
92
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

FPGA Implementation of Data Flow Graphs for

Digital Signal Processing Applications

Hala Al-Zu’bi, Osama Al-Khaleel and Ali Shatnawi

Department of Computer Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan

Abstract: A rapid growth in digital signal processing applications

has increased the requirement for high-speed digital systems.

Multiprocessor systems are the best choice for these applications. A

prior sequence of operations should be applied to the operations that

describe the nature of these applications before hardware
implementation is produced. These operations should be time

scheduled and hardware allocated. This paper proposes a new

scheduling technique for digital signal processing (DSP)

applications that are represented by data flow graphs (DFGs). In

addition, hardware allocation is implemented in the form of
embedded system. The proposed scheduling technique also

achieves the optimal scheduling of a DFG at design time. The

optimality criterion considered in this algorithm is the maximum

throughput within the available hardware resources. The hardware

system is composed of one or multiple homogenous pipelined
processing elements and designed to meet the maximum-rate

schedule. Two implementations are proposed of the system

architecture according to the number of the processing elements.

These are the serial system and the parallel system. The serial

system comprises one processing element where all tasks are
processed sequentially. On the other hand, the parallel system has

four processing elements to execute tasks concurrently. The

hardware systems have been described, functionally tested, and

synthesized using the Verilog HDL and Xilinx ISE. Synthesis

results show that the parallel system outperforms the serial one by
25.5% in terms of performance with extra area penalty. The

relationship between the number of instructions that are executed in

both systems, the system area, and the system performance as

represented by the system frequency, have been studied. The

proposed scheduling technique is shown to outperform the retiming
technique, which we have chosen to compare with. The serial

system has better performance with 19.3% higher system frequency

than that of the retiming technique. The parallel system also

outperforms the retiming technique in terms of the system

frequency by 51.2%.

Keywords: FPGAs, DFG, DSP Applications, Scheduling,
Hardware, Architecture.

1. Introduction

Digital signal processing (DSP), image processing, and

communications tasks are computationally intensive and

require high-power consumption. Therefore, they demand

very high-speed computations and high throughput systems.

Multiprocessor systems are the best choice to implement

DSP applications since they have para llelism nature [1].

Field-programmable gate arrays (FPGAs) are manufactured

integrated circuits that are designed to be configured by the

designer. It contains programmable logic blocks which have

RAM blocks and large resources for implementing logic

gates. Wide range of applications can be implemented on

FPGAs by being specified using any hardware description

language (HDL). Hardware implementation is created with

the aid of logic synthesis tools.

Logic synthesis [2] is the process of designing digital

systems that are described in HDL to get an optimized

hardware implementation. Logic synthesis uses standard cell

libraries such as the basic logic gates (AND, OR, NOR)

library, and the library of the macro cells (adder, MUXs,

memory, flip-flops) to produce a design.

There are many reasons to perform logic synthesis in

designing digital systems [3]. Among these reasons are

shorter design cycle, fewer bugs, ability to find design space,

and the ability to resynthesize targeting different chip

technologies as an FPGA or ASIC. The synthesis process

mainly involves Description, Scheduling, and Resource

Allocation [2].

The behavior of any digital system can be described using

one of the hardware description language (HDL). These

languages can be used to describe the system behavior

specifications. The graphic representations that contain data

flow and control flow are also used to represent the system

behavior specifications. The data flow graph (DFGs) model

has proven to be an efficient model in showing the data

dependencies between the tasks of a given algorithm and

exposing their inherent parallelism.

A data flow graph is a directed graph that consists of nodes

and edges. The mathematical notation to represent graph G is

G = (V, E); where V is the set of the nodes that represent the

operations and E is the set of the edges of the graph that

represent the communication paths. Each node v has input

and output data ports that connect it to other nodes through

edges. A node has a computational delay due to the operation

represented by this. Each edge e is associated with a pair of

nodes and it has a non-negative number called an ideal dela y

[4].

The nodes of a graph are represented by v1, v2, v3,…, vN, and

its edges are represented by e1, e2…. A directed edge which

is referred to as an arc is represented by e = (vm , vn), where

vm is the source node and vn is the destination node. The

source and destination nodes are called the end nodes. This

edge represents the precedence constraints between these end

nodes.

A path is a sub graph which contains a set of finite number

of nodes and a set of edges that connect between nodes.

Within the path, if the source node is the same as the

destination node, this path is called a loop or a directed

circuit. In the loop, there should be at least one ideal delay

token (node input or output) to be computable. If there is at

least one loop in a DFG, then the DFG is called cyclic,

otherwise it is acyclic.

Each time a node receives data tokens as inputs via its input

arcs and processes them due to its operation, it produces

output tokens into its output arcs. More than one node can be

executed concurrently. Therefore, a data flow model is

successful in exhibiting parallelism in digital algorithms.

This model considers only data dependency between nodes.

93
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

DSP applications are commonly represented using signal

flow graph and DSP block-diagram [5]. In a DFG model,

operations of a DSP application are represented by nodes and

the data dependency (signal path) between nodes are

represented by arcs (edges) [6] as shown in Figure 1.

Figure 1: DFG model to represent a DSP application.

The number associated with a node identifies the index of a

corresponding operation (V1 and V2 in Figure 1). There is a

non-negative number associated with each edge that

represents its ideal delay (N in Figure 1). A non-zero ideal

delay N connecting node V1 with V2 means that node V2

depends on the output of V1 that is produced N iterations

back. In this case, an edge (represents a FIFO buffer) is used

to store the produced results from different iterations. The

number associated with each edge is omitted if the ideal

delay is zero.

For example, Figure 2 shows a block-diagram of the second

order infinite impulse response (IIR) filter, and Figure 3

shows its signal flow graph. In the filter representation,

symbols a, b, c and d are the filter coefficients. In Figure 4, a

DFG representation of the second order IIR filter is depicted.

As shown, the nodes of the graph are addition operation

nodes (the “+” symbol) and multiplication operation nodes

(the “*” symbol). There is a computational delay for every

node due to its operation and a positive ideal delay for some

edges representing the inter-iteration dependencies.

Figure 2: Block diagram representation of a second-order

IIR filter.

Figure 3: Signal flow graph representation of a second-order

IIR filter.

 Figure 4: DFG representation of a second-order IIR filter

2. Scheduling and Resource Allocation

In this process, each operation in a DFG is assigned to

control steps. These control steps are clock cycles in the

synchronous system. A scheduling process must preserve

precedence constraints between tasks. A program presented

by a graph may be executed once or repeated many times.

The target from the scheduling in this case is to minimize the

finishing time, which increases the speed to meet the timing

constraints. It can also be designed to minimize the area to

meet the resource constraints. In the case of timing

constraints, the scheduling algorithm parallelizes operations.

However, in the case of resource constraints, it serializes

operations scheduling. As DSP algorithms are generally

periodic, the scheduling process for them are periodically

repeated. This period is referred to as the iteration period.

The iteration period in a cyclic graph has a lower bound

(called the iteration bound), which is the minimum possible

time between successive outputs.

Precedence constraints should be met to preserve the

algorithm input-output behavior specifications. There are

two types of precedence constraints: intra-iteration

precedence constraints and inter-iteration precedence

constraints [7].

Intra-iteration precedence constraints are represented by arcs

with zero ideal delays [7]. This means that within the arc v

→ u, node v produces a token at the nth iteration and node u

consumes this token at the same nth iteration. Node v shou ld

be scheduled and executed before node u within the same

iteration. If we remove all arcs with non-zero ideal delays

(inter-iteration precedence constrains) from a cyclic DFG, an

acyclic DFG is produced. This graph will have only intra-

iteration precedence constrains which is normally used for

constructing the multiprocessor scheduling.

In the inter-iteration precedence constraints, nodes v and u

are connected by an arc v → u with an ideal delay i. Node u

depends on a token produced by node v in some previous

iteration. Hence, node u can be scheduled and executed

before node v. This constraint is used in constructing

multiprocessor scheduling using inter-iteration parallelism to

achieve minimum iteration period.
Many scheduling and assignment techniques are used in

multiprocessor systems [7] [8]. Multiprocessor scheduling

techniques are classified into different types depending on

different criteria.
The scheduling process that is performed at compile time

(before executing) is known as static scheduling. While the

scheduling process that is performed at run time (during

execution time) is known as dynamic scheduling. Static

scheduling is used when the scheduling behavior is known

at design time. This type of scheduling is used to minimize

the execution overhead. The result of this scheduling can

achieve the required optimality criteria. An algorithm whose

behavior is represented using a synchronous DFG (SDF

graph) can be scheduled statically. On the other hand, the

dynamic scheduling is performed during the execution of

operations. An example of this type is the conditional

operation. All algorithms except SDF graph representation

are scheduled at runtime [9]. In this work, the proposed

technique uses a static scheduling algorithm.

