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Abstract: Many previous studies had proven that The PRESENT 

algorithm is ultra-lightweight encryption. Therefore, it is suitable for 

use in an IoT environment. However, the main problem with block 

encryption algorithms like PRESENT is that it causes attackers to 

break the encryption key. In the context of a fingerprint template, it 

contains a header and many zero blocks that lead to a pattern and 

make it easier for attackers to obtain an encryption key. Thus, this 

research proposed header and zero blocks bypass method during the 

block pre-processing to overcome this problem. First, the original 

PRESENT algorithm was enhanced by incorporating the block pre-

processing phase. Then, the algorithm’s performance was tested 

using three measures: time, memory usage, and CPU usage for 

encrypting and decrypting fingerprint templates. This study 

demonstrated that the proposed method encrypted and decrypted the 

fingerprint templates faster with the same CPU usage of the original 

algorithm but consumed higher memory. Thus, it has the potential to 

be used in IoT environments for security. 
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1. Introduction 
 

Small computing devices are becoming more widespread and 

emerged as an essential part of the Internet of Things (IoT). It 

is the backbone of applications in various domains like 

healthcare, agriculture, transportation, smart cities [1]. In this 

type of network, devices send a large volume of sensitive 

data; therefore, data security is the researchers’ main concern, 

primarily through encryption algorithms [2]. However, 

traditional symmetric encryption algorithms are not suitable 

for IoT devices due to hardware limitations. They cannot 

achieve acceptable hardware conditions and performance 

with their limited power supply [3]. Therefore, lightweight 

encryption algorithms become the best option to ensure the 

security of such information [1, 4-6] that is generated by such 

small devices [5, 7].  

Furthermore, resource-constraint environments require 

lightweight cryptography to accommodate features of 

compact implementation, small memory, and low power 

supply [1]. The lightweight cryptography addresses the 

limitation of that traditional cryptography which cannot be 

used in this environment due to high implementation costs [8, 

9]. Examples of lightweight block encryption algorithms 

include PRESENT, CLEFIA, MIBS, and LBlock [10]. Many 

lightweight encryption algorithms have been invented so far 

to be applied in various settings. Panahi et al. [11] listed 

eighty-one algorithms with their features to demonstrate the 

available algorithms for lightweight implementation.  One of 

the popular ultra-lightweight encryption algorithms is 

PRESENT [12], with simple encryption key scheduling [1, 

13] compared to others. Various types of data sent within 

devices in IoT networks need to be protected in terms of 

confidentiality using encryption algorithms. One crucial data 

is user credential information such as password and personal 

identification number (PIN) to verify their identity before 

using the network or system resources. In addition to 

passwords and PINs, many IoT systems use biometric factors 

such as facial images and fingerprints for user authentication 

purposes. The biometrics authentication system performs a 

matching process between the captured fingerprint or facial 

images (using a scanner or camera) with the authentication 

information stored in the database. This biometric 

information is called a template, which is stored in the form 

of the hexadecimal string [14]. This study mainly focuses on 

the fingerprint template captured by optical fingerprint 

scanners and then stored in the form of hexadecimal strings, 

not the fingerprint images. 

Further, this study also aims to protect the templates 

generated by the scanners through an appropriate encryption 

algorithm. However, the initial part on how the scanners 

perform feature recognition and extraction processes is 

beyond this study’s scope. It is because IoT applications use 

an optical fingerprint sensor attached to a microcontroller for 

user authentication. Fingerprint sensors are an industry 

standard, which has been widely used and adopted. However, 

the significant gap in the current fingerprint templates 

generated by the industry-standard optical fingerprint sensors 

is that they are still in plain text, exposing them to security 

attacks and consequently causing user identity theft. Hence, 

they should be protected using appropriate encryption 

algorithms. Based on this situation, there is an urgent need to 

look into how these templates could be protected within the 

constraint-resource environment. 

This study aims to improve the PRESENT algorithm so that 

it can be adapted to encrypt fingerprint templates generated 

by optical scanners in an IoT environment. Recent studies 

have found that PRESENT is an ultra-lightweight encryption 

algorithm that can be used in IoT environments [1, 3, 10, 11, 

15]. However, the performance of this algorithm in 

encrypting fingerprint templates in the form of hexadecimal 

strings has not been explored. Furthermore, to the best of our 

knowledge, the existing research has only focused on 

encrypting fingerprint images using public datasets like 

Fingerprint Verification Competition (FVC). Nevertheless, 

no research has explored the encryption algorithms suitable 

for fingerprint templates generated by these optical scanners. 

