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Abstract: Now, header parsing is the main topic in the modern 

network systems to support many operations such as packet 

processing and security functions. The header parser design 

significantly affects the network devices' performances (latency, 

throughput, and resource utilization). However, the header parser 

design suffers from many difficulties, such as the incrementing in 

network throughput and various protocols. Therefore, the 

programmable hardware packet parsing is the best solution to meet 

the dynamic reconfiguration and speed needs. Field Programmable 

Gate Array (FPGA) is an appropriate device for programmable 

high-speed packet implementation. Most high-speed programmable 

packet systems use the P4 language (Programming protocol-

independent Packet Processors) because it is a high-level abstract 

description language. This paper introduces a novel FPGA High-

Performance Programmable Packet Parser architecture (HP4). HP4 

is automatically generated by the generating unit (convert P4 

programs to VHDL code) to optimize the speed, dynamic 

reconfiguration, and resource consumption. The HP4 shows a 

pipelined packet parser dynamic reconfiguration and low latency. 

In addition to high throughput (over 600 Gb/s), HP4 resource 

utilization is less than 7.5 percent of Virtex-7 870HT, and latency is 

about 88 ns. High-speed dynamic packet switch and network 

security can use HP4.  
 

Keywords: Programmable Packet Parsers, Pipeline, Latency, 

Throughput, Resource Utilization, FPGA, P4.  

1. Introduction 

Recently, computer networks have evolved in both speed 

and variety of protocols (number and types). Therefore, there 

is a need for a prodigious packet parser at all modern 

network infrastructure [1]. However, many problems are 

facing the design and the implementation of the parser such 

as (1) processing at a line rate in the high-speed network 

(parsing millions of packets per second), (2) adaptation to 

new protocols; the number and types of protocol types are 

varied (adding a new protocol needs an experienced designer 

acclimated to the HDL language or parser architecture), (3) 

incomplete information (some protocols have more one 

format: standard and customized), (4) the header fields 

attributes (number, size, and location) varied with the 

protocol type, (5) the parser must have a small size because 

of the restriction of the programmable device's size, and (6) 

the enormous hole between the product description and the 

hardware implementation in the device of new types 

protocol. These problems demand a programmable hardware 

packet parsing [2], [3].  

Programmable packet parser relies on three steps: (1) high-

level protocol description, (2) automatic code generation, (3) 

dynamic reconfigurations. Therefore, the proposed system is 

a High-Performance Programmable Packet Parser (HP4). 

HP4 used the P4 language to describe protocols and include 

it in FPGA as a target platform. P4 (Programming Protocol-

independent Packet Processors) is the de facto standard high-

level language for describing packet protocols and rules for 

headers parsing at runtime. Recently, the P4 has gained 

adoption in academia and manufacturing [4], [5]. It has two 

versions. P416 released in 2017 with a new feature to 

overcome the limitation of P414 [1]. HP4 used P416. 

Generally, P4 has many advantages, such as protocol 

independence, fields’ reconfiguration, and portability, and 

free and open-source tools [6], [5]. The programmer decides 

how the forwarding plane processes packets without 

stressing over the implementation details. After that, he can 

do a converting the P4 description program to a suitable 

synthesizable VHDL code for FPGA and ASCII platforms. 

So P4 enables a new generation of networking hardware 

programming that can be dynamic reconfiguration and 

independent target. FPGAs are the best target platform for 

P4 programs at hardware line rates [1], [5], [6]. FPGA is a 

complete framework on a chip, including memory blocks, 

multiplier, accumulator units, and embedded processors. It is 

the most elegant solution for implementing a 

reprogrammable network system due to its performance: 

simplicity, speed of reconfiguration, low power utilization, 

and high performance. FPGA includes utilizing low-level 

hardware description languages (i.e., VHDL, Verilog) [7], 

[4]. Xilinx ISE presents a number of the synthesis tools, 

libraries, and simulation that help in architecture synthesis in 

Xilinx devices [15]. It recommends the Vivado as a High-

Level Synthesis for the new versions of Xilinx devices (e.g. 

Virtex-7) [16]. Virtex-7 870HT FPGAs can accomplish 

higher throughput parser (400 to 800b/s), bring down 

latency, and reduce power consumption [7]. Now, major 

cloud providers, such as Microsoft, Amazon, and Baidu, 

convey FPGAs in their data centers to help execution, e.g., 

accelerate network encryption and decryption or implement 

custom transport layers [8]. Because of the P4 and FPGA 

advantages, HP4 used the P4 and FPGA in the design and 

implementation phases.  

This work aims to design and implement HP4 based on 

FPGA to solve some of the drawbacks of prior works, 

including trading-off architecture, high-speed wire, latency, 

and resource usage. HP4 uses the issues that are marked with 

the red and italic font in Figure 1 with hypotheses of the 

maximum of (1) frequency, (2) word width (3) protocols 

stack size. 