Other types of scheduling techniques are based on exploring

the precedence constraints between nodes for getting better

results. There are two types of scheduling in this case:

overlapped and non-overlapped scheduling [7]. In

94
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

overlapped scheduling, some tasks in the nth iteration can be

scheduled to execute before some tasks in a preceding

iterations. On the other hand, overlapped scheduling usually

achieves lower iteration period compared with non-

overlapped scheduling. However, in non-overlapped

scheduling, the execution of tasks within two consecutive

iterations is not overlapped. So, the execution of tasks in

(n+1)th iteration begins after completion the execution of all

tasks in the nth iteration. The minimum achievable iteration

period using this technique is equal to the critical (longest)

path of the precedence graph.

Moreover, there are synchronous and asynchronous

scheduling techniques depending on the system state changes

and the computational and transmission delays between

system elements. The synchronous scheduling technique is

represented by a global clock. It is divided into two types:

static and non-static. A schedule is called static if each

operation is allocated to the same processor at all iterations.

Therefore, each processor executes a unique set of nodes

with a total computational delay that is not exceeding the

iteration period. There are some schedules that produce a

static schedule. Examples of such schedules are critical path

method (CPM) schedule and schedules for systolic arrays

[10].

In non-static scheduling techniques, an operation can be

scheduled to run on different processors at different

iterations depending on the hardware allocation algorithm .

This type of scheduling includes cyclo-static periodic

multiprocessor schedules. This technique depends on the

time and the processor displacement. When an operation v is

scheduled at iteration n in processor Pk at time t, then at

iteration (n+1), operation v is scheduled on processor P(K+k)

modulo N at time (T+t). T is the iteration period and N is the

number of the processors. If the processor displacement K is

zero, a cyclo-static will be a static schedule. This schedule

achieves the critical path input-output delay; thus, it is

referred to as delay-optimal schedule. The drawback of this

way of scheduling is the high complexity of the hardware

implementation.

The scheduling techniques can be classified as either

iterative/constructive or transformational.

In the iterative/constructive, the schedule of the DFG nodes

is built by adding one node at a time, until all nodes of the

graph are scheduled. There are many methods used for

choosing nodes to be scheduled and to which processor they

will be assigned. The types of iterative/constructive

scheduling techniques are: As soon as possible (ASAP)

scheduling [7], As late as possible (ALAP) scheduling [7],

List scheduling [11], Freedom-based scheduling [12], and

Force-directed scheduling [13].

In the ASAP, the nodes in a DFG are scheduled step by step

from the first control step to the last control step. The node is

said to be ready if all of its predecessors are scheduled. This

preserves the precedence constraints. A ready node is

scheduled to the earliest control step. This procedure is

repeated until all nodes are scheduled. Ready nodes are

executed at the current control step if there are available

resources, or some ready nodes may be delayed to the next

control step if there are no available resources.

The ALAP is like ASAP scheduling technique. But in

ALAP, nodes of a DFG are scheduled from the last control

step to the first. A node is scheduled if all of its successors

are scheduled. In ASAP and ALAP scheduling techniques,

no priority to the critical section of the graph is given. So, a

non-optimal outcome may result.

In list scheduling, nodes of a DFG are arranged in a list

depending on the precedence constraints and some priority

rules. Nodes whose resources are available, are selected to be

scheduled to the current control step. Otherwise, they are

delayed to the next control step. In the first stage of the

proposed technique in this paper, we use list scheduling to

order the DFG nodes into nodes and tasks queues. This order

is used to prevent processors from entering a deadlock state.

Freedom-based scheduling detects the node to be scheduled

for freedom or mobility. Mobility represents the time in

which the node can start execution. So, the nodes on the

critical path or the loop are scheduled first. Then other nodes

are scheduled one at a time based on their mobilities.

A new metric, called the force, is calculated for each token in

the force-directed scheduling. It is used in selecting a token

to be scheduled and in selecting a control step. The force

between a token and a specific control step is proportional to

the number of nodes of the same type that can be scheduled

to that control step. The schedule is built by giving priority to

the minimum force value for a pair of token-control steps.

Then the forces are updated, and the process is repeated. This

method tends to achieve a maximum utilization of resources

which results in using a minimum number of hardware

resources. However, its time complexity is higher than the

list scheduling technique.

Most of iterative scheduling techniques use heuristics to look

for efficient schedules, but they do not necessarily produce

optimal ones. A transformational scheduling algorithm starts

with an initial schedule that is either maximally serial or

maximally parallel. Then a transformation is applied to the

initial schedule to produce another schedule. Transformation

algorithms differ in the operations they perform. These

operations are: Exhaustive search, Exhaustive search with

branch-and-bound, and Transformations with heuristics.

In Exhaustive search, all combinations (serial and parallel)

are examined until getting the best schedule. This has the

advantage of exploring all possible designs and tradeoffs.

But it requires heavy computations and large size design.

Exhaustive search with branch-and-bound is an improvement

of exhaustive search, which cuts off the search along a sub-

optimal path [14]. As a result, it requires less computations

and it is suitable for complicated designs.

In the transformations with heuristics, rules are used to

achieve the best transformation which possibly meets the

specified constraints.

The optimality criteria are related to the completion time of

the scheduling process and the number of resources that have

been used in the hardware implementation. A time of the

scheduling process is taken to be the iteration period or the

average number of control steps per cycle. A schedule must

meet the constraint that the execution of all tasks with one

iteration should not exceed the iteration period. The chip area

is determined based on the number of hardware units used.

This number is lower bounded by the processor bound. There

are other objectives to be met in optimal schedules.

Examples of such objectives are power dissipation, library of

cells, clock skew, and package selection.

Bounds of the optimal schedules are: Iteration period bound ,

Processor bound, and Input-output delay bound.

In a cyclic DFG, a node cannot start execution unless all

tokens are available. The time elapsed between two

95
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

consecutive firings of a node in the loop is known as the loop

bound.

The loop bound of a loop L is defined by:

 (1)

Where is the total computational delay of all nodes in the

loop L, and is the total number of ideal delay elements in

the loop L.

In the hypothetical case of having infinite resources, the loop

bound of some loops can reach the minimum iteration period

which is known as the iteration period bound [15] (the

minimum average time between successive outputs). When

the schedule iteration period is equal to the iteration period

bound, this schedule is said to be rate optimal. The iteration

period bound T0 is given by the maximum value of the

iteration bound among all loops in the DFG and is

mathematically presented by Equation 2.

T0= (2)

If the loop bound of a given loop is equal to the iteration

period bound, this loop is said to be a critical loop. In a non-

critical loop, there is a time difference between the iteration

period bound and the loop bound that is called the slack tim e

[16]. The slack time of the loop C is defined by

ST(C) =T0NC - DC (3)

Where NC is the total ideal delays of the loop C and DC is the

sum of the total computational delays. The slack time of the

circuit is equal to the negative of the length of this circuit,

that is

ST(C) = -len(C) (4)

A loop is more critical than another loop if it has a lower

slack time. For acyclic DFG and in case of using unlimited

resources, the iteration period is limited by the longest

operation computational delay.

When using the minimum number of processors in the

scheduling process of a DFG (Processor-Optimal Schedule),

the lower bound of the number of processors is defined by:

 (5)

Where P0 is the Processor Bound [8], D is a total

computational delay of nodes, and T is the iteration period.

From [17], in the pipeline execution, the processor bound is

given by

 (6)

Where i is the type of the processor, Pi is the pipelining level

of the processor, ni is the number of nodes of type i and ti is

the computational delay of processor i.

Because of precedence constraints, a processor bound cannot

be achieved for some iteration period. That is the precedence

constraints may prevent the optimization scheduling process.

The input-output delay is the time consumed when the input

node of the graph that takes the data token to the output node

of the graph produces the output token. The minimum input -

output delay is the longest path from the input node to the

output node. This path is called the Delay Bound (L0) and is

defined by:

 (7)

In resource allocation, the function units are assigned to

execute nodes (operations), storage units (registers) to save

tokens, and wires to establish communication paths (buses

and multiplexers) that are used for data transfer. While

assigning the tasks of a DFG to hardware resources,

minimizing the number of hardware resources is sought. This

can be achieved by grouping the software elements (nodes

and data values) that have the same lifetime into groups to

share a single hardware element. This type of allocation is

affected by the type of resources and is called folding [18].

