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Abstract: Nowadays, urban environments are deploying smart 

environments (SEs) to evolve infrastructures, resources, and 

services. SEs are composed of a huge amount of heterogeneous 

devices, i.e., the SEs have both personal devices (smartphones, 

notebooks, tablets, etc) and Internet of Things (IoT) devices (sensors, 

actuators, and others). One of the existing problems of the SEs is the 

detection of Distributed Denial of Service (DDoS) attacks, due to the 

vulnerabilities of IoT devices. In this way, it is necessary to deploy 

solutions that can detect DDoS in SEs, dealing with issues like 

scalability, adaptability, and heterogeneity (distinct protocols, 

hardware capacity, and running applications). Within this context, 

this article presents an Intelligent System for DDoS detection in SEs, 

applying Machine Learning (ML), Fog, and Cloud computing 

approach. Additionally, the article presents a study about the most 

important traffic features for detecting DDoS in SEs, as well as a 

traffic segmentation approach to improve the accuracy of the system. 

The experiments performed, using real network traffic, suggest that 

the proposed system reaches 99% of accuracy, while reduces the 

volume of data exchanged and the detection time. 
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1. Introduction 
 

The human society are claiming for more intelligent urban 

environments that deploy services for the end users. This kind 

of environment has been called a Smart Environments (SEs), 

that can be implemented in several contexts: Smart Campus, 

Smart Homes, Smart Cities, Industry 4.0, Smart Hospitals, etc 

[7]. These contexts have singular services to evolve the quality 

of the life of the end users. 

SEs are composed of Internet of Things (IoT) devices (like 

sensors and actuators) and personal devices (such as 

notebooks, smartphones, tablets, etc) [15]. Hence, SEs have 

two crucial characteristics: Huge amount of devices and 

Heterogeneity. As a consequence, SEs tend to produce more 

network flows than traditional networks, due to the enormous 

scale of devices in the network, as well as the various types of 

applications running on the top of these devices. All these 

issues rise new challenges related to the management and 

planning of the SEs and their services [2].  

One of these challenges of SEs is the detection of Distributed 

Denial of Service (DDoS) attacks, that aim to make access to 

one or more targets unavailable by exhausting their resources 

using multiple illegitimate requests. The DDoS attacks come 

from numerous security vulnerabilities in the devices, 

specially IoT devices [3,6], that directly affect the Quality of 

Service (QoS) and Quality of Experience (QoE). As a result, 

in the last few years, several cyberattacks performed in the 

Internet occurred through the infection of IoT devices [4].  

The IoT devices hardware limitations prevent the deployment 

of security solutions that run on them. An alternative approach 

is the usage of Machine Learning (ML) techniques, which 

understand the available data behavior and progressively 

improve the understanding of them [7]. However, it is 

necessary to use the most relevant characteristics of network 

traffic to later train the DDoS attack detection mechanism 

using ML, since the consideration of unsuitable characteristics 

harms the accuracy of ML techniques. 

Moreover, the monitoring of this network flow generates a 

high volume of data, making the application of Fog and Cloud 

computing essential to this scenario [19,1]. Traditionally, 

Cloud Computing is applied in scenarios of high processing 

demand, due to the virtually limitless storage and processing 

capability [8]. Nevertheless, the transmission of raw data 

related to the network flows to the cloud generates overhead 

in the network infrastructure as a whole. The addition of a Fog 

Computing environment between the SE and the Cloud 

enables the processing of the raw data and the reduction of 

data volume exchange. This structure increases the 

performance and privacy of the data in the IoT, as well as 

reduces the latency [19]. 

Within this context, this article presents an Intelligent System 

for DDoS detection in SEs, which integrates Fog and Cloud, 

splitting the tasks in these two computing environments to 

reduce the response time and to improve the accuracy. The 

proposed system is based on the following principles: (I) 

Network monitoring, collection of data about the network 

flows in the SE; (II) Features Selection, identification of the 

main characteristics for the detection of DDoS in SEs; (III) 

Traffic Segmentation, separation of network flows from IoT 

devices and Personal devices; and, (IV) ML for Detection, 

training of ML models using the data about the network flows 

to detect DDoS attacks. 