Thus, the results of this research can contribute to the 

improvement of data security protection in industry-standard 

optical scanners. 
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2. Related Works 
 

This section will describe two basic things in this study: 

background on the PRESENT algorithm and fingerprint 

template encryption. In addition, it will also list findings from 

similar studies to establish a fundamental knowledge of the 

studies proposed in this article and their related development. 
 

2.1 The PRESENT Algorithm 
 

PRESENT is an ultra-lightweight block encryption algorithm 

with a lower implementation cost than similar algorithms [12, 

16]. The algorithm performed substitution and permutation 

processes on the plaintext of a block of 8-byte in 31 rounds 

with the encryption key to generate its ciphertext. The overall 

encryption process using the PRESENT algorithm is 

illustrated in Figure 1. 
 

 
Figure 1. The PRESENT encryption process [12, 16] 

 

The PRESENT algorithm uses 80-bit or 128-bit key size for 

performing the encryption. However, this study focuses 80-

bit key to accommodate the IoT resource-constraint 

environment. The key is stored in a key register K with 

individual bytes are stored in decreasing order as represented 

in (1). 
 

𝐾 = 𝑘79 𝑘78 …………………..𝑘1𝑘0                                                                           (1) 
 

The algorithm will extract 64-bit subkey Kj in which j is the 

number of a round of the key scheduling process as rendered 

in (2). 
 

𝐾𝑗 =   𝑘63 𝑘62,…………………..𝑘1𝑘0 =  𝑘78 𝑘78 …………………..𝑘17𝑘16                   (2) 
 

After that, the algorithm updates the key register K as stated 

in (3), (4) and (5) in producing the addRoundKey function. 
 

[𝑘79 𝑘78,…………………..𝑘1𝑘0 ] = [𝑘18 𝑘17,…………………..𝑘20𝑘19]   (3) 

[𝑘79 𝑘78𝑘77𝑘76] = 𝑆[𝑘79 𝑘78𝑘77𝑘76]                                          (4)    
[𝑘19 𝑘18𝑘17𝑘16𝑘15] = [𝑘19 𝑘18𝑘17𝑘16𝑘15]

⊕ 𝑟𝑜𝑢𝑛𝑑_𝑐𝑜𝑢𝑛𝑡𝑒𝑟                                     (5)    
 

The output of addRoundKey will be XORed with the 

plaintext before the input text undergoing the SBoxLayer and 

pLayer process. The SBoxLayer performed a substitution 

process using substitution rules in Table 1. 
 

Table 1. PRESENT S-BoxLayer [12, 16] 
x 0 1 2 3 4 5 6 7 8 9 A B C D E F 

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2 
 

The output of SBoxLayer goes into the pLayer process using 

the rules in Table 2. The entire encryption process using the 

PRESENT algorithm is represented by Algorithm 1. 
 

Table 2. PRESENT pLayer [12, 16] 
i P(i) i P(i) i P(i) i P(i) 

0 0 16 4 32 8 48 12 

1 16 17 20 33 24 49 28 

2 32 18 36 34 40 50 44 

3 48 19 52 35 56 51 60 

4 1 20 5 36 9 52 13 

5 17 21 21 37 25 53 29 

6 33 22 37 38 41 54 45 

7 49 23 35 39 57 55 61 

8 2 24 6 40 10 56 14 

9 18 25 22 41 26 57 30 

10 34 26 38 42 42 58 46 

11 50 27 54 43 58 59 62 

12 3 28 7 44 11 60 15 

13 19 29 23 45 27 61 31 

14 35 30 39 46 43 62 47 

15 51 31 55 47 59 63 63 
 

Algorithm 1: PRESENT encryption process [12] 

generateRoundKeys()  

for i = 1 to 31  

do  

addRoundKey(state,Ki)  

sBoxLayer(state)  

pLayer(state)  

end for  

addRoundKey(state,K32) 
 

Since its introduction in 2007, the PRESENT algorithm has 

gained researchers’ attention to apply it in various domains 

and improve its’ encryption and decryption performance. As 

a result, there have been positive and encouraging 

developments in terms of the studies’ results. Furthermore, 

researchers take various aspects of the algorithm into account 

to sustain the algorithm in providing security protection for 

data, especially in the IoT environment. Table 1 lists the 

studies that improved the PRESENT algorithm and their 

contributions to the body of knowledge. 
 

Table 3. Summary of related works on the PRESENT 

encryption algorithm 
Study Description Contributions 

Wang [16] The study introduced a 
reduced-round variant of 

PRESENT and conducted 

differential cryptanalysis 
of the algorithm on an 80-

bit key.  

The study managed to 
break the algorithm at 16-

round, however, not the 

31-round. 