There are two types of hardware functional units:

homogenous and heterogeneous. The homogenous functional

units are similar and perform the same operations. They are

suitable for the synthesis of Arithmetic Logic Units (ALUs)

and general-purpose DSP tasks. Systems with homogenous

processing elements have higher flexibility and scalability

compared with those with heterogeneous processing

elements. A heterogeneous system uses more than one type

of functional units. Different functional units perform

different operations. Generally, heterogeneous systems have

higher power efficiency and smaller area than homogeneous

systems.

Variables and results that will be used later are stored in

storage units (memories or registers). Each variable has a life

time which represents the time difference between the

variable production and the variable latest consumption.

Storage units that are used in the system may be single or

multiport memory or registers

Communication paths are used to connect hardware units

with each other to allow data transfer between system units

as per the precedence constraints. These paths are generally

formed from wires or multiplexers. Shard communication is

a more complicated design and slower, but it requires less

wiring than multiplexers which are better in system design.

Communication allocation should minimize communication

paths as much as possible.

The goal of the hardware allocation techniques is to reduce

the number of processing elements, memories, registers,

multiplexers, and the size of the interconnection network

[19]. Allocation techniques are grouped into two categories:

global and iterative/constructive. In the global techniques,

exhaustive search is used to find the number of allocations

simultaneously. The iterative/constructive techniques

allocate one resource at a time. It is more likely to reach

optimal solutions by using iterative/constructive techniques.

Global techniques include graph-theoretic formulation,

mathematical programming, and branch-and-bound

algorithms. These techniques can achieve optimal solutions;

yet they demand complex computations and require high

processing power. Thus, they may be limited to small-size

problems.

One of the graph theoretic formulation performs hardware

allocation by constructing a graph in which nodes represent

operations, data , and interconnections. This technique

attempts to find the set of connected subgraphs. To minimize

the number of hardware resources, the algorithm should

minimize the number of connected subgraphs. This

algorithm is called clique partitioning [20]. The disadvantage

of this technique is that it requires exponential time to

compute.

96
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

Branch and bound technique explores a design space of the

data path and searches for the optimal result. It tries each

element with all possible corresponding hardware elements,

keeps the best solution and cuts off the others. This

technique needs high computation a nd long processing time.

To overcome these difficulties, near-optimal solutions are

sought [21].

The Iterative/Constructive techniques are used to find

acceptable solutions that consume less processing power and

computational time than global techniques. In these

techniques, an iterative one-task assignment at a time is

performed [19].

There should be some knowledge in advance about the

hardware resources that are needed by each operation to

achieve the optimized results. This knowledge includes

resource computational delay, access time, and the

interconnection structure and delays. The allocation process

needs to know the control step at which the operations are

executed and the variables produced. The goal is to use the

minimum of used hardware resources. There is

interdependence between the allocation operation and the

time scheduling. System Synthesis might be done by

hardware allocation followed by scheduling, by scheduling

followed by hardware allocation or by combining and

performing them simultaneously.

In this work, we propose a new scheduling technique that is

targeting DSP applications represented by a DFG.

It achieves the optimal scheduling in terms of the maximum

throughput of a DFG using the

available hardware resources. This technique is composed of

two parts: software analysis of the DFG and hardware

assignment of the tasks to achieve the desired algorithmic

behavior. The two parts are combined to form a complete

system. In the software part, the DFG nodes are ordered into

a node queue depending on their inter-related data

dependencies. This queue is then used to create a compound

task queue. Each compound task is created by clustering two

nodes together into one task. These tasks are represented by

special purpose instructions to be used in a hardware system.

The second part of the scheduling technique is the allocation

of the tasks of the DFG on a general pipelined hardware

architecture. This system stores the DFG operations as

instructions into the system memory. These operations are

stored in a sequence to be executed in every iteration. Two

hardware systems are proposed: a serial system and a parallel

system. The serial system has one processing element where

all tasks are processed sequentially, whereas the parallel

system uses four homogenous parallel processing elements

for concurrent task execution.

The rest of this paper is organized as follows: Section 3

presents the related work. Section 4 presents the proposed

scheduling technique. The hardware implementation of the

proposed systems is presented in Section 5. Section 6

provides the experimental results. Finally, the conclusion is

given in Section 7.

3. Related Work

Many algorithms for static scheduling of iterative data flow

graphs on multiprocessing systems exist in literature.

In [22], the algorithm introduces an optimal scheduling of a

cyclic data flow graph into multi homogenous processing

system. It depends on fixing the iteration period and keeping

the number of the processors variable until obtaining a

solution. This algorithm is known as the range chart

technique. A reference node is selected, then the earliest

firing time and the latest firing time for every node are

computed. The flexibility for each node is computed by

taking the difference between these two quantities. It means

the range in which the node can be executed. The node with

the minimum flexibility is scheduled and chosen as a

reference node. The range chart is updated until all nodes in

the DFG are scheduled. In this algorithm, tasks are assigned

to homogenous processing elements according to their

computational delays. The output of the algorithm is a

scheduling matrix that presents the allocation of the tasks to

each processor and the iteration indices of the given tasks.

Here, the optimality criteria include throughput optimality,

delay optimality, and hardware resources optimality.

An improvement to the previous algorithm is presented in

[23]. An efficient hardware implementation of an optimal

scheduling algorithm of a DFG into pipelined heterogeneous

processing elements is proposed. The iteration period has

been decreased and less hardware resources are needed. This

leads to lower time complexity. This algorithm uses the

earliest firing time and the latest firing time to all nodes in a

DFG. As in [22] the reference node is picked, then nodes are

scheduled into heterogeneous processing elements regardless

of their computational delays.

Other popular scheduling algorithms are the list scheduling

algorithms which sort tasks of a graph in a list based on their

priorities, followed by selecting a resource to achieve a better

schedule. Some list scheduling algorithms are mentioned

next.

An Incremental Subgraph Earliest Finish Time (INCSEFT)

strategy is proposed in [24]. It produces a schedule for

directed acyclic graph (DAG) tasks on a heterogeneous

platform. The ranks of the graph tasks are calculated in a

bottom-up way. Starting from a sub graph and growing it

incrementally by adding the critical paths that minimize the

finish time by assigning it to processors. This low

complexity strategy produces effective near-optimal

schedules. This approach reduces the scheduling time; it

performs better for graphs with large number of nodes.

The work in [25] proposes improved predict earliest finish

time (IPEFT) algorithm for list-based scheduling at compile

time in a heterogeneous platform. This algorithm has two

phases in scheduling DAG tasks: task prioritization phase

and processor selection phase. In the first phase, a rank is

calculated for each task depending on the length of the

longest path from this task to the exit task. The task of a

higher rank has a higher priority. In the second phase, the

earliest finishing time of the task on each processor is

calculated. The task is scheduled in the earliest time slot

between two scheduled tasks. The scheduling time is reduced

without increasing the algorithm complexity.

In [26], a scheduling algorithm for a dependency graph on

multi computing heterogeneous computing system is

proposed. This a lgorithm consists of two phases:

prioritization phase and processor selection phase. In the first

phase, tasks are ordered to be scheduled in the processor

selection phase. The computation costs of the heterogeneous

processors and the communication cost of the heterogeneous

links are used for calculating the priority in acyclic DFG.

Since the computational cost of task on different processors

is different, the task's earliest finish time is computed by

calculating the mean value of the computation and the

communication costs in finding the upward rank (earliest

97
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

startup time) of the tasks. The proposed algorithm takes the

standard deviation of the expected computation and

communication costs as a significant attribute while

calculating the upward rank of the task. In the processor

selection phase, the algorithm uses a list scheduling

technique and duplication technique. The duplication

technique is used for the entry task only, and it is replicated

for all processing elements. Tasks are arranged in a priority

queue in a decreasing order of the upward ranks. The task

which has a higher priority is scheduled first. But a

duplication of the entry task leads to redundant duplication.

This would waste the resources and adversely affect the case

of a bounded number of processors.

In [27], an optimal scheduling of parallel tasks in

heterogeneous system is achieved. It presents a recursive

task scheduling algorithm for a limited number of

heterogeneous processors. This algorithm has three phases:

task prioritizing, processor selection, and moving phase. In

the first phase, an accumulative rank is computed, and the

priority is assigned to all tasks. Then, in the processor

selection phase, tasks are scheduled on processors which

ensures that the latest start time for the task is satisfied. At

the moving phase, all possible tasks are moved until the

entry task is zero. The algorithm decreases the final schedule

length. The performance of the algorithm is shown using

heterogeneous earliest finish time, iterative list scheduling,

and scheduling length.

There are scheduling algorithms that try to reach better

performance in scheduling a DSP application by shortening

the execution time and achieving parallel scheduling. In [28]

the scheduling algorithm uses a clustering technique based

on a chain cluster. It gathers a chain of nodes (actors) into

virtual actor. Then the main graph is scheduled using

priority-based scheduling algorithm (PBS). The chain of

actors is scheduled by HFS algorithm on the processor that

executes the virtual actor.