The experiments performed, using a dataset of real IoT 

network traffic with DDoS attacks, suggest that the proposed 

system reaches 99% of accuracy when the most suitable 

features are selected, while reducing the volume of data 

exchanged and the detection time. 

This article has the following contributions: (A) Design of an 

system to integrate cloud and fog computing; (B) Study about 

the impact of the features selection under the DDoS detection 

accuracy, as well as the amount of data exchange (traffic 

volume) between cloud and fog; (C) Traffic segmentation 

approach to separate the network flows of IoT devices from 

the Personal devices in the SE, which could be applied in 

another task for the management of SEs (such as 

authentication, firewall, etc). And, (D) Experiments using a 

dataset of real network traffic with DDoS attacks. 

The remainder of this article proceeds as follows. Section 2 

presents related works. Section 3 describes the proposed 

system. Section 4 details the performance evaluation and 

results. Finally, Section 5 concludes the article. 
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2. Related Works 
 

Hamamoto et al. [12] proposed a scheme based on the 

combination of genetic algorithm and fuzzy logic. The 

learning structures work together to network traces created by 

the genetic algorithm. The fuzzy logic defines when the 

network is normal or under a cyberattack from a previously 

generated signature. Despite based on real traffic and AI 

techniques, the proposed scheme focuses on traditional 

networks, i.e., the authors do not consider SE characteristics. 

Vinayakumar et al. [22] propose a botnet detection system 

based on a two-tier ML structure to semantically distinguish 

botnets from legitimate behavior in the application layer of 

DNS domain name system services. In the first level, scores 

are used to define the similarity, when reaching a difference 

established by the authors, the domain name is passed to the 

second level that uses a deep learning architecture to detect 

and classify the occurrences of DDoS. This work focuses on 

the detection of DDoS exclusively on DNS servers, 

preventing its application in other types of IoT network 

services. 

Sharafaldin et al. [20] present a study on the traffic 

characteristics of the most important networks for detecting 

different types of DDoS attacks on traditional networks, that 

is, TCP / IP networks. In the carried out experiments, two 

networks with traditional computers were designed and 

implanted, that is, the behavior extracted from the dataset 

samples becomes different in comparison with networks 

designed with IoT devices. The behavior of IoT networks 

communicates with a small finite set of endpoints and is prone 

to have repetitive network traffic patterns (small packages at 

fixed time intervals for registration purposes, for example). 

Yamauchi et al. [24] describe a model for detecting anomalous 

operations of IoT devices in smart homes (SHs) based on user 

behavior. The model learns the sequence of activities 

performed by hour of the day and then compares the current 

sequence with the sequences learned for the condition 

corresponding to the current condition. If it has any predefined 

changes, the method classifies the operation as an IoT device 

anomaly. Thus, this model proposed by the authors is limited 

to understanding SHs. 

Doshi et al. [7] performed the detection of ongoing DDoS 

attacks through the IoT flow behavior in smart homes. The 

approach deploys middleboxes, acting as proxies in the 

network to observe, store, process and control network traffic 

going to the Internet. This strategy monitors flow 

characteristics, such as inter-packet arrival time, endpoints 

and other. The collected information serves as input to a ML 

technique to create a model to identify possible DDoS bot in 

IoT, i.e., a binary classification (DDoS bor or Safe node). The 

authors evaluated several ML techniques: KNN, Lagrangian 

Support Vector Machine (LSVM), Decision Tree (DT), 

Random Forest (RD) and Neural Networks. However, the 

approach is specific for DDoS attacks. 

HaddadPajouh et al. [11] explored the application of 

Recurrent Neural Network (RNN) deep learning in detecting 

IoT malwares. First, the authors collected IoT malware and 

benign samples to build a dataset. Later, the authors use RNN 

to analyze ARM-based IoT applications’ execution operation 

codes (OpCodes), creating a feature vector file based on the 

OpCodes for each sample. In the final stage, they utilized 

vectored data for deep neural network training and tuning for 

optimum parameters. The evaluation of the trained model was 

based on distinct IoT malware samples, resulting in an 

accuracy of 98.18% with 2-layer neurons. Nevertheless, the 

trained model depends of the analysis of OpCodes, limiting its 

capacity to detect Mirai Botnet. 