Yap et al. [7] This study proposed a 
block cipher (BC) suitable 

for electronic product 

code (EPC) name EPCBC 
based on the PRESENT 

algorithm. 

 The algorithm encrypts a 
48-bit block size and 96-

bit key and is proven 

secure against related-key 
differential attacks. 

Z’aba et al. 
[8] 

This study proposed an 
encryption and decryption 

circuit of the PRESENT 

algorithm named I-

PRESENTTM. 

This study provides time 
and cost savings of circuit 

usage due to 

implementing encryption 

and decryption using the 

same circuit. 

Tang et al. 

[4] 

This study proposed a 

dynamic S-box to replace 
the S-BoxLayer in the 

PRESENT algorithm by 

applying crossover and 
mutation in the genetic 

algorithm concept.  

The enhanced PRESENT 

encryption algorithm has 
an avalanche effect and 

the ability to resist 

differential and linear 
attacks. 

Chatterjee 
and 

Chakraborty 

[9] 

The study enhanced the 
PRESENT algorithm by 

reducing the encryption 

round, modifying the Key 
Register updating 

technique, and adding a 

new layer between S-
BoxLayer and P-Layer. 

The improved algorithms 
have been able to improve 

the performance of the 

original PRESENT. 

Jain et al. 

[17] 

The study developed a 

differential distinguisher 

algorithm based on a deep 

learning approach to 

The algorithm was able to 

attack PRESENT 

encrypted text up to five 

rounds. However, the 
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launch differential attacks 

on 3-6 rounds of 

PRESENT encrypted text. 

algorithm was not able to 

attack the complete 

rounds of the PRESENT 

encrypted text. 

Maro [18] The study used the 

Boolean satisfiability 
problem to evaluate the 

reliability of the 

PRESENT encryption 
algorithm. 

It models the encryption 

process using algebraic 
analysis of the PRESENT 

algorithm. 

Kwon et al. 

[5] 

The study implemented 

the PRESENT encryption 
algorithm on AVR 

microcontroller that 

supports Electronic Code 
Book and Counter. 

The study implemented a 

compact PRESENT 
algorithm with improved 

execution time. 

Maro [19] This study compared the 

power consumption of 

AES and PRESENT 
encryption algorithms 

using ELMO tool. 

This study estimates the 

probability of instructions 

leakages for the AES and 
PRESENT 

implementations. 

Chen [6] The study proposed a key 
library generation 

algorithm for PRESENT 

encryption that was stored 
in the chip.  

The evaluation of the 
algorithm was tested on 

image data to demonstrate 

that the algorithm is 
suitable for encrypting 

images within an IoT 

environment. 

Hussam [20] The study proposed an 
encryption algorithm 

based on PRESENT and 

TWINE for securing data 
in the cloud environment. 

The study proposed a 
lightweight encryption 

algorithm that is secure 

and suitable for protecting 
data within the cloud 

environment. 

Tao [10] The study suggested the 
use of a dynamic key 

update method for the 

PRESENT algorithm 
applied in a vehicular 

network. 

The dynamic key 
increases the difficulty to 

detect and decrypt the key 

to prevent data from being 
decrypted, stolen and 

tampered with. 

Panahi et al. 
[11] 

This study compared the 
performance of ten 

lightweight algorithms for 

IoT environments. One of 
them was PRESENT, and 

they were tested on two 

microcontrollers. 

Among the findings, the 
study found that 

PRESENT had the highest 

encryption execution time 
of the other nine tested 

algorithms; nevertheless, 

it had the lowest 
encryption throughput. 

Sahmi et al. 

[2] 

This study proposed a 

method to secure message 

queue telemetry transport 
protocol using AugPAKE 

algorithm and PRESENT 

encryption. 

This method provides 

mutual authentication 

between the publisher and 
subscriber and protects 

the published message’s 

confidentiality and 
integrity. 

Sruthi and 

Rajasekaran 
[15] 

The study proposed a 

Signcryption scheme that 
employed PRESENT to 

encrypt data and use 

Elliptic-curve 
cryptography (ECC) to 

encrypt the key. 

The outcomes of the study 

suggested that the 
encryption time was 

improved using the 

proposed scheme, which 
makes it suitable for the 

resource-constraints 

environment. 
 

The studies summarized in Table 1 resolve different aspects 

of using the PRESENT algorithm in various domains. 