In [29], simple DSP applications such as FIR and IIR filters

expressed as DFGs are directly mapped into FPGA

implementation. To improve the performance, a retiming

technique is used to achieve the required levels of pipelining.

This technique is used to move delays in a DFG without

making changes to the input/output characteristics or the

iteration bound. It is aimed to reduce the clock period and the

power consumption. Retiming is applied using the cut

theorem which cuts the DFG into sub-sets and moves delays

between them until obtaining the best pipelined DFG. The

final implementation has been synthesized using the Xilinx

FPGA devices.

4. The Proposed Scheduling Technique

4.1 Technique Overview

A list of ordered tasks is created from a cyclic DFG based on

the data dependencies between its nodes at compile time. In

this stage, we prepare a DFG to be executed on the

implemented systems. The goal is to reduce the execution

time by minimizing the number of tasks to be executed. In

the first stage of the proposed technique, the nodes of the

DFG are arranged into a node queue based on their data

dependencies. Then, tasks are created by combining nodes in

the node queue under some conditions. The created tasks a re

ready to be executed on a hardware system. This phase has

been implemented using C++ programming language.

 4.2 Cyclic to Acyclic Conversion

The first step in constructing queues is to convert a cyclic

DFG into a directed acyclic graph (DAG). Figure 4 shows a

DFG representation for a second order IIR filter. In this

DFG, each of the edges that connect node 2 to node 3 and

node 2 to node 7 has an ideal delay of two, whereas each of

the edges that connect node 2 to node 5 and node 2 to node 4

has an ideal delay of one. These edges which have non-zero

ideal delays are broken and replaced by their values from the

previous iterations, represented by empty flags in the DAG

as shown in Figure 5. The input stream is represented by a

storage unit.

Figure 5: DAG of a cyclic DFG in Figure 4

 4.3 Node Queue Constructing

Once a cyclic DFG is converted into a DAG, the nodes of the

DAG are arranged into a queue depending on interrelated

data dependencies between graph's nodes as follows:

• The node queue construction stage starts from node

number 1 in the graph and continues until all the nodes

are scheduled and placed in the queue.

• Each node in the DAG is checked for being ready to be

inserted in the node queue. The node is considered ready

if its operands are available (from previous iterations or

from a user input). A ready node is directly inserted into

the queue.

• If one or more of the node's operands are not available,

their sources are checked for availability. This is repeated

until a ready node is found.

• The whole process is repeated until all nodes of the DFG

are scheduled.

Figure 6 shows the flowchart for construction the node

queue.

 4.4 Task Queue Constructing

Tasks Creation: To minimize the number of nodes in a

DFG, some nodes are clustered into one compound task.

Multiplication accumulation operation (MAC) is derived

from merging a multiplication node that is followed by an

addition node into one task. This compound operation

requires less computational time than the computational time

of the two nodes summed up. This reduces the overall

execution time by minimizing the number of tasks to be

executed.

Compound Task Queue Constructing: Some development

processes are applied at this stage to improve the throughput

of the system. A task creation process is applied to the node

queue and the results are placed in the task queue. If there

exists a multiplication node followed by an addition node in

the node queue, these nodes are clustered into a compound

task. This algorithm works as follow:

98
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

• After constructing the node queue and all nodes are

scheduled, this stage starts.

• A node is loaded from the node queue.

• The operation of the loaded node is checked, if it is a

multiplication operation the next node from the queue is

loaded. Otherwise, if the node's operation is addition, the

node is inserted into the task queue.

• The second node's operation is checked and if it is

addition then go to the next step. Otherwise skip the next

two steps.

• The first loaded node (which will be multiplication

operation in this case) is checked. If any node in the DFG

depends on it, a copy of this node is inserted as a single

operation task into the task queue.

• The first loaded node is merged with the second node

into a task and inserted as a compound task into the ta sk

queue.

• If the second node's operation is not an addition, the first

loaded node is inserted into the task queue, and the

second node is checked with its next node in the node

queue.

• All remaining nodes in the node queue are inserted in the

task queue as single nodes or as compound tasks.

Figure 7 shows the flowchart for constructing the compound

task queue.

 4.5 Examples

Four benchmarks of DSP filters are discussed: The second

order IIR filter, all-pole lattice filter, fourth-order Jaumann

wave digital filter, and the fifth-order wave elliptic filter.

A DFG representation, a node queue, and a task queue are

presented for each filter. There might be one or more input

and output nodes. Without loss of generality, the input

stream is considered as always available at the start of the

execution phase.

 4.5.1 The second order IIR filter

The node queue and the compound task queue of the second

order IIR filter are shown in Table 1. The scheduling is

obtained based on the following steps:

• The node queue creation process starts by vising node 1.

• The inputs of node 1 are checked for availability. Since

the first operand is provided by the user, the input is

considered available.

• The second operand of node 1 is node 3 which is not

available.

• The operands of node 3 are checked. As in a DAG, the

input of node 3 is available from the previous iteration.

• Node 3 is inserted into the queue and node 1 is checked

again for readiness.

• Repeat all the steps until all nodes are scheduled.

Following the flowchart in Figure 7, to merge two nodes into

a compound tasks, the operations of the nodes should be a

multiplication followed by an addition. For example, task 1

combines node 3 (multiplication node) and node 1 (addition

node). Similarly, nodes 4 and 2, 5 and 6, 7 and 8 are also

clustered into compound tasks. There are no single operation

tasks in this case.

 4.5.2 All-Pole Lattice Filter

The DFG of the all-pole lattice filter is shown in Figure 8

which is taken from [30]. The node queue and the compound

task queue are shown in Table 1. The node queue shows the

node order according to their data dependencies. Based on

the flowchart in Figure 6, node ordering starts from node 1

which is inserted directly in the node queue because its

operands are ready. Nodes 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 are

directly scheduled in order because all of them have

previously scheduled operands. After that, nodes 12, 13, 14,

and 15 are scheduled.

Some nodes from the node list are merged to create the

compound task queue which lists the task ID and the

corresponding nodes that belong to the task as shown in

Table 1.

Following the flowchart in Figure 7, to merge two nodes into

a compound tasks, the operations of the nodes should be a

multiplication followed by an addition. For example, task 2

combines node 2 (multiplication node) and node 3 (addition

node). Similarly, nodes 5 and 6, 8 and 9, 11 and 12 are also

clustered into compound tasks. Node 5 is duplicated to be in

task 4 as a single operation task and as a merged node with

node 6 to create the compound task 5. This is because node

5 is needed as an operand for other tasks. Nodes 8 and 11

have a similar case to node 5. Nodes 13, 14, and 15 are

inserted into the task queue as single operation tasks. The

total number of tasks is reduced by 6.7% in comparison with

the original number of nodes in the DFG.

 4.5.3 Fourth-Order Jaumann Wave Digital Filter

The DFG of the fourth-order Jaumann wave digital filter is

shown in Figure 9 [30]. Similarly, the node queue and the

compound task queue are constructed according to the

flowcharts in Figures 8 and 9, respectively. It is clear that

node 1 is not ready because its operand from node 6 is not

ready or node 6 has not been scheduled yet. Therefore, node

1 is replaced by node 6 to check its readiness. From Figure 9,

node 6 can be scheduled because its operands are ready

(from previous iterations node 7 and node 16). The

scheduling process is then repeated again starting from node

1 and the process is replicated until all nodes are scheduled.

Task 2, 5, 9 and 12 are compound tasks that are resulted

from clustering 8 and 7, 12 and 11, 14 and 13, and 9 and 10 ,

respectively. All other tasks have single nodes. The number

of tasks is reduced by 18% compared with the node count in

the node queue and the DFG. The node queue and the

compound task queue for this filter are listed in Table 1.

 4.5.4 Fifth-Order Wave Elliptic Digital Filter

Figure 10 shows the DFG for the fifth-order wave elliptic

filter [30]. This DFG have more nodes than the previously

mentioned filters. Table 2 contains the node queue and the

compound task queue after applying the approaches

presented by the flowcharts in Figures 8 and 9. In this case,

constructing the node queue starts from node 2, because node

1 represents the user input. Operands of node 2 are ready

from previous iterations and from user input. Thus, it is

scheduled first. From Table 2, the percentage of the

compound tasks is higher. In fact, the task count is reduced

by 25.7% compared with the node count in the original DFG.