Zhou et al. [25] presented an Intrusion Detection System 

(IDS), which applies an heuristic algorithm, called 

Correlation-based Selection Bat Algorithm (CSBA). CSBA 

supports the measurement of correlation between network 

resources, selecting the most suitable subset of data to perform 

the training of ML techniques (Random Forest and Forest 

PA). The CSBA algorithm reduces the training time from 113 

minutes to 44 minutes. Regarding the accuracy, the proposed 

IDS reached small false alarm rates, around 0.17%. 

Nevertheless, the proposed IDS can not deal with the network, 

avoiding its application in a smart environment. Another 

limitation is the lack of concern about the processing capacity 

and the volume of traffic generated to perform the detection. 

All these issues hamper the deployment of this solution in SEs. 

Diro et al. [6] and Brun et al. [4] proposed an attack detection 

system and designed an architecture, respectively, based on 

deep learning for IoT, comparing this technique with other 

existing machine learning approaches. The authors consider a 

cloud structure, where the information collected in distinct 

IoTs are received and processed in a master node of the cloud. 

The system evaluation is employed as input data from NSL-

KDD, considering the centralization of all collected data in the 

cloud. The authors did not include any strategy to avoid the 

transmission overhead from data exchange. 

In [4], the deep learning model uses information about the 

message exchange between IoT devices and IoT gateway, and 

the IoT gateway and Cloud. All packets are sent to the deep 

learning training module at the Cloud. The architecture 

evaluation does not consider the volume of data exchanged to 

allow the model training, i.e., it does not prevent the 

transmission overhead. 

Meidan et al. [16] present an unsupervised patterns approach 

using Deep Autoencoders to detect botnets in IoT networks. 

The authors suggest that only twenty-three characteristics for 

training the learning method is enough to reach suitable 

accuracy. The experiments were performed in a testbed 

composed of IoT devices. Nevertheless, this work is specific 

for botnet detection and it does not consider the processing 

capacity of the devices and other existing limitations of SEs. 

To the best of our knowledge, there is no proposal in the 

literature focused on the design of an intelligent system to 

detect DDoS in heterogeneous smart environments integrating 

Fog, Cloud and Machine Learning techniques, which is the 

focus of this article. These features create a suitable detection 

system that evolves the security and management capacity of 

smart environments, while mitigating the transmission of high 

volume of data and response time. 
 

3. Proposal 
 

Smart environments are composed of heterogeneous devices, 

such as sensors, actuators, smartphones, tablets, smart TVs, 

smartbands and others [2]. Each of these devices follows 

specific functionalities and, consequently, singular network 

behavior for a certain class/type of device. For example, 

temperature sensors perform periodical transmissions for a 

server, updating a set of data. Similarly, surveillance cameras 

constantly transmit captured images. Personal devices follow 

a less predictable behavior: in a given moment the user is just 

sending text messages (small volume of traffic) and in another 

moment this same user is watching an on-demand video in 

high definition (very high volume of traffic). 
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These characteristics of smart environments increase the 

management complexity and, consequently, the development 

of security solutions, due to the limitations of the devices 

(processing power, energy consumption, etc). One of the most 

important security solution is the detection of DDoS attacks. 

Based on this, this article proposes a Intelligent DDoS 

Detection system using ML techniques and supported by Fog 

and Cloud Computing. 

The proposed system performs the following stages: (I) 

Network Monitor; (II) Features Extraction; (III) Traffic 

Segmentation; (IV) Selection of Features; (V) Knowledge 

Dataset Formation; (VI) Training of Model; and, (VII) 

Detection of DDoS. An overview of the proposed system 

structure is presented in Figure 1. 
 

 
Figure 1. Overview of the Proposed System 

 

Additionally, the development of the proposed system 

encompasses two pre-processing steps to build the basic 

knowledge: Reasoning about DDoS, a research to perceive the 

important characteristics of the attack execution; and, 

Analysis of Traffic Features, a study to identify the most 

important features to improve the accuracy of DDoS 

detection. 

