
P ,   

 
 

1 1

      = 1 1

     1

( ) ( )

( ) ( )

en c

d d d d d d

d d d d

P P P P P P

P P P P

    

   

 

Otherwise if Q(.) = 1 and
c

d d
P P , 

 
 

2 3

1 1

      = 1 1

     3 3 1

en c

d d d d d d

d d d d d

d d d

P P P P P P

P P P P P

P P P

    

   

  

( ) ( )

( ) ( )  

Thus the probability of detection is bounded 

by 1 e

d d
P P . At the same time the probability of false 

alarm also increases from its target value as given by, 

If Q(.) = 0,   

en

f f
P P

 

and if Q(.) = 1 and  0c

f
P ,   

22 en

f f f
P P P  

which indicate that the probability of false alarm increases by 

approximately two times. 

If Q(.) = 1 and 
c

f f
P P  ,   

2 33 3  en

f f f f
P P P P  

which indicate that the probability of false alarm increases 

approximately by three times. Thus the performance 

improvement of the proposed algorithm is achieved at the 

expense of slight degradation in the false alarm. However it 

can be verified from the ROC curves presented in the 

following section that the performance degradation due to 

false alarm is less intense for the proposed algorithm. To 

compensate for the increase in false alarm (maximum three 

times target Pf), the threshold can also be chosen as, 

                       2 12
1

3



  
   
    

  

^

f

v

P
λ σ Q

N
                    (10) 

This choice of threshold will reduce the false alarm 

degradation with guaranteed detection performance 
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improvement. If the target Pf is denoted as
argt et

f
P , the 

probability of detection for 
argt et

f
P  is given by,  

 
 

2 1

1

2
1

          1

arg

( ).

. ( )



  

   
     

   
   

  
  

  

en

d d d

t et

v f avg

c

d d d

avg

P P P

σ Q P μ
N

Q P P P
σ

 

Now the proposed algorithm is analyzed for three different 

situations which are obtained when
^

arg t et

f f
P P , 

2

^

arg 
ft et

f

P
P    and 

3

^

arg 
ft et

f

P
P  which leads to three 

different threshold values.  

Situation (i) – Maximum primary user protection: To highly 

protect the primary users from harmful interference, it is 

desirable to use the threshold in which
^

arg t et

f f
P P . The 

detection performance is guaranteed in this case at the 

expense of loss in spectrum opportunities for the secondary 

users.  

Situation (ii) – Maximum secondary user utilization: To 

create more opportunities for the secondary users the 

threshold in which 
3

^

arg 
ft et

f

P
P  could be employed. This 

slightly reduces the detection performance than the first 

situation, but guarantees the false alarm probability. 

Situation (iii) – As a compromise between the primary user 

protection and secondary user spectrum utilization, the 

threshold in which
2

^

arg 
ft et

f

P
P   could be employed. This 

gives a better detection performance than the second 

situation, with a slight degradation in the false alarm 

probability. 

 The performance of the enhanced energy detector obtained 

for each of the above discussed threshold values is better 

than the traditional energy detector. 

5. Simulation Results and Discussions 
 

To verify the accuracy of the proposed enhanced energy 

detection algorithm, the ROC curves are plotted and 

compared with the traditional energy detection algorithm. 

The primary signal should be sensed at a very low SNR to 

protect them from interference. According to IEEE 802.22 

spectrum sensing specifications, a cognitive radio should be 

able to detect a digital TV signal at an SNR of -3dB to -21dB 

[20].  

 

Thus, the proposed algorithm is evaluated for low SNR 

values. The number of other cooperating secondary users (K) 

is set to 10. Figure 2 shows the detection performance of the 

traditional energy detection algorithm with respect to SNR 

for varying number of samples N. To achieve the simulated 

results, the primary signal is assumed to be real Gaussian.  It 

is observed that the detection performance improves with 

increasing number of samples. It is also observed that for 

short sensing times (say N = 10), the signal variance is large 

and hence the simulated performance does not follow the 

theoretical performance and exhibits performance 

degradation. Table 2 shows the achieved probability of 

detection and the corresponding SNR values for N = 1000. 
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Figure 2. Performance of the traditional energy detection 

algorithm 

 

Table 2. Achieved probability of detection using traditional 

energy detection 

 

Target Pf = 0.1 

Pd SNR (dB) 

0.9 -9.27 

0.8 -10.14 

0.7 -10.87 

0.6 -11.61 

 

 

To evaluate the performance of the proposed algorithm, the 

SNR values for which the Pd is 0.6 to 0.9 are considered. The 

ROC curve for the proposed algorithm, improved energy 

detection algorithm and the traditional energy detection are 

obtained as shown in Figure 3 to Figure 6.  To obtain the 

improved energy detection performance, the value of L and 

M are assumed to be 5. It is observed that when the SNR is -

10.14 and Pf = 0.1, the probability of detection of the 

traditional energy detection algorithm is 0.8 whereas for the 

proposed algorithm Pd is 0.9. This corresponds to 10% 

improvement in the detection performance. Similar 

performance is observed for other values of SNR.  
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Figure 3. ROC curves for SNR = -9.27 dB 
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Figure 4. ROC curves for SNR = -10.14 dB 
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Figure 5. ROC curves for SNR = -10.87 dB 
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Figure 6. ROC curves for SNR = -11.61 dB 

Then the performance of the proposed algorithm is also 

analyzed for different number of samples N = 5000, 1000, 

100 and 10 and shown in Figure 7 to Figure 10. It is observed 

that as N increases the detection performance also increases. 