99
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

Table 1. The node queue and the compound task queue of

the IIR, the all-pole lattice filter, and the 4th-order jaumann

Wave digital

IIR
filter

all-pole
lattice
filter

4th-order jaumann
Wave digital filter

Node

Queue

Compound

Task Queue

Node

Queue

Compound

Task Queue

Node

Queue

Compound

Task Queue

Node

ID

Task

ID

Nodes
Within

Task

Node

ID

Task

ID

Nodes
Within

Task

Node

ID

Task

ID

Nodes
Within

Task

3 1 3&1 1 1 1 6 1 6

1 2 4&2 2 2 2&3 8 2 8&7

4 3 5&6 3 3 4 7 3 1

2 4 7&8 4 4 5 1 4 17

5 5 5 5&6 17 5 12&11

6 6 6 7 12 6 2

7 7 7 8 11 7 3

8 8 8 8&9 2 8 15

 9 9 10 3 9 14&13

 10 10 11 15 10 4

 11 11 11&12 14 11 5

 12 12 13 13 12 9&10

 13 13 14 4 13 16

 14 14 15 5

 15 9

 10

 16

Table 2. The node queue and the compound task queue of

the 5th-order wave elliptic filter

5th-order
wave elliptic filter

5th-order
wave elliptic filter

(continue)

Node
Queue

Compound
Task Queue

Node
Queue

Compound
Task Queue

Node
ID

Task
ID

Nodes
Within
Task

Node
ID

Task
ID

Nodes
Within
Task

2 1 2 12 19 25

11 2 11 19 20 26&27

17 3 17 21 21 24

28 4 28 23 22 30

22 5 22 20 23 31&32

18 6 18&16 25 24 29

16 7 10 26 25 34

10 8 8&7 27 26 33&35

8 9 6 24

7 10 5&3 30

6 11 4 31

5 12 9 32

3 13 13 29

4 14 14&15 34

9 15 12 33

13 16 19 35

14 17 21&23

15 18 20

5. Hardware Implementation of the Proposed

Systems

Two hardware systems have been proposed and implemented

in this work. The first system processes the data serially

using a single pipelined processor, whereas the other system

uses multiple pipelined and homogenous processors to

process the data in parallel. Both systems are used for

processing DSP applications that are represented by a DFG.

The hardware implementations of the systems have been

carried out using Verilog HDL and targeting different Xilinx

FPGAs.

 5.1 Instruction Format

Each task in the task queue is represented in the form of an

instruction that is presented in Figure 11. The instruction is

41-bit wide and contains all of the data needed for execution.

There are eight different fields in the instruction. These are:

• The task's identifier (6 bit).

• Operand1 identifier: Represents the ID of the task that

produces operand1. (6 bit).

• Operand2 identifier: Represents the ID of the task that

produces operand2. (6 bit).

• Operand1 iteration number: The number for the iteration

in which operand1 is produced. (2 bit).

• Operand2 iteration number: The number for the iteration

in which operand2 is produced. (2 bit).

• The multiplication factors: 16-bit immediate data that is

used in the multiplication process. (16 bit).

• Operation code: represents the operation in the task.

(addition, multiplication or add-multiply) (2 bit).

• Last_task bit, which is set to 1 for the last task in the task

queue of the DFG.

 5.2 Hardware Implementation of the Serial System

The pipelined serial system consumes less resources in

comparison with the parallel one. In this system, only one

task is executed every clock cycle because only one

processing element exists. The system consists of seven main

units: processing element, address generator, main memory,

instructions buffer, state table, multiway function buffer, and

execution array. All units are driven by an external clock.

Figure 12 shows a block diagram for the serial system. The

processing element executes tasks sequentia lly. It supports

addition, multiplication, and multiplication-addition

operations. Three stages pipelined multiplier and a single

stage adder Intellectual Property (IP) cores are used. Once

the processing element is free the ALU_Ready signal is set

and a new task is loaded from the execution array for

execution. The constant operands are embedded within the

instruction (the task). The operation performed by the

processing element varies according to the task itself. The

result from the processing element ALU_Result is forwarded

to other units in the system to be used by other tasks. The

block diagram for the processing element is shown in Figure

13.

The address generator is shown in Figure 14. The output of

the address generator is connected directly to the address

lines of the main memory. The address is incremented

sequentially at each clock cycle. The output of the address

generator is initially set to 0. Therefore, the instructions are

stored sequentially starting from location 0 in the main

memory. In addition, the output of the address generator is

connected to the address lines of the state table and the

multiway function buffer through MUXs to allow clearing all

locations in these two units. Once all instructions are stored

in the main memory, the Reset signal is used to clear the

output of the address generator to 0.

Based on the address from the address generator, a n

instruction is fetched from the main memory and stored in

the instructions buffer. The EC signal is used to enable or

disable the unit. It is controlled by the Buffer_full signal and

bit number 6 in the instruction. If the instruction buffer is

full, the Buffer_full signal is asserted in order to stop

incrementing the address. Similarly, when reaching the last

100
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

instruction in the iteration, the address generator stops

incrementing until a new iteration starts. At the beginning of

each iteration, two control signals are used to clear the

address to 0 and the next iteration is started. These two

signals are the Rb and the Rd signals which come from the

multiway function buffer and the state table, respectively.

More discussion about these two signals is provided later.

Figure 14: The address generator in the serial system

There is a single shared main memory in the system that is

used to store instructions. The instructions are initially

loaded from an external file Data_In. At each clock cycle,

based on the address generated by the address generator, an

instruction is fetched from the main memory into the

instructions buffer Memory_out. The main memory is shown

in Figure 15.

Figure 15: A block diagram for the main memory in the

serial system.

The system has one instructions buffer which is shown in

Figure 16. It holds the tasks (instructions) that have been

fetched from the memory until the execution array is ready to

receive them. The first four instructions in each iteration are

loaded directly to the execution array. Once the execution

array is free, it sends a ready signal Ready to the instructions

buffer and one instruction Buffer_out is loaded to the bus that

is connected to the execution array and the state table. The

Buffer_full signal alerts the address generator that the buffer

is full. The buffer is cleared at the beginning of any new

iteration when receiving the Rb and the Rd signals.

As presented in Figure 17, the state table is a dual output

one-dimensional 1-bit wide memory array that is addressed

by the IDs of the operands in the task. It provides the

readiness state of all tasks for the current iteration. Initially,

each cell in the state table is cleared to 0 using the clear

signal. An operand is considered ready if it belongs to a

previous iteration or to the current iteration and its

corresponding cell in the state table is 1. In our case, we save

the operands produced by any task for the most recent four

iterations. If the operand is ready, its ID and the iteration

number are written into the outputs (S1 for operand1 ID, S2

for operand2 ID, CTR [1:0] for iteration number of operand1

and CTR [3:2] for iteration number of operand2) that are

connected to the multiway function buffer. If the operand is

not ready, 0 values are placed on its corresponding outputs.

The state of each task is updated directly after the execution

and its content is cleared at the end of each iteration.

The hardware implementation of the multiway function

buffer in the serial system is shown in Figure 18. The

multiway function buffer holds the ready operands of each

task for the most recent four iterations. Initially, the buffer is

cleared to 0’s; it then starts receiving ready operands from

the processing element. The ready operands are read from

this unit using the operand IDs and the iteration number that

come from the state table (S1, S2, and CTR). The operands

along with their IDs and iteration numbers are sent to the

execution array unit through the Src1 and Src2 outputs.

During each iteration, the multiway function buffer is

updated with the new result produced by each task,

ALU_Result. At the end of the iteration, the buffer content is

updated for the next iteration and the Rb signal is generated.

Figure 19 shows the hardware implementation of the

execution array unit in the serial system. The execution a rray

consists of four cascaded stages (EA1, EA2, EA3, and EA4).

The inputs to this unit come from the instructions buffer and

the outputs are connected to the processing element. Each

task enters this unit through stage EA4 and passes through

the other stages until it reaches the processing element.

During this journey, the execution array guarantees that all

operands of the task are ready before starting the execution.

This is done by comparing the IDs of the operands in the task

with the IDs of the operands that are produced by the task

that has just finished execution over the processing element

and has produced the ALU_Result. Also, by comparing with

the IDs of the operands that have been read from the

multiway function buffer through the Src1 and the Src2

outputs. At any time, four tasks can exist in the execution

array (one task in each stage). Once the task that holds the

processing element is done, the ALU_ready signal is asserted

and the task in the EA1 stage starts running on the

processing element. At the same time, the Ready signal is

used to shift up the tasks in the other stages from one stage to

the other and a new task is inserted into stage EA4. The first

four tasks are directly shifted up without watching the ready

signal.

In the EA4 stage, two 16-bit registers R1, and R2 are used to

hold the two operands of the task when they are ready. These

two registers are initially cleared to 0. If any of the operands

is not ready, the value of the corresponding register is kept at

0. The two registers are concatenated with the instruction and

the resulting 73 bits are forwarded to the other stages. In any

of the stages, if an operand becomes ready after being not

ready, its value is copied to its corresponding field in the 73

bits.