However, many researchers found that block encryption 

algorithms often face key-differential attacks capable of 

breaking standard encryption algorithms such as AES-128 

and KASUMI [7]. Key-differential attacks is a cryptanalysis 

technique used on blocks encryption by studying input 

differences and their relationship to output to retrieve the 

secret cryptographic key of the encrypted text [17]. Just like 

other block encryption algorithms, PRESENT also faces the 

same problem. Thus, this study attempts to solve this problem 

so that the encryption algorithm is robust, and attackers would 

not be able to retrieve the encryption key. 

 

2.2 Fingerprint Template Encryption 
 

The fingerprint is widely used as an authentication method 

due to its unique features [14] and part of the human body 

facilitating the authentication process. Unlike the smartcards 

that might be lost or stolen and password forgot due to 

password overload, a fingerprint is considered convenient 

[14]. The fingerprint information of a user is called a 

fingerprint template. Yau [21] and Yau [22] defined a 

fingerprint template as “a set of stored fingerprint features 

extracted from the fingerprint of a user. It is stored during the 

enrollment process to represent the actual owner of the 

fingerprint.” Generally, it is user fingerprint information 

stored in the database during the enrolment process [14]. The 

way of recognizing the fingerprint features varies depending 

on the fingerprint sensors used in capturing the fingerprint 

images. Nonetheless, the fingerprint features would be stored 

in a template of hexadecimal string formats. The entire 

process of fingerprint recognition [21, 22] is illustrated in 

Figure 2. 

 
Figure 2. The process of fingerprint recognition [21, 22] 

 

The sensor will scan the finger during the recognition process 

to obtain a digital image for the fingerprint pattern. Then, the 

extractor algorithm will identify the fingerprint 

characteristics. Various methods can be used to determine 

fingerprint characteristics; however, the popular ones are 

based on minutia. Next, the fingerprint properties will be 

converted into binary or hexadecimal string form [14]. Figure 

3 shows how the process of transforming a fingerprint image 

into a template. Fingerprint sensors are available in three 

types of technology: optical, capacitive and ultrasonic [23]. 

Each technology uses a different method to recognize a 

fingerprint, define a fingerprint feature and convert that 

feature into a template form. However, international 

standards have provided a fingerprint template format to 

facilitate the interoperability process by fingerprint sensors’ 

manufacturers. For example, the International Organization 

for Standardization (ISO) [24] and The American National 

Standards Institute (ANSI) [25] provide the standard of 

minutiae template exchange format to allow interoperability 

of worldwide adoption of different fingerprint recognition 

systems. 

 
Figure 3. An example of finger minutia [26] 

 

2.3 The Gap 
 

Optical and capacitive sensors are two common types of 

sensors available in the market. Capacitive sensors are widely 

used in smartphones [27], while optical sensors are used more 

frequently in IoT environments [28].  This study focuses on 

optical sensors and fingerprint templates generated by these 

sensors to represent user fingerprint features. In particular, 
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this study investigates the template produced by the optical 

sensor of the AS608 model with the characteristics described 

in Figure 4. These sensors are readily available in the market 

at a price of around USD10-20. In addition, it can also be 

connected to a microcontroller board and programmed to be 

used as a fingerprint recognition system within an IoT 

environment. 

The template size generated by these sensors is 512 bytes in 

the form of a hexadecimal string. Figure 5 shows an example 

of an actual fingerprint template generated by these sensors. 

This template is in plaintext form, which is an unencrypted 

template. Thus this template is vulnerable to various threats 

and security attacks that can cause user identity theft [14]. 

Thus, this study focuses on encrypting this template to protect 

its confidentiality, thus avoiding identity theft problems and 

other potential security issues. Furthermore, this study intends 

to use PRESENT [12], a lightweight encryption algorithm 

suitable for IoT environments [1, 2, 11, 13]. 

PRESENT is a block encryption algorithm that accepts one 

block’s input equals 8 bytes with an 80-bits key. Thus, a 

fingerprint template with 512 bytes will generate 64 blocks of 

data to be encrypted with the PRESENT algorithm separately, 

as shown in Table 3. No padding is needed in this data as all 

blocks are in the equal size of 8 bytes. This study used a 

Python’s code for the PRESENT algorithm as programmed 

by Buchanan [29] and key “AC08170000000088EF21”. 

Figure 6 shows the encrypted fingerprint template. 
 

 
Figure 4. The AS608 optical fingerprint sensor module with 

its specification 

The main problem in block encryption is that the block’s 

ciphertext generated a pattern of similar block string 

that leads to a key-differential attack, i.e. the attacker 

performs a cryptanalysis process to guess the encryption 

key by comparing the encrypted blocks [16, 30]. In the 

example of fingerprint template (i.e., Sample 1) in 

Figure 5 and Table 4, there are twenty times occurrences 

of “0000000000000000”. Hence, this block was 

encrypted to “8c99215c7a117a6a”. Attackers are aware 

that fingerprint templates would have many occurrences 

of “0000000000000000” due to the minutia pattern of 

the fingerprint. 
 