The network monitoring is performed, creating an information 

database. From this raw data in the database, the possible 

features about the network traffic are extracted. In possession 

of all this information, traffic segmentation will be executed 

and features will be selected. These selected features are used 

to feed a Knowledge dataset, which is applied as input to train 

the ML model. After training, the generated classifier acts to 

detect DDoS attacks.  

During the features selection and model training phases, 

various techniques can be used. Based on this, during the 

development of the proposed system, several techniques were 

applied and tested. Regarding the Fog and Cloud Computing 

support, the proposed system is designed to split the 

processing of the stages. The Fog performs the raw data 

processing to feed the Knowledge Dataset and, consequently, 

the Training of Mode located in the Cloud. 

All the stages in the data processing flow of the proposed 

system are illustrated in Figure 2, where the tasks performed 

and the techniques considered (in features selection and model 

training) are highlighted. These stages execute sequentially, 

exchanging data between Fog and Cloud, according to the 

structure presented in Figure 1. 

Next, we describe the stages in the data processing flow, 

detailing their particularities, as well as the role of each stage 

for the functioning of the proposed intelligent system as a 

whole. 

 

 

 
Figure 2. Data Processing Flow 

 

3.1. Reasoning about DDoS 
 

DDoS became a popular cyberattack in the last few years, 

mainly due to the growth of heterogeneous devices in the 

networks. The DDoS occurs when a malicious agent (called 

master) enslaves several devices, forcing these devices to 

congest an target inside or outside the network [23]. Usually, 

DDoS can target both applications and the network 

infrastructure: 

- Applications: DDoS affects the services running in 

the top of the SE, where packets are dropped when 

the maximum processing rate is achieved. In this 

case, the goal of the DDoS is to make the service 

unavailable. 

- Network Infrastructure: DDoS focus on the 

exploration of the vulnerabilities in the network 

protocols (mainly Transport, Network and Data Link 

layers). Thus, the DDoS aims to make the service 

inaccessible by the legitimate users. 

From the reasoning performed, it is possible to define the 

possible approaches to detect DDoS in SEs. Initially, a 

security solution needs to get useful information from the 

network packets (such as device addresses, used protocols, 

signaling flags, and others). Additionally, it is necessary to use 

the information about the correlated packets transmitted 

through the network infrastructure, i.e., network flows from 

the devices to the gateway (for example, inter packet interval, 

volume of data, average packet size, etc). These information 

are important to model the behavior of the network flows and, 

consequently, the profile of the devices.  

It is important to note that a suitable security solution should 

not be based on previous information about the devices, since 

SEs are characterized by a huge amount of heterogeneous and 

mobile devices. This fact turns the collection of data about the 

network and the processing of it crucial tasks to get useful 

information. In this way, the proposed system was based on 

the suitable data processing (considering the best features 

about the data to be used and the processing time) to perform 

the detection of DDoS attacks in the SE. 
 

3.2. Extraction of Features 
 

Based on reasoning about DDoS attacks, the proposed system 

extracts 80 (eighty) characteristics of network flows and 

packets, according to the standard of the CICFlowMeter tool 

[20] (which extracts features from raw data in PCAP format).  

The following are examples of the features extracted: 

application layer, network and link protocols; information in 
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the packet header (such as flags, version, etc), both total and 

payload size of the packets, inbound and outbound volume of 

a flow, inter-packet time, and others. 
 

3.3. Segmentation of Network Flows 
 

Real-life network architectures in an SE are a wide variety of 

IoT and personal devices, where they communicate with each 

other and with services outside of the SE through the Internet. 

As a consequence, IoT and personal devices have distinct 

behaviors: IoT devices are fixed, while personal devices are 

mobile; IoT devices have specific applications, while personal 

devices have a pool of applications with different 

characteristics (text messaging, videos on demand, games, 

etc); and so on. Together with this fact, IoT devices have 

numerous security vulnerabilities [3,6]. For instance, several 

DDoS attacks performed in the Internet occurred through the 

infection of IoT devices [4].  