For low values of N the proposed algorithm achieves better 

results which ensure that it is able to detect the primary user 

signal with short sensing durations.  
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Figure 7. ROC curves for N = 5000 
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Figure 8. ROC curves for N = 1000 
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Figure 9. ROC curves for N = 100 
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Figure 10. ROC curves for N = 10 
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Figure 11. Performance comparison of the algorithms with 

respect to SNR 

The previous observations are well confirmed in Figure 11. 

in which the probability of detection is plotted against SNR. 

The improvement in the probability of detection is well 

observed for the proposed algorithm. The SNR values for 

which the achieved probability of detection is 0.6 to 0.9 is 

shown in Table 3.  

 

The detection probability of 0.9 is achieved at an SNR of -

10.81 for the proposed algorithm whereas it is approximately 

0.7 for the traditional energy detection algorithm. Thus it can 

be concluded that similar detection performance is achieved 

at low SNR for the enhanced energy detection algorithm.   

Table 3. SNR at target probability of detection 

Pd 

SNR (dB) 

Traditional 

ED 

Improved 

ED 

Enhanced ED with 

cooperation 

0.9 -9.27 -10.1 -10.81 

0.8 -10.14 -10.85 -11.6 

0.7 -10.87 -11.52 -12.23 

0.6 -11.61 -12.2 -12.81 

 

Figure 12 shows the ROC curves obtained for various 

decision threshold values as discussed in section 4.4. 

Threshold 1 corresponds to
^

arg t et

f f
P P , threshold 2 

corresponds to 
2

^

arg 
ft et

f

P
P and threshold 3 corresponds 

to
3

^

arg 
ft et

f

P
P . The target probability of false alarm 

^

f
P  is set 

to 0.1 and the number of samples N is set to 1000. The 

detection performance obtained for all the three cases is 

better than the performance obtained for traditional energy 

detection.  
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Figure 12. ROC curve for different threshold values 

The detection performance obtained for increasing number of 

samples is shown in Figure 13. It is observed that the 

proposed algorithm requires less number of samples to 

achieve a performance similar to traditional energy detection 

and improved energy detection. To achieve a detection 

performance of 0.9, the proposed algorithm requires 

approximately 4150 samples at which the traditional energy 

detection algorithm is able to attain only 0.68. The exact 

number of samples required for each of the algorithms is 

tabulated in Table 4. 
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Figure 13. Performance comparison of the algorithms with 

respect to the number of samples 

Table. 4 No of samples required for a target probability of 

detection (SNR = -14dB) 

Pd 

No. of samples (N) 

Traditional 

ED 

Improved 

ED 

Enhanced ED with 

cooperation 

0.9 8620 5820 4150 

0.8 5870 4175 2935 

0.7 4210 3120 2250 

0.6 3010 2310 1740 

 

Finally, the computational complexity of the proposed 

algorithm is analyzed and compared with the existing 

algorithms. The computational complexity is analyzed using 

number of samples required to achieve a target Pd and Pf. 

The number of samples required for the traditional energy 

detection algorithm can be computed using (7) and given by  

                
2

1 11
2 1 f dN Q P Q P


  
   

 
      (11) 

which shows that the required number of samples for a target 

performance varies as O(1/SNR
2
). Figure 14 shows the 

sample complexity against SNR obtained using (11). Similar 

closed form expression for N is difficult to  obtain for the 

proposed algorithm. Hence the complexity in terms of the 

number of samples is obtained numerically and compared 

with the existing algorithms. The curves corresponding to the 

proposed algorithm tend to follow the curve using (11) with a 

lesser slope. Hence it can be concluded that the complexity in 

terms of number of samples is same as that of the existing 

algorithms. The processing time taken for the proposed 

algorithm is also found to be comparable to that of the 

traditional energy detection algorithm as the algorithm 

requires only additional verifications. However, the need for 

storage requirements increases with increase in M and K 

values. 
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Figure 14. Complexity analysis in terms of number of 

samples 

6. Conclusion  

Energy detection is a simple and very popular spectrum 

sensing algorithm and is widely used in cognitive radio 

networks. It has a very low computational and 

implementation complexity. In spite of the advantages, the 

performance of the energy detection is limited than other 

alternative techniques. To overcome the performance 

degradation of the traditional energy detector, this paper 

proposes an enhanced energy detection algorithm to improve 

the spectrum sensing accuracy. The proposed algorithm 

combines the features of both the traditional energy detection 

and cooperative detection. The expressions for the detection 

and false alarm probability are derived and the selection of 

decision threshold is discussed.  Results confirm that 

enhanced energy detection algorithm performs well than the 

existing energy detection algorithms. Under low SNR, its 

detection performance is better and requires less number of 

samples to achieve the same level of performance than other 

energy detection algorithms. 
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Figure 1. The proposed System Model 

 