 
Figure 5. An example of a plain fingerprint template 

acquired using an optical sensor (Sample 1) 
 

 
Figure 6. The encrypted fingerprint template (i.e., Sample 

1) using PRESENT 
 

Further, it is also known that the fingerprint template 

contained header information of “FFFFFFFFFFFFFFFF”, 

which encrypted as “21edccff63f05a6a”. Therefore, the key-

differential analysis could be done quickly by comparing 

these two blocks. Generally, block encryption is safe from 

brute-force attacks [31]; however, encrypted fingerprint 

templates reveal a pattern that facilitates this attack.   Hence, 

there is a need to improve the PRESENT algorithm to be used 

ideally for fingerprint templates generated using optical 

sensors, which has been the aim of this study.  
 

3. The Enhanced PRESENT Encryption 

Algorithm 

This study proposes a block pre-processing phase by 

managing the individual fingerprint template block so that it 

is suitable to be encrypted with the PRESENT algorithm. It 

avoids blocks containing the same ciphertext that could lead 

to the key-differential attacks in which the key of the 

encryption process is breakable. As mentioned previously, the 

fingerprint template contains many blocks with zero values 

that produce many blocks with the same ciphertext (when 

they are encrypted). They can be recognized that represented 

zeros, as shown in Table. Apart from that, it is also known 

that the fingerprint templates have a header block containing 

the series of “F” sixteen times.  
 

Table 5. An example of ten blocks of a fingerprint 

template with their corresponding ciphertext 
Block Template Encrypted Descriptions 

1 FFFFFFFFFFFFFFFF 21edccff63f05a6a The first block 

is always 
known as a 

header block 

2 FF03612BA0017F01 e43258f64ceb8c77 The encrypted 

block is 
unique 

3 8B00000000000000 5cb53b4f270bd69b The encrypted 

block is 

unique 

4 0000000000000000 8c99215c7a117a6a The encrypted 

block is 

unique for the 
first  time in 

its appearance 

5 0000000000000000 8c99215c7a117a6a The encrypted 
block is the 

same as block 

4 

6 0000000000000000 8c99215c7a117a6a The encrypted 

block is the 

same as 
blocks 4 and 5 

7 0000000000000000 8c99215c7a117a6a The encrypted 

block is the 

same as 
blocks 4, 5, 

and 6 
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8 24000700AF000101 9493fbe2904b3331 The encrypted 

block is 

unique 

9 0101010101010101 4b8aa0cf225a0aa5 The encrypted 

block is 

unique 

10 0101010101010118 fae5ea622f9051db The encrypted 
block is 

unique 
 

Based on the ciphertext (i.e. Encrypted column) in Table 5, 

attackers would analyze the patterns of the block and look at 

the header block and the repeated ciphertext that would 

assume them as the zero-blocks. It is known that the 

PRESENT key is 80 bits; therefore, they can use the available 

information of the ciphertext along with the functions in the 

algorithm to get the encryption key like simple mathematical 

(6), (7), and (8): 
 

8 𝑏𝑦𝑡𝑒𝑠 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡
= 𝑃𝑅𝐸𝑆𝐸𝑁𝑇𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (8 𝑏𝑦𝑡𝑒𝑠 𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒, 𝑘𝑒𝑦)      (6) 

21𝑒𝑑𝑐𝑐𝑓𝑓63𝑓05𝑎6𝑎
= 𝑃𝑅𝐸𝑆𝐸𝑁𝑇𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝑘𝑒𝑦)                    (7) 

8c99215c7a117a6a
= 𝑃𝑅𝐸𝑆𝐸𝑁𝑇𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (0000000000000000, 𝑘𝑒𝑦)                          (8) 

The attackers would attempt to find a key that matches the 

two pairs of plaintext and ciphertext in (7) and (8). Therefore, 

there is a need to prevent the encrypted blocks from having 

the same pattern in these two equations, which has been the 

main objective of this study. In doing this, a method named 

header and zero block bypass is proposed. The method skips 

“0000000000000000” and “FFFFFFFFFFFFFFFF” blocks 

for encryption and maintains the blocks in plaintext. The 

process begins with dividing the template TB into sixty-four 

blocks (B1,…B64) as (9). Then, an inspection rule is applied 

on each block as in (10). The method bypasses the header and 

the zero blocks while blocks with non-zero values will be 

encrypted. Algorithm 2 shows the flow of the method, while 

Figure 7 illustrates the entire process in a flow chart. This 

method is reversible; hence the decryption process would be 

in its opposite flow. 
 