In this way, the proposed intelligent system performs a traffic 

segmentation approach, i.e., it identifies the network flows of 

IoT devices from Personal devices, allowing the training of 

the ML technique using the data according to the type of 

device. As a result, it is possible to better fit the behavior of 

each type and, consequently, improve the detection of DDoS 

attacks. 

The traffic segmentation uses ML to classify IoT and Personal 

devices based on the features extracted from the monitoring 

of the network flows. It explores the distinctive characteristics 

of the devices when they communicate in an SE. The usage of 

ML allows the traffic segmentation to be adaptable to new 

devices in the SE, which occurs due to mobility and expansion 

of services running on it. 

For the development of the traffic segmentation, we used a 

existing dataset1 (developed by Meidan et al. [17,14]) of 

different IoT devices (such as covering cameras, lights, plugs, 

motion sensors, devices, health monitors, among others) to 

train the ML model. In Section 4.2.1, we presented the results 

about traffic segmentation, evaluation of the KNN, Logistic 

regression, Naive Bayes, Random Forest, Decision tree and 

SVM techniques. 
 

3.4. Selection of Features 
 

All the information extracted represents some aspect of IoT 

Networks. However, the use of a large number of features will 

result in certain noises that may interfere with the process of 

ML model. In addition, noise affects the functioning of ML 

techniques unevenly, that is, a certain noise may or may not 

affect another technique. Therefore, it is important to select 

the most relevant characteristics in order to achieve the best 

performance of the classifiers used in DDoS detection. 

The selection of characteristics for network traffic analysis is 

a challenge for specialists who aim to build systems that 

discover patterns of behavior. This process becomes even 

more complex when it comes to DDoS attacks due to the 

variety of types, as well as the complexity of its action timing. 

The selection purpose of characteristics is to enable the 

construction of ML models that make it possible to understand 

the data and maximize the detection capacity. Therefore, the 

selection of characteristics helps to know irrelevant and 

redundant attributes that can have a negative impact on the 

model performance, decreasing the accuracy of the model. 

In addition, reducing the number of features brings important 

benefits when looking at computational resources. Less data 

 
1 https://www.unsw.adfa.edu.au/unsw-canberra-

cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot.php 

means reduced training time, less misleading data that 

improves model performance, faster processing, less memory 

consumption, easier data extraction, less storage space and, 

mainly, dimensionality reduction. Thus, the appropriate 

characteristics selection makes it possible to optimize the time 

for training and detection of these ML models. 

Based on these facts, this articles analyzes the following 

techniques for selecting characteristics: (1) Maximum 

relevance Minimum Redundancy (mRMR) [18], uses Fisher's 

test scores and Pearson's correlation; (2) Low Variance (LV), 

removes all characteristics whose variation does not reach a 

certain limit; (3) Extra-Tree (EA) [10], builds a set of non-

pruned decision or regression trees according to the classic 

top-down procedure; (4) SVC [5], a linear model that 

estimates sparse coefficients based on important 

characteristics; and, (5) Lasso [9], a linear model that 

estimates sparse coefficients.  

Any of these techniques can be used to select the relevant 

characteristics of the DDoS data set that improves the models 

performance. Nevertheless, the different strategies applied by 

them (filter methods, wrapping methods or embedded 

methods) lead to different selected characteristics [13].  

In this way, we present in Section 4 a study to define the most 

suitable selection technique that improves the accuracy of the 

existing ML models to detect DDoS in SEs. Additionally, 

timing issues are evaluated: Training time and detection time. 

This timing evaluation allows the identification of the tuple 

selection technique together with the ML model that is faster, 

allowing its application in time constrained scenarios. 
 

3.5. Model Training and Detection of DDoS Attacks 
 

After transmitting the processed data from the Fog to the 

Cloud, the Knowledge Dataset is fed and it is used as the basis 

for the ML training. ML training encompasses the input of the 

data in the Knowledge Dataset and the execution of the ML 

technique. Later, the detector (ML model trained) is 

transmitted and executed in the Fog to identify possible DDoS 

attacks.  

The proposed system was designed to enable the usage of any 

ML technique. This Independence allows the proposed system 

to execute the most suitable ML technique in the training 

stage. Thus, we evaluated the ML techniques that have distinct 

singularities: K-Nearest Neighbor (KNN), Naive Bayes (NB), 

Random Forest (RF), Decision Tree (DT), Logistic 

Regression (LR) and Support Vector Machines (SVM). 