HP4 architecture is a streaming packet parser; thus, its 

operations start once to receive the data from the data bus. It 

uses pipelining to achieve a high throughput and processing 

chain to represent the incoming network packet's protocol 

stack. It also uses multiple parsers in parallel to increase the 
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speed by pipelines. The increase in enabled pipelines led to 

increasing the frequency, and the throughput will rise. 

However, latency and consumed resources will increase. The 

number of parser stages is optional. HP4 adjusts between it 

and both latency and resource utilization to find the optimal 

parameters. The ingress and egress pipelines are shared 

across the input-output interface to reduce the chip area. HP4 

is generated and optimized automatically for resource 

utilization, latency, and throughput. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Parser Design Issues 

The generator unit converts the parse graph description of P4 

code to a VHDL code adequate for implementing in Xilinx 

Virtex-7 870HT FPGA. This paper presents a novel design, 

parsing a raw throughput in FPGA with more than 600 Gb/s 

at the line rate with less than 7.5 percent of available 

resources. The implementation included too word width (up 

to 4096-bit) parallel data buses for streaming packet data 

through pipeline stages. The results show the scalability, 

resource utilization, throughput, and latency of HP4, for 

different widths of the data bus and the number of pipeline 

stages. 

The rest sections of this paper are: Section II provides other 

related works. Section III presents the data bus structure and 

HP4 abstract architecture. Parse Graph Representation 

(PGR) description and optimization, P4 language, and how 

to generate the parser components and convert them to 

VHDL (synthesis) are in section IV. Section V presents the 

validation and evaluation of HP4. Finally, section VI debates 

the conclusions.   

2. Related Work  

Kozanitis et al. [10] presented the Kangaroo system to parse 

several protocols header in one-step used CAM to extract the 

next bytes. Its throughput was about 40 Gb/s line rate and 

used less than 1% of the chip area with 400 MHz ASIC. It 

buffered all header fields before the parsing (non-streaming), 

so the latency was too high. Yang and Prasanna showed in 

[11] IP address lookup could up to 100 Gb/s rates using 

FPGA. However, the two systems had problems, such as 

storing and accessing the long packets in the memory. 

Hence, the CAMs becomes a bottleneck because it has some 

limitations compared to SRAMs such as low storage 

capacity, slow access time relatively, low scalability, and 

highly expensive. 

Gibb et al. [13] provided the design details of a fixed and 

configurable packet parser. This work did not show FPGA 

implementation results. They assumed ASICs as the target 

implementation platform. There are many approaches to 

FPGA packet parser published with many advantages and 

disadvantages [9]. Puš et al. [2] proposed a hand-optimized 

pipelined packet parser. It used only 1.19% of the Virtex-7 

870HT FPGA to achieve throughput over 100 Gb/s and 

4.88% for throughput over 400 Gb/s with reasonable latency. 

However, this parser is only enough for wire-speed up to 

100 Gb/s with 512-b data bus width [9].  

Attig and Brebner in [12] presented their Packet Parsing 

language (PP) to describe the packet headers and the parse 

graphs. They used several heavily pipelined templates based 

on the Yang and Prasanna works [11] to parse 400 Gb/s on a 

single Xilinx Virtex-7 870HT FPGA. The throughput is 

affected by the shortest frames (so only up to 100 Gb/s). 

However, the PP language ignored the identification of the 

packet flow control.  

Benácek et al. [6] offered an automatic P4-to-VHDL packet 

parser generator based on Xilinx Virtex-7 XCVH580T 

FPGA. The generated parser worked with 100 Gb/s with 

roughly 100% overhead in terms of latency and resource 

consumption compared to a hand-written VHDL 

implementation [4] [7]. Wang et al. [8] introduced a quick 

framework of 10 Gb/s parser without architecture details for 

generating VHDL code from the P4 programs [9]. Jakub et 

al. in [9] produced auto-generated parsers with throughput 

over 1 Tb/s on the Xilinx UltraScale FPGAs and about 800 

Gb/s on Virtex-7 FPGAs. They used P4 language, multiple 

pipelines, and parallel packet parsing combining by multiple 

packets per one data frame [1]. Silva et al. [4] presented 100 

Gb/s open source pipelined streaming packet parser based on 

FPGA Virtex-7. They improved the pipeline structure and 

used two languages: C++ in the parser's specification and 

production of RTL (Register Transfer Language) code, and 

P4 in the description and optimization of PGR. This parser 

achieved low-latency and high-speed, but its logical resource 

utilization is high [7]. Cao et al. [1] validated a pipeline-

based parser of both the full and simple types with 

throughputs of 358 Gb/s and 317 Gb/s. They presented an 

approach to convert P416 programs into VHDL and 

implemented it in FPGAs automatically. Lixin et al. [7] 

presented SDPIP parser (software-defined protocol 

independent) based on Virtex-7 FPGA. It had a 256 b data 

bus and throughput about 80Gb/s. 