𝑇𝐵 =   [𝐵1, 𝐵2, ⋯ , 𝐵63, 𝐵64]                           (9) 

 𝑍𝐵 = {
1 𝑖𝑓 𝐵𝑖 ≠ "0000000000000000" 𝑜𝑟 𝐵𝑖 ≠  “FFFFFFFFFFFFFFFF”  

0 𝑖𝑓 𝐵𝑖 = "0000000000000000" 𝑜𝑟 𝐵𝑖 =  “FFFFFFFFFFFFFFFF”  
(10) 

 

Algorithm 2: Header and zero blocks bypass method in 

the PRESENT encryption process  

Input : 512-byte fingerprint template string 

Output : 512-byte encrypted fingerprint template string 

divideStringIntoBlocks()  

for i = 1 to 64 

   do 

        checkForHeader-ZeroBlock() 

        appendEncryptedBlock() 

        skip 

generateRoundKeys()  

for i = 1 to 31  

do  

addRoundKey(state,Ki)  

sBoxLayer(state)  

pLayer(state)  

end for  

addRoundKey(state,K32) 

appendEncryptedBlock() 
 

In this study, the original PRESENT algorithm was not 

modified. However, converting the string into an encrypted 

form was enhanced to avoid specific patterns of known blocks 

of the header and zeros. As a result, although the encrypted 

fingerprint template string revealed the header and the zero 

blocks, it does not jeopardize the security of the other 

individual blocks of the template. This is because they are 

unique and do not have any patterns that could break the 

encryption key. Hence, this study deduces that the fingerprint 

template string is protected. 
 

 
Figure 7. The flow chart of header and zero blocks bypass 

method 

4. Evaluations 
 

4.1 Methods 
 

The evaluation intends to measure the performance of the 

proposed header and zero block bypass method. Existing 

studies had proven that the PRESENT algorithm is robust 

against cryptanalysis; hence, such analysis was omitted. This 

study instead focuses on how the enhanced algorithm 

performed in the IoT setting. Three standard evaluation 

measures were used: encryption time, the percentage of 

memory usage, and central processing unit (CPU) usage. The 

encryption time measures the period to transform the plain 

fingerprint template string into an encrypted form of a string 

in seconds. The memory usage was the amount of memory 

that the encryption process used. At the same time, CPU 

usage is the amount of CPU that the encryption process used. 

Finally, both were measured in percentage. 
 

4.2 Tools 
 

This study adopted the PRESENT module from  

www.lightweightcrypto.org [29]. A complete program was 

written in Phyton, and it imported the module for performing 

the algorithm. The programme was first written in the 

development machine to speed up the code development. 

Then, the code was transferred to the evaluation machine of a 
Rasberry Pi 3 that represent the IoT setting. Table 3 

summarises the specification of the development and 

evaluation machines. 
 

Table 6. The specification of the development and 

evaluation machines 
Features Development Machine Evaluation Machine 

OS Name Microsoft Windows 10 Home 

Single Language 

Raspbian GNU/Linux 

10 (buster) 

System 
Type 

x64-based PC 32-bit (ARMV7l), 
Debian V10.2 

Processor 11th Gen Intel(R) Core(TM) 

i7-1165G7 @ 2.80GHz, 2803 
Mhz, 4 Core(s), 8 Logical 

Processor(s) 

Broadcom BCM2837 

64bit Quad Core 
Processor 

Installed 

Physical 
Memory 

(RAM) 

16.0 GB 1Gbytes DDR2 

Python 
Version 

Python’s Integrated 
Development and Learning 

Environment (IDLE) v3.9.6. 

Thonny with Python 
3.7.3 

 

http://www.lightweightcrypto.org/
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4.3 Dataset 
 

This study collected fingerprints from five volunteers using 

the AS608 optical fingerprint sensor module specified in 

Figure 4. The sensor generated 512-byte fingerprint templates 

for all five volunteers. Each template was divided into 64 

blocks equally; hence, no padding was used during the 

encryption process as the block size is equal. The key size of 

the PRESENT encryption was 10 bytes, represented 80 bits. 

The key string was “AC08170000000088EF21”. All the 

fingerprint template strings are stored in text files. 
 

4.4 Procedure 
 

The encryption time, memory and CPU of the encryption 

process was measured using Python’s psutil module. Two 

separate Python programmes were coded to perform the 

encryption of the original PRESENT and the enhanced 

algorithms. Another two programmes performed the 

decryption process of the two versions of the algorithm. The 

psutil functions were used before and after the encryption and 

decryption process. 