The defined process flow is repeated constant to keep the 

detector updated according to the behavior of the devices in 

the SE. This continuous feedback process enables the 

recurrent information knowledge about the smart 

environment. As a consequence, the proposed solution is 

capable of adapting and to understand the usual behavior the 

network flows and to detect DDoS attacks. 
 

3.6. Fog and Cloud Support 
 

Data stream generated by the network monitoring needs to be 

processed before the transmission to the Cloud. Currently, the 

cloud is the usual place for executing services. Nevertheless, 

with the ever-growing scale of the network flows of smart 

environments and, consequently, the volume of the data 

streams generated by the devices, can create an enormous 

transmission overhead to the Internet.  
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According to [19], in the next few years, the Internet 

infrastructure will face the challenge of handling a rise in 

resource demand due to the data stream of the emerging 

networks, reaching the order of petabytes every day. In this 

scenario, approaches such as sending all raw data to be 

processed and stored in the cloud are impractical in terms of 

communication time, financial cost, performance degradation 

and energy consumption. An approach to deal with these 

issues is not sending all data to be processed by the cloud (far 

from the data source), deploying a Fog Computing approach. 

The inclusion of a Fog between the smart environment and the 

Cloud enables the processing, communication and temporary 

storage near the smart environment. Therefore, the Fog 

naturally increases the performance, security and privacy in 

the smart environment, as well as reduces data volume and the 

latency. 

Furthermore, the ML techniques applied in the DDoS 

detection demand a high level of computational resources 

(parallel processing and memory capacities). In general, these 

computational resources are not available in the Fog, requiring 

several services to support access networks. Hence, the 

execution of all the functionalities of the proposed intelligent 

system in the Fog environment is not feasible. 

Collected Raw data is sent to the Fog Environment to be 

processed, performing the steps described in Sections 3.2, 3.3 

and 3.4. After these steps, the raw data turns into processed 

data, which will be sent to the cloud. This processing reduces 

data volume, since only useful information is considered to 

define the processed data.  

After Data Processing, data is available in the Cloud 

environment and it is used as input of the ML techniques to 

train the DDoS detector. As a final step, the detector is 

deployed in the Fog environment. Thus, the processed data 

has two roles: (a) feed the ML training in the cloud and (b) be 

tested by the DDoS detector in the Fog. 

It is worthy to mention that the designed structure supports the 

application of the proposed system in several Smart 

Environments that share the same edge network and Fog 

Environment, where the Cloud Environment will instantiate a 

virtual machine for each Smart Environment monitored. 

In summary, the designed structure of the proposed intelligent 

system enables two important features: (1) Small overhead in 

the network infrastructure, due to the low volume of data 

transmitted between the Fog and Cloud environments; and, (2) 

Suitability of execution, since each step of the modules runs 

in the suitable environment, i.e., the ML techniques are 

executed in the cloud, while the data processing runs in the 

Fog. These two features allow the system to deal with 

scalability, adaptability and response time requirements of the 

smart environments [19,1,8,2,26]. 

The benefits of the Fog and Cloud structure in the proposed 

system are evaluated in Section 4, where the reduction of 

volume of data transmitted from the Fog to the Cloud are 

analyzed, according to the features selection performed 

(detailed in Section 3.4). 
 

4. Experiments 
 

This section presents the experiments performed to evaluate 

the proposed intelligent system for network anomaly detection 

in smart environments. The experiments focus on the 

evaluation of the designed Fog-Cloud approach, as well as on 

 
2 https://www.unsw.adfa.edu.au/unsw-canberra-

cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot.php 

the analysis of the most suitable ML technique to detect DDoS 

attacks. 
 

4.1. Experiments Configuration 
 

During the experiments, the following selection techniques 

were evaluated: Extra-Tree (EA), SVC, Lasso, Low Variance 

(LV) and mRMR (cases of 5, 10, 20, 30 and 40 features). 