There are some differences in the circuit design of the

registers in the execution array. In Figure 19, the dotted

frame selects part of a register design. Differences are based

on the register position in the execution array. This

guarantees correctness at the beginning of each iteration. The

register that is directly connected to the instructions buffer

allows the first four tasks of every iteration to pass this stage

to the next one without the need of the Ready signal be set.

The register in the following stage allows the first three tasks

move to the next stage without the Ready signal be set. The

register in the second stage allows the first and the second

tasks only to proceed to stage EA1 of the unit.

The last stage of this unit (EA1 in Figure 12) has slightly

different design. It allows the first task only to move to the

processing unit. After moving the task to the processing

element, it generates the Ready signal to the other stages and

to the instructions buffer. The Ready signal triggers the

101
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

instructions buffer to load a new instruction and to pass tasks

between stages. Figure 20 shows the hardware that generates

the Ready signal in stage EA1.

Figure 20: Generation of the Ready in stage EA1

 5.2.1 Serial System Functionality

The serial system executes task as follows:

• Initially, the address counter is cleared to 0. Then, a

descriptive information of the DFG is loaded into the

main memory, and the state table and the function buf f er

are cleared.

• The address generator produces sequential addresses to

the memory. Tasks are loaded into the instructions buffer.

• The instructions buffer checks the IDs of the tasks and

directly loads the first four tasks of every iteration

without saving them in its queue. (Other tasks are saved).

• Once the instruction buffer is full, it sends the buffer_full

signal to the address generator to stop counting.

• When the instructions buffer receives the Ready signal

from the execution array unit, it sends one task to the

state table and the execution array register.

• Task’s operands are checked for availability using the

state table. Ready operands are sent to the multiway

function buffer.

• The multiway function buffer receives the ID and

iteration index of each operand, fetches the

corresponding values and sends them to all stages of the

execution array.

• At every clock cycle and when a stage receives a ready

signal from the first stage in this unit a task is shifted up

to the other stages.

• The execution array stages wait for any values coming

from the multiway function buffer or from the processing

element and match them with the task's operands which

they hold.

• Operands values are stored within a task as soon as the

Alu_Ready signal is asserted. Then a task is loaded into

the processing element.

• After execution, the result is sent to the state table, to the

multiway function buffer, and to the execution array.

• The state table and the multiway function buffer update

their content according to the executed task. These units

keep checking the last_task bit of the task for the end of

iteration.

• At the end of each iteration, the state table and the

instructions buffer are cleared, and the buffer contents are

updated to be compatible with the next iteration. The Rb

signal and the Rd signal from the multiway function

buffer and the state table are activated to reset the address

generator and a new iteration is started.

 5.3 Hardware Implementation of the Parallel System

Figure 21 shows a block diagram for the parallel system. The

parallel system consists of: Processing elements, address

generator, main memory, instructions buffers, state table,

multiway function buffer, and execution arrays. All units

have similarities with the units of the serial system with

some expansions or duplications in order to support

parallelism. They are driven by the same external clock.

There are four homogenous pipelined processing elements to

execute tasks concurrently. Up to four tasks can be execu ted

at every clock cycle. Each processing element supports all

required operations (addition, multiplication and

multiplication-accumulation). The processing element in the

parallel system is identical to that in the serial system, shown

in Figure 13.

The address generator, which is shown in Figure 22, is

responsible for generating the addresses in the system. It has

similar circuit design as the address generator in the serial

system with minor differences. There are four instructions

buffers in the parallel system, if at least one of them is full,

its Buffer_full signal (Buffer_full1, Buffer_full2, Buffer_full3

or Buffer_full4) is asserted in order to stop the address

generator. Four tasks are concurrently fetched from the

memory. There are four enable signals that represent the

last_task bit in each instruction. These are bits

Memory_out1[6], Memory_out2[6], Memory_out3[6] and

Memory_out4[6]. After the last instruction in the iteration,

the address generator stops counting until a new iteration is

started.

The main memory, which is shown in Figure 23,

concurrently loads four instructions, through the

Memory_out1, the Memory_out2, the Memory_out3 and the

Memory_out4 output ports, into the instructions buffers; each

instructions buffer receives one instruction.

The parallel system has four instructions buffers that are

identical to the one used in the serial system.

As shown in Figure 24, the state table in the parallel system

deals with four instructions that are read from the main

memory. If the operand is ready, its ID and the iteration

number are written into the outputs (S1 for operand1 ID, S2

for operand2 ID, S3 for operand3 ID, S4 for operand4 ID, S5

for operand5 ID, S6 for operand6 ID, S7 for operand7 ID, S8

for operand8 ID, C1 for iteration number of operand1, C2 for

iteration number of operand2, C3 for iteration number of

operand3, C4 for iteration number of operand4, C5 for

iteration number of operand5, C6 for iteration number of

operand6, C7 for iteration number of operand7 and C8 for

iteration number of operand8). If the operand is not ready, 0

values are placed on its corresponding output. The state tasks

are updated directly after the execution (ALU_Result1,

ALU_Result2, ALU_Result3 and ALU_Result4). The table

content is cleared at the end of each iteration.

The multiway function buffer is an expanded version of the

multiway function buffer used in the serial system. The

multiway function buffer receives eight operands that are

outputs from the state table (S1, S2, S3, S4, S5, S6, S7, S8,

C1, C2, C3, C4, C5, C6, C7 and C8). Then the operands,

their IDs, and their iteration number are sent to the execution

array units through ports Src1, Src2, Src3, Src4, Src5, Src6,

Src7 and Src8). This unit receives ready operands from the

processing elements through ports ALU_Result1,

ALU_Result2, ALU_Result3 and ALU_Result4 . At the end of

the iteration, the bits ALU_Result1[22], ALU_Result2[22],

ALU_Result3[22] and ALU_Result4[22] along with the

buffer content are updated for the next iteration and the Rb

signal is asserted. Figure 25 shows the hardware

implementation of the multiway function buffer used in the

parallel system. The execution array consists of four parallel

102
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

stages (EA1, EA2, EA3, and EA4). The inputs of each stage

come from the corresponding instructions buffer input

(Memory_out) and the outputs of the multiway function

buffer. The output Array_out of each stage is connected to

one of the processing elements. Similar to the execution

array unit in the serial system, this unit holds tasks in its

stages until all operands of the task are ready. This is done

by using the same comparison operations as in the serial

system. But in the parallel system there are four operands

that are produced by the tasks that have just finished

execution. These operands are placed on ports ALU_result1,

ALU_result2, ALU_result3 and ALU_result4 . Once the task

that holds a processing element is done, the ALU_ready

signal for that processing element is asserted and the task in

its corresponding stage starts running on the processing

element. At the same time, the Ready signal triggers the

corresponding instructions buffer to load a new instruction

and to pass task into the execution array stage. Figure 26

shows the hardware implementation of the execution array

unit in the parallel system.

5.3.1 Parallel System Functionality

The parallel system works as follows:

• The address is cleared to 0. A descriptive information of

the DFG is loaded into the main memory and the state

table and the multiway function buffer are cleared.

• The address generator produces four sequential addresses

to the memory and four tasks are fetched into the

instructions buffers.

• Each instructions buffer checks the task’s ID and direct ly

loads the first four tasks of every iteration without saving

them in its queue. (Other tasks are saved).

• If one of the instructions buffers is full, it sends a

buffer_full signal to the address generator to stop

counting.

• Once an instructions buffer receives a ready signal from

its execution array register, a task is sent to the state table

and to the execution array stage.

• Tasks operands are checked for availability using the

state table. Ready operands are sent to the multiway

function buffer.

• The multiway function buffer receives operands IDs and

their iteration numbers, fetches their corresponding

values and sends them to their stage in the execution

array unit.

• Every execution array stage waits for any values coming

from the multiway function buffer or from the processing

element and matches them with the task's operands which

it holds.

• Operands values are stored within a task, a s soon as the

Alu_Ready signal, of the stage of the execution array, is

asserted. Then a task is loaded to the processing element.

• After execution, the result is sent to the state table, to the

multiway function buffer, and to the execution array.

• The state table and the multiway function buffer update

their contents according to the executed tasks. These

units check task’s last_task bit for end of iteration.

At the end of each iteration, the state table and the

instructions buffers are cleared, and the multiway function

buffer contents are updated to be compatible with the next

iterations. The Rb signal and the Rd signal from the

multiway function buffer and the state table respectively are

used to reset the address generator and a new iteration is

started.