 

5. Results and Discussion 
 

This evaluation focuses on comparing the performance of the 

enhanced PRESENT with the original encryption algorithm 

within an IoT environment. First, the study calculated the 

number of zero blocks in each of the fingerprint templates in 

the dataset. It ranged between twenty and thirty-two zero 

blocks out of the sixty-four as listed in Table 7. Therefore, it 

is necessary to understand the variability of zero blocks in the 

fingerprint templates so that the performance of the 

encryption algorithm can be observed accurately. 
 

Table 7. The number of zero blocks in the fingerprint 

template dataset 
Fingerprint Template Number of  “0000000000000000” blocks 

1 20 

2 32 

3 31 

4 29 

5 26 
 

Next, the study recorded the encryption time, memory usage, 

and CPU usage for encrypting the five fingerprint templates 

using the original PRESENT and the enhanced PRESENT. 

Then, the study calculated the mean and standard deviation 

(s.d.) of performance measures as listed in Table 8. On 

average, the original PRESENT encrypted the entire sixty-

four blocks of the fingerprint templates in 0.59228 seconds. 

On the other hand, the enhanced PRESENT took 0.33501 

seconds, less time in encrypting them than the original 

algorithm. However, the memory usage of the enhanced 

algorithm was  27.5%  as compared to 26.9%, which is higher 

than the original algorithm. Nevertheless, the CPU usage of 

the enhanced algorithm is much lower than the original 

algorithm, with 27.7% and 34.6%, respectively. 
 

Table 8. Encryption time and their memory and CPU usages 
Fingerp

rint 

Templat

e 

PRESENT Enhanced PRESENT 

Encrypt

ion 

Time (s) 

Mem

ory 

Usage 

(%) 

CPU 

Usag

e (%) 

Encrypt

ion 

Time (s) 

Mem

ory 

Usage 

(%) 

CPU 

Usag

e (%) 

1 0.61116 26.4 31.6 0.40373 27.6 33.1 

2 0.6033 26.8 29.9 0.30051 27.6 27.0 

3 0.57979 26.9 29.7 0.2988 27.5 26.7 

4 0.58984 27.3 42.8 0.31304 27.4 25.6 

5 0.57733 27.1 39.1 0.35896 27.4 25.9 

Mean 0.59228 26.9 34.6 0.33501 27.5 27.7 

s.d. 0.01469 0.339

12 

5.970

51 

0.04549 0.100

00 

3.094

03 
 

The exact procedure was also conducted on the decryption 

process, whereby the study recorded the time, memory usage, 

and CPU usage for decrypting the five fingerprint templates 

using the original PRESENT and the enhanced PRESENT. 

Then, the study calculated the mean and standard deviation of 

performance measures as listed in Table 9. On average, the 

original PRESENT decrypted the entire sixty-four blocks of 

the fingerprint templates in 0.59695 seconds. On the other 

hand, the enhanced PRESENT took 0.34008 seconds, less 

time in encrypting them than the original algorithm. 

Furthermore, the memory usage of the enhanced algorithm 

was  27.7%, about a similar number to the original algorithm, 

which was 27.4%. The similarity was also observed in the 

CPU usage, where the enhanced algorithm consumed 29.7%, 

and the original algorithm had 29.4%. 

Table 9. Decryption time and their memory and CPU usages 
Fingerp

rint 

Templat

e 

PRESENT Enhanced PRESENT 

Decrypt

ion 

Time (s) 

Mem

ory 

Usage 

(%) 

CPU 

Usag

e (%) 

Decrypt

ion 

Time (s) 

Mem

ory 

Usage 

(%) 

CPU 

Usag

e (%) 

1 0.58863 27.4 26.9 0.4219 27.7 35.4 

2 0.60461 27.3 33.6 0.29066 27.6 26.3 

3 0.59023 27.4 26.4 0.31169 27.8 27.0 

4 0.60603 27.4 26.4 0.32273 27.7 33.6 

5 0.59527 27.3 33.6 0.35341 27.7 26.2 

Mean 0.59695 27.4 29.4 0.34008 27.7 29.7 

s.d. 0.00804 0.054
77 

3.857
72 

0.05104 0.070
71 

4.438
47 

Finally, the study conducted statistical tests using IBM SPSS 

Statistics 27 to validate the differences in the performance 

measures. A series of Mann-Whitney U tests were conducted 

on the performance measure data in Tables 8 and 9, and the 

results are presented in the last column of Table 10. The test 

results revealed that the enhanced PRESENT encryption 

algorithm took a significantly faster encryption time than the 

original algorithm. However, in turn, it used significantly 

higher memory usage than the original algorithm. 