These techniques selected the features to be used in the ML 

techniques trained: DT, SVM, KNN, RF and LR (The 

complete list of the features selected by each technique is 

available in Appendix A). Therefore, we evaluated all the 

possible combinations of selection and ML techniques, 

allowing a complete analysis about the possible performances. 

Regarding the hardware used in the experiments, the Fog 

executed in a local machine with Linux, CPU Intel i7-8700k 

2666mhz and 16GB of Memory RAM DDR4, while the Cloud 

was a F48s-V2 Azure virtual machine with 48 3.4GHz vCPUs 

and 96GB of Memory RAM. Thus, we performed the 

experiments in suitable Fog and Cloud environments for 

realistic scenarios. 

The experiments were based on two datasets that were merged 

to represent an SE composed of heterogeneous IoT and 

Personal devices. The former is the dataset BoT-IoT2 

developed by Meidan et al. [17,14], which contains both 

normal (benign) traffic and traffic related to the latest DDoS 

attacks. The latter is the "UNSW-IoT" created by Sivanathan 

et al. [21], that has normal (benign) traffic of IoT and Personal 

devices. Both datasets are formatted in real world monitoring 

data (PCAPs). 

The performance of the proposed intelligent system (including 

the combination of selection and ML techniques), considering 

the cases of True Positive (TP), False Positive (FP), True 

Negative (TN) and False Negative (FN) for a DDoS detection, 

was based on the following evaluation metrics: 

- Accuracy (in percentage): Rate of correct 

classification, regardless the class, according to the 

Equation 1. It is important to note that the Accuracy 

was measured for the Traffic Segmentation and the 

DDoS detection. 

  (1) 
 

- Recall (in percentage): Efficiency of the classifier to 

detect the correct class, i.e., the rate of TP in relation 

to total positive cases (TP+FN). Thus, the  

Recall is defined in Equation 2. 

 (2) 

- Training Time (in seconds): time required to train the 

DDoS detector (ML model) with the selected input 

features. 

- Detection Time (in seconds): time spent by the DDoS 

detector to define whether a case is a DDoS attack or 

not. 

- Volume of Data (in Megabits): the size of the data 

generated (processed data) to be exchanged between 

Fog and Cloud. 
 

4.2. Results 
 

4.2.1 Traffic Segmentation 

In this section, we evaluate the capacity of the ML techniques 

used to identify the IoT devices in the network, that are 
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presented in Figure 3. It is possible to note that DT and RF 

achieve the best results, reaching an accuracy close to one 

hundred percent. 

 
Figure 3. Accuracy for Traffic Segmentation 

 

These better results of DT and RF occur due to their nature to 

split the problem in multiple stages. In this way, the dual 

possibility of the classification (IoT or Personal device) eases 

the division of the problem, improving the organization of the 

leafs and structure of the designed classification tree. 
 

4.2.2 Detection Accuracy and Recall 

The Accuracy was divided in Figures 4 and 5 to facilitate the 

visualization of the results, where Figure 5 shows the accuracy 

of the ML techniques using the cases of mRMR and Figure 4 

the remaining combinations. Additionally, the Recall results 

present a similar behavior. 
 

 
Figure 4. Accuracy for DDoS Detection 

 
Figure 5. Accuracy of mRMR for DDoS Detection 

 

 
Figure 6. Recall for DDoS Detection 

 

 
Figure 7. Recall of mRMR for DDoS Detection 

From the results shown in the figures, it can be seen that the 

accuracy and the recall of the ML techniques varies according 

to the applied selection technique, especially when these ML 

techniques are based on approaches that focus on 

dimensionality, such as KNN, RL and SVM classifiers. On the 

other hand, the ML techniques based on subset division (DT 

and RF) have almost no impact by the variation in selection 

techniques. It happens because of the recursive derivation 

process of the subsets, mitigating the variation on the 

performance of features and resulting in possible noises for 

the ML training. 

Regarding NB and LR performance, both ML techniques 

present worse results than the other approaches, regardless of 

the selection technique. Thus, NB and LR appear as unsuitable 

solutions for DDoS detection in SEs when compared to the 

other approaches of the experiment. 