6. Experimental Results and Comparisons

The serial system and the parallel system have been

synthesized targeting Virtex-7 XC7VX690T-FFG1157

FPGA device from Xilinx. The implementation has been

carried out for 64 instructions (tasks), 64-bit state table, and

64 X 64 bit buffer in the multiway function buffer to

maintain tasks information for four iterations. The multiplier

size is 16-bit X 16-bit. Also, a 16-bit adder is used.

FPGAs nowadays are widely used to implement vast number

of applications. Examples of such applications are presen ted

in [31] and [32]. FPGAs contain a matrix of configurable

logic blocks (CLBs). Each CLB has two slices. A slice has

four LUTs. A LUT stores a predefined list of outputs for

every combination of inputs and provides a fast way to

retrieve the output of a logic function. It produces two

outputs: one is registered (Using Flip Flop) and the other is

not registered (combinational). When using a registered

output, a slice is counted as a slice register. On the other

hand, if a combinational output is used then the slice is

counted as a slice LUTs. The number of used slice registers

and slice LUTs in any implemented system reflects the area

of that system.

6.1 Serial System Implementation Results

Synthesis results show that the design of the serial system

runs at a frequency of 355.29 MHz. The area in terms of

LUTs is 8867 and it consumes 4818 slice registers. Table 3

summaries the serial system FPGA implementation results.

Table 3. The serial system FPGA implementation results.

Number of Slice
Registers Utilized

Number of Slice
LUTs Utilized

Minimum
Period Time

4818 8867 2.815 ns

6.2 Parallel System Implementation Results

Synthesis results show that the design of the parallel system

runs at a frequency of 476.554 MHz. The area in terms of

LUTs is 21229 and the number of slice registers is 12223.

Table 4 shows the parallel system FPGA implementation

results.

Table 4. The parallel system FPGA implementation results.
Number of Slice

Registers Utilized

Number of Slice

LUTs Utilized

Minimum

Period Time

12223 21229 2.098ns

6.3 The Serial System versus the Parallel System

Both systems are compared in terms of the number of used

slice registers, the number of used LUTs, and the frequency.

Figure 27 shows the comparison between the serial system

and the parallel system in terms of the number of slice

registers that are used in the circuit design. The comparison

is done for different number of instructions. When the

systems are dealing with 64 instructions, the parallel system

occupies 12223 slice registers in comparison to 4818 slice

registers in the case of the serial system. As shown in Figure

27 the number of occupied slice registers (for both systems)

increases with the number of instructions. The increase in the

serial system is approximately 50% and it is doubled in the

parallel system. Moreover, the ga p between the number of

slice registers occupied by the parallel system and that of the

103
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

serial system also increases with the number of tasks or

instructions. Table 5 shows the number of occupied slice

registers by the serial system and by the parallel system and

the difference between them for different number of

instructions.

Table 5: The number of occupied slice registers by both

systems for different number of instructions.

Number of
instructions

Number of occupied slice registers

Serial
System

Parallel
System

Difference
between both

64 4818 12223 7405

128 9113 18360 9247

256 17520 32264 14744

512 34537 66164 31627

Figure 27: The number of occupied slice registers by both

systems for different number of instructions.

The number of Slice LUTs gives an idea about the system

area. As presented in Figure 28, starting from 64 instructions,

the serial system consumes 8867 LUTs. When the number of

instructions is increased to 128, the serial system consumes

17207 LUTs, and it consumes 31753 LUTs in the case of

using 256 instructions. When the number of instructions

reaches 512, 50428 slice LUTs are consumed.

On the other hand, in the parallel system, 21229 LUTs are

consumed for the case of 64 instructions. This number

increases with the number of instructions. For example, in

the case of 512 instructions, 170671 LUTs are needed to

build the system. Obviously if the number of instructions in

the systems is increased, more slice LUTs are needed. This is

due to the increase of size of the main memory, the multiway

function buffer and the state table. Table 6 shows the number

of occupied slice LUTs by both systems and the difference

between them for different number of instructions.

Table 6: The number of occupied slice LUTs by both

systems for different number of instructions.

Number
Of

instructions

Number of occupied slice LUTs

Serial
System

Parallel
System

Difference
between

both

64 8867 21229 12362

128 17207 44521 27314

256 31753 72888 41135

512 50428 170671 120243

Figure 29 shows the frequencies for both the serial and the

parallel systems for different instructions counts. It can be

said that there is almost no variation in the frequency for the

serial system as the number of instructions increases. For

example, it is 355MHz for the 64 instructions case and

351MHz for the 512 instructions case. The frequency in the

parallel system slightly changes as the number of instructions

increases. For the case of 64 instructions, the frequency is

477 MHz and it is 441MHz for the case of the 512

instructions. In general, the frequency in the parallel system

is higher than that of the serial system.

Figure 28: The number of occupied slice LUTs by both

systems for different number of instructions.

Also, system frequencies decrease as the size increases,

because the system becomes bigger, and it consumes more

routing time and needs more time to update memories. The

serial system performance is almost constant but in the

parallel system the decrease in the system frequency can be

up to 4.5%.

Table 7: Frequency in MHz for both systems for different

number of instructions.

Number
of instructions

Frequency in MHz

Serial
System

Parallel
System

Difference
between both

64 355 477 122

128 355 470 115

256 355 462 107

512 351 441 90

Figure 29: Frequency in MHz for both systems for different

number of instructions.

6.4 The Proposed Systems versus the Retiming

Technique in [29]

Table 8 shows a comparison between the two systems that

are presented in this paper and the retiming technique

presented in [29]. This technique uses the retiming

scheduling algorithm to improve the performance of DSP

applications represented by DFGs. Retiming is applied using

the cut theorem which cuts a DFG into sub-sets and moves

delays between them until obtaining the best pipelined DFG.

All of the systems have been synthesized using the Xilinx

Virtex-5 FPGA.

Table 8 shows the system clock frequency for the three

designs. The proposed parallel system achieves the best

performance with a clock frequency of 266 MHz as

compared to 210 MHz and 176 MHz in the proposed serial

104
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

system and the retiming technique, respectively. The parallel

system achieves 51.2% higher performance than the retiming

technique, while the serial system achieves 19.3% higher

performance than the retiming technique.

The comparison in term of DSP48 devices that are used in

the system implementation shows that both the serial system

and retiming technique require two DSP48 devices each,

while the parallel system requires three DSP48 devices.

Table 8: Comparison between the proposed systems and the

retiming technique [29].
Circuit/System CLK (MHz) DSP48

Serial System 210 2

Parallel System 266 3

Technique of [29] 176 2

7. Conclusions

This paper proposes a new scheduling technique that is

targeting DSP applications represented by a data flow graph s

(DFGs). The technique is composed of two parts: software

analysis of the data flow graph and hardware assignment of

the tasks to achieve the desired algorithmic behavior. The

scheduling technique is designed to minimize the execution

time of a single iteration of the DSP application and thus

maximizing system performance. In the software part, the

nodes are arranged in a queue of nodes such that when the

tasks associated with these nodes are executed in order, data

dependencies are preserved. Two or more tasks may be

combined to form a compound task. In many cases, the

compound task can be executed in a time that is less than the

sum of the execution times of the individual tasks. For

example, when a multiplication operation is followed by an

addition, which is very common in DSP applications, the

resulting three-operand operation can be executed in less

time than the time needed to perform the two operations

separately. This process eventually decreases the number of

execution cycles for each iteration of the iterative DFG.

The second part of the scheduling technique is the allocation

of the tasks of the DFG on a general-purpose pipelined

hardware architecture. This stores the DFG operation as

instructions into the main memory. These operations are

stored in a sequence to be executed as many iterations as

needed. We have proposed two implementations of the

system architecture: a serial system and a parallel system.

The serial system comprises one processing element where

all tasks are processed sequentially. This system is

characterized by a small area size; it requires less number of

slice registers and less number of slice LUTs than the

parallel one. The parallel system, however, focuses on

performance rather than system area. . This system uses f our

homogenous parallel processing elements for concurrent task

execution. The relationship between the number of

instructions that are loaded and executed, and the system

area is studied. Similarly, the performance for different

problem sizes is analyzed.

Since there are no many previous contributions in this

specific field, we have chosen to compare our results with

the retiming technique presented in [29]. It has been shown

that our system outperforms the retiming technique in terms

of the iteration time. In terms of the system area, the

retiming technique and the serial version of our system

require the same number of DSP slices when FPGA

hardware implementation is used.

8. Acknowledgement

The authors acknowledge the support of XILINX to Jordan

University of Science and Technology (JUST). Through

their university program, XILINX has been donating free

licenses for their CAD tools to be used for teaching and

research purposes at JUST. All of the experimental results

presented in this paper have been obtained using the XILINX

CAD tools.