Nevertheless, the different percentage in CPU does not lead 

to a significant difference. The exact test results were also 

demonstrated in the decryption process. 
 

Table 10. Mann-Whitney U test on the results 
Performance 

Dimensions 

PRESENT Enhanced 

PRESENT 

Statistics 

Encryption Time 
(s) 

0.59228 0.33501 Z=-2.611, p = 
0.08, 

Significant 

Encryption 

Memory Usage 
(%) 

26.9 27.5 Z=-2.627, p = 

0.08, 
Significant 

Encryption CPU 

Usage (%) 

34.6 27.7 Z=-1.984, p = 

0.056 

Decryption Time 
(s) 

0.59695 0.34008 Z=-2.611, p = 
0.08, 

Significant 

Decryption 
Memory Usage 

(%) 

27.4 27.7 Z=-2.685, p = 
0.08, 

Significant 

Decryption CPU 
Usage (%) 

29.4 29.7 Z=-0.106, p 
=1.00 

 

6. Conclusion 

This study suggested the block pre-processing phase for 

enhancing the PRESENT encryption algorithm to protect the 

secrecy of fingerprint templates within an IoT environment. 

It performed the process faster, with similar CPU usage and 



480 
International Journal of Communication Networks and Information Security (IJCNIS)                                   Vol. 13, No. 3, December 2021 

 

avoiding the block patterns in the encrypted templates that 

lead to key differential attacks. However, the drawback of the 

enhanced algorithm is that it increases memory usage. The 

study can be enhanced as potential future works by increasing 

the number of fingerprint template samples. Further, other 

measures could be used to evaluate the performance of the 

enhanced algorithm. 
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Table 4. 64 blocks (B1,…B4) of a fingerprint template ready for PRESENT encryption 
B1 

FFFFFFFF 

FFFFFFFF 

B2 

FF03612B 

A0017F01 

B3 

8B000000 

00000000 

B4 

00000000 

00000000 

B5 

00000000 

00000000 

B6 

00000000 

00000000 

B7 

00000000 

00000000 

B8 

24000700 

AF000101 

B9 

01010101 

01010101 

B10 

01010101 

01010118 

B11 

8AEF01FF 

FFFFFF02 

B12 

008271A6 

68DE8125 

B13 

A69E76AB 

AA3E6E35 

B14 

EC9E5FBA 

C15E6DC2 

B15 

C03E76C6 

AC1E9C4E 

B16 

543E55D8 

025E3CAC 

B17 

1A9F4C38 

99DF61C7 

B18 

583FAACC 

A8FF8452 

B19 

6BDFA956 

693F8338 

B20 

6ADC7FC5 

D6BD8932 

B21 

93BA8B44 

2A5A8BC7 

B22 

157A8749 

2ADA8635 

B23 

28984C51 

01F52641 

B24 

817F2A4B 

011F2647 

B25 
981D32BA 

98D82738 

B26 
17B93046 

18792AB7 

B27 
C25634CF 

0CF637CD 

B28 
98F73BEC 

EF01FFFF 

B29 
FFFF0200 

823A5159 

B30 
F7325019 

7313C02C 

B31 
9E1848D8 

1F1C5118 

B32 
3B1DD454 

B91F568F 

B33 
19999A21 

DE6D9592 

B34 
1FFFFFFF 

FFFFFFFF 

B35 
FFFFFFFF 

00000000 

B36 
00000000 

00000000 

B37 
00000000 

00000000 

B38 
00000000 

00000000 

B39 
00000000 

00000000 

B40 
00000000 

00000000 

B41 
00000000 

00000000 

B42 
00000000 

00000000 

B43 
00000000 

00F00000 

B44 
00E91F00 

1000D201 

B45 
20010000 

00141DEF 

B46 
01FFFFFF 

FF020082 

B47 
0303552A 

00012001 

B48 
86000000 

00000000 

B49 

00000000 

00000000 

B50 

00000000 

00000000 

B51 

00000000 

00000000 

B52 

00000000 

00000000 

B53 

0D000200 

81000CCC 

B54 

00F0003F 

FCF3FFFF 

B55 

FFFFFBAA 

AAAAAAAA 

B56 

AAAA9655 

55555555 

B57 

54445500 
40040000 

B58 

00000000 
00000000 

B59 

00000000 
00000000 

B60 

00000000 
00000000 

B61 

00000000 
00000000 

B62 

00000000 
00000000 

B63 

1344EF01 
FFFFFFFF 

B64 

0200824C 
10AB3E0C 

 