4.2.3 Training and Detection Time 

Tables 1 and 2 show the time spent to perform the ML model 

training (creating the DDoS detector) and for the detectors to 

identify the cases of DDoS attacks, respectively. The results 

presented in both tables represent the feasibility of the ML 

techniques to be deployed in distinct contexts of SEs. 
 

Table 1. Training Time (in seconds) 

 
 

Table 2. Detection Time (in seconds) 

 
 

Based on the results presented in Table 2, the KNN and RF 

classifiers and, mainly, SVM have a higher training time than 

the other approaches. Nevertheless, the application of the 

mRMR selection technique (with 5 and 10 characteristics) 

reduces the training time of the RF classifier, enabling its 

deployment for SEs, achieving a time closer to DT classifier. 

Similarly to the training time, the detection time (presented in 

Table 3) of the KNN and SVM classifiers are longer than the 

other ML techniques. However, differently from the training 

time, the impact of the selection techniques are lower. In 

general, the LR, NB and DT techniques spend very small time 

performing the detection. Close to them is the RF, proving to 

be a feasible solution too. 

4.2.4 Volume of Data 

Regarding the volume of data transmission, the raw data is in 

the PCAP format (produced by the network monitoring), 

which is a complex format that generates a high volume of 

data. For example, in 5 minutes of monitoring, almost 60MB 

of raw data should be transmitted from the Fog to the Cloud. 
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Therefore, the network infrastructure suffers an unnecessary 

overhead. For instance, a 20Mbps network spends almost 2 

minutes transmitting the data from the Fog to the Cloud. 

In the proposed system, after the feature extraction, 80 

features are created and later these features are selected by a 

specific technique. Thus, the data processing flow tends to 

reduce the volume of data to be transmitted from the Fog to 

the Cloud. Table 3 shows the results of the volume of data 

generated in each stage of the data processing flow using the 

dataset described in Section 4.1. 
 

Table 3. Volume of Raw Data and Processed Data 

 
 

When feature selection occurs in the Fog, the amount of data 

reduces from 15.16GB (raw) to 25MB (processed), 

representing less than 0.2% of the volume of data. Thus, the 

Fog-Cloud integration approach increases network scalability, 

while it causes a very low impact in network resources 

availability.  

4.3. Final Discussion 

The results of the experiments highlight the importance of the 

features selection for the accuracy, execution time and volume 

of data. For example, using the most appropriate selection 

technique, the performance of the KNN and SVM classifiers 

increases by 8% and 7%, respectively. Additionally, the LR 

technique using the 80 extracted features (no selection) has an 

unacceptable accuracy, while using the Extra-Tree technique, 

it achieves more than 93% of accuracy. 

Regarding the training time, its importance increases in 

contexts that a recurrent training is necessary to update the ML 

model to the high dynamics of the SE, such as smart campi 

and smart cities. Thus, the ML model will be trained in a very 

short time period to keep the detection of DDoS attacks 

effectively. The same reasoning can be applied to the 

detection time. In such a context, the DT and RF with mRMR-

10, mRMR-20, Lasso or SVC are the suitable combinations, 

since they are fast, have a high accuracy and generate small 

volumes of data. On the other hand, if the periodicity of the 

training is longer, due to static behavior of the SE (such as a 

Smart Industry), other approaches are feasible. 

5. Conclusion and Future Work 

Nowadays, new paradigms have emerged, such as Smart 

Environments (heterogeneous IoT and Personal devices). A 

critical challenge in smart environments lies in the detection 

of network DDoS attacks, resulting from security 

vulnerabilities. Their early detection helps to avoid the QoS 

degradation and possible financial losses.  

This article described an Intelligent System for detecting 

DDoS in ESs. The proposed system is based on ML 

techniques to perform the traffic segmentation and DDoS 

detection, while a features selection approach is applied to 

reduce the amount of data exchanged between Fog and Cloud 

and to improve the accuracy of the detection. 

Results from performance evaluation based on real traffic as 

workload indicate a 99% of accuracy (in average) to detect 

DDoS attacks, while the training time was 10 seconds (in 

average). As future work, we intend to investigate new 

security solutions for other threats to SEs, such as Side-

Channel, OS Service Scan, Keylogging and Data Exfiltration. 
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