References

[1] D. DeFatta, J. Lucas, W. Hadgkiss, “Digital signal processing,

a system design approach,” John Wiley & Sons. Vol.2, pp.10-
660 1988.

[2] L. Trevillyan, “An overview of logic synthesis systems,”

ACM/IEEE Conference on Design Automation, Miami

Beach, USA, pp. 166-172, 1987.

[3] M. McFarland, A. Parker, R. Camposano, “The high-level
synthesis of digital systems,” Proceedings of the IEEE, Vol.

78, No. 2, pp. 301-318, 1990.

[4] K. Thulasiraman, M. N. S. Swamy, “Graphs, Networks and

Algorithms,” Wiley-Interscience publication, Vol.1, pp. 95-

592, 1981.
[5] R. Schafer, A. Oppenheim, “Digital Signal Processing,” 1st ed.

Englewood Cliffe, New Jersey: Prentice Hall, pp. 31-32,

1975.

[6] A. Shatnawi, “Compile-time scheduling of digital signal
processing data flow graphs onto homogeneous

multiprocessor systems,” Ph.D. Thesis Department of

Electrical and Computer Engineer, Concordia University,

Montreal Canada, 1996.

[7] K. Parhi, D. Messerschmitt, “Static rate-optimal scheduling of
iterative data-flow programs via optimum unfolding,” IEEE

Transactions on Computers, Vol. 40, No. 2, pp. 178-195,

1991.

[8] P. Gelabert, T. Barnwell, “Optimal automatic periodic

multiprocessor scheduler for fully specified flow graphs,”
IEEE Transactions on Signal Processing, Vol. 41, No. 2, pp.

858-888, 1993.

[9] Y. Kwok, I. Ahmad, “Static scheduling algorithms for

allocating directed task graphs to multiprocessors,” ACM

Computing Surveys, Vol. 31, No. 4, pp. 406-471, 1999.
[10] E. Lee, D. Messerschmitt, “Static Scheduling of Synchronous

Data Flow Programs for Digital Signal Processing,” IEEE

Transactions on Computers, Vol. 36, No. 1, pp. 24-35, 1987.

[11] S. Davidson, D. Landskov, B. Shriver, P. Mallett, “Some

Experiments in Local Microcode Compaction for Horizontal
Machines,” IEEE Transactions on Computers, Vol. 30, No. 7,

pp. 460-477, 1981.

[12] E. Girczyc, J. Knight, “An ADA to standard cell hardware

compiler based on graph grammers and scheduling,” Proc

IEEE Int Conf Computer Design, Nevada, Las Vegas, USA,
pp. 726-731, 1984.

[13] P. Paulin, J. Knight, “Force-directed scheduling for the

behavioral synthesis of ASICs,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

Vol. 8, No. 6, pp. 661-679, 1989.
[14] L. Hafer, A. Parker, “A Formal Method for the Specification,

Analysis, and Design of Register-Transfer Level Digital

Logic,’ IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 2, No.1, pp. 4-18, 1983.

[15] M. Renfors, Y. Neuvo, “The maximum sampling rate of digital
filters under hardware speed constraints,” IEEE Transactions

on Circuits and Systems, Vol. 28, No. 3, pp. 196-202, 1981.

[16] A. Shatnawi, M. Ahmad, M. Swamy, “Scheduling of DSP data

flow graphs onto multiprocessors for maximum throughput,”

IEEE International Symposium on Circuits and Systems,
Orlando, FL, USA, pp. 386-389, 1999.

105
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

[17] C. Y. Wang, K. Parhi, “High-level DSP synthesis using

concurrent transformations, scheduling, and allocation,” IEEE

Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 14, No. 3, pp. 274-295, 1995.

[18] K. Parhi, C. Wang, A. Brown, “Synthesis of control circuits in

folded pipelined DSP architectures,” IEEE Journal of Solid-

State Circuits, Vol. 27, No. 1, pp. 29-43, 1992.

[19] M. McFarland, A. Parker, R. Camposano, “Tutorial on high-
level synthesis,” 25th Design Automat, New Jersey, Atlantic

City, USA, pp. 330-336, 1988.

[20] M. Balakrishnan, A. Majumdar, D. Banerji, J. Linders, J.

Majithia, “Allocation of multiport memories in data path

synthesis,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 7, No. 4, pp. 536-540,

1988.

[21] E. Demeulemeester, W. Herroelen, “A Branch-and-Bound

Procedure for the Multiple Resource-Constrained Project

Scheduling Problem,” Management Science, Vol. 38, No. 12,
pp. 1803-1818, 1992.

[22] A. Shatnawi, “Optimal Scheduling of Digital Signal

Processing Data-flow Graphs using Shortest-path

Algorithms,” The Computer Journal, Vol. 45, No. 1, pp. 88-

100, 2002.
[23] A. Shatnawi, J. Ghanim, M. Ahmad, “High level synthesis of

integrated heterogeneous pipelined processing elements for

DSP applications,” Computers & Electrical Engineering, Vol

30, No. 8, pp. 543-562, 2004.

[24] G. Wang, Y. Wang, H. Liu, H. Guo, “HSIP: A Novel Task
Scheduling Algorithm for Heterogeneous Computing,”

Scientific Programming, Vol. 2016, pp.1-11, 2016.

[25] N. Zhou, D. Qi, X. Wang, Z. Zheng, W. Lin, “A list

scheduling algorithm for heterogeneous systems based on a

critical node cost table and pessimistic cost table,”

Concurrency and Computation: Practice and Experience, Vol.

29. No.5, pp. 1-11, 2016.

[26] E. Munir, S. Mohsin, A. Hussain, “SDBATS: A Novel
Algorithm for Task Scheduling in Heterogeneous Computing

Systems,” Parallel and Distributed Processing Symposium

Workshops & PhD Forum (IPDPSW), Cambridge, MA, USA,

pp. 43-53, 2013.

[27] Y. Kang, Y. Lin, “A Recursive Algorithm for Scheduling of
Tasks in a Heterogeneous Distributed Environment,” 2011

4th International Conference on Biomedical Engineering and

Informatics (BMEI), Shanghai, China, pp. 15-17, 2011.

[28] G. Liu, Y. He, L. Guo, “Static Scheduling of Synchronous

Data Flow onto Multiprocessors for Embedded DSP
Systems,” Third International Conference on Measuring

Technology and Mechatronics Automation, Shanghai, China,

pp. 338–341, 2011.

[29] R. Woods, J. McAllister, G. Lightbody, Y. Yi, “FPGA-Based

Implementation of Signal Processing Systems,” Chichester,
United Kingdom: John Wiley & Sons, pp. 145-169, 2009.

[30] S. de Groot, S. Gerez, O. Herrmann “Range-chart-guided

iterative data-flow graph scheduling,” IEEE Transactions on

Circuits and Systems I: Fundamental Theory and

Applications, Vol. 39, No. 5, pp. 351-364 ,1992.
[31] R. Kadu, D. Adane, “Hardware Implementation of Efficient

Elliptic Curve Scalar Multiplication using Vedic Multiplier,”

International Journal of Communication Networks and

Information Security (IJCNIS), Vol. 11, No. 2, pp. 270-277,

2019.
[32] M. Zeeshan, S. Khan, “Robust Sampling Clock Recovery

Algorithm for Wideband Networking Waveform of SDR,”

International Journal of Communication Networks and

Information Security (IJCNIS), Vol. 5, No. 1, pp. 10-18,

2013.

106
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

Figure 6: Flow chart of node queue constructing.

107
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

Figure 7: Flow chart of compound task queue constructing.

Figure 8: The DFG of the all-pole lattice filter [30].

Figure 9: The DFG of the fourth-order jaumann wave digital filter [30].

108
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

Figure 10: The DFG of the fifth-order wave elliptic filter.

Figure 11: The instruction format of a DFG tasks.

Figure 12: The block diagram for the serial system.

109
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

Figure 13: The block diagram for the processing element.

Figure 16: The hardware implementation of the instructions buffer.

Figure 17: The hardware implementation of the state table in the serial system .

110
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

Figure 18: The hardware implementation of a multiway function buffer in the serial system.

Figure 19: The hardware implementation of the execution array unit in the serial system .

111
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

Figure 21: The block diagram of the parallel system.

Figure 22: The hardware implementation of the address generator in a parallel system .

112
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

Figure 23: The hardware implementation of the main memory unit in a parallel system .

Figure 24: The hardware implementation of the state table unit in a parallel system.

113
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

Figure 25: The hardware implementation of the multiway function buffer at a parallel system.

114
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 1, April 2021

Figure 26: The hardware implementation of the execution array unit in the parallel system.