3. Architecture 

3.1 Data Bus Structure 

Data bus width is a necessary factor in implementing a 

parser, especially in high bandwidth systems and the low 

FPGA frequency.  

HP4 modified the data bus structure mentioned in [9] to 

minimize the overload size. HP4 divided the data bus 

structure (Word) into many sections with a fixed size equal 

to the minimum Ethernet packet size (512 bit). The 

maximum number of packets per one-word with 4096 bits is 

eight sections, and eight parallel copies of the pipeline. The 

number of sections is a variable to manage in the number of 

transmitting packets per clock. The total number of sections 

is N= 2n, where n= 0,1,2,3, and N's default value is eight. 

The data bus width (w) equals N times 512b. Each section 

has sixteen logical partitions (N=16*P). Each partition (P) 
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composes of two items. Item size (I) is the smallest distinct 

piece of bits (16-bit). The new frame must start with a part 

and finish at any position. This structure of the data bus 

controls the alignment overhead between every two frames. 

The alignment overhead in [9] per packet was not over 7 

bytes, but in HP4 is less than two bytes.  

HP4 allows with three types of alignment to develop the 

bandwidth raw, as shown in Figure 2. 

1) Full word: One packet per word as frame 1. 

2) Share words: A word may contain many packets (e.g., 

frames 2 and 3 ends in the middle of a part). 

3) Partial word: The packet may not overlap within the word, 

and the partially aligned start condition not violates as 

frame 4. 

Figure 2. HP4 Data Bus Structure (modified structure [9]).  

3.2 HP4 Parser Architecture 

HP4 has general architecture enough for parsing of most 

protocols. The functions of HP4 are (1) receive the header 

data in a stream, (2) check and identify the protocols types, 

and (3) extract the header fields to generate the packet 

header vector (PHV) contains header fields classified by the 

protocol. Figure 3 shows an overview of HP4. 

 

Figure 3. The Overview of HP4 Parser Model 

3.2.1 Header Identifiers Unit (HIU) 

Header Identifiers Unit (HIU) is the heart of HP4. Its 

functions are: (1) Receive the input data stream from the 

ingress pipeline, (2) Identify the protocols types, the length 

of the header, and the fields' location in the packet with the 

help of the parse graph (HIU depends on PGR generated by 

P4), and (3) Send these identifications to the Header 

Extractors  

HIU consists of three principal identifiers modules. (1) Next 

Protocol Identifier determines the expected next protocol 

type. 1) Next Protocol Identifier, determines the expected 

next protocol type. It converts some of the extracted header 

bytes into an internal code representing the next protocol 

type.  

Internal code is a unique identifier code for each header 

type. (2) Header Length Identifier determines the length of 

the current protocol header by computing the number of 

extracted bytes. (3) Field Location Identifier defines where 

the fields in the packet. It determines the sum of the current 

header offset (a value from ingress pipeline; Current Offset) 

and the current header length (the output of the Length 

Identifier). 

Figure 4 shows the abstract architecture of the HIU. It 

contains a set of state machines (searching engine), buffers, 

and matched tables stored in TCAM and SRAM. TCAM 

stores the input data stream. The search engine searches in 

the match tables and returns the first matching entry 

(Protocol-Code). Then Protocol-Code is sent to the SRAMs 

to know the type and the length and generates Next-Header-

Valid to propagate among the blocks within the same clock 

cycle. Algorithm1 shows the generation of Header 

Identifications. 

 
 

  

  

 

 

Figure 4. The Abstract Architecture of the Header Identifier 

Unit (HIU) 

Algorithm 1: Header Identifiers  

Function HeaderIdentifier (InputDataPacket) 
Input: InputDataPacket 
Output: HeaderIdentifications (HeaderType, HeaderLen, 

HeaderLoc) 
begin 

HeaderType = InitialType; 
Location = 0; 
while (headerStack) do 

FieldExtraction (HeaderType; HeaderLoc)  
HeaderType = GetNextHeaderType (packet; HeaderType; 

Location) 
HeaderLen = GetHeaderLen (packet; HeaderType; 

HeaderLoc) 
HeaderLoc = Location + Length; 

return (HeaderLen, HeaderType; HeaderLoc) 
end 

3.2.2 Header Extractors Unit (HEU)  

The functions of HEU are (1) read the header type, length 

and the location from HIU, (2) extract the header fields, (3) 

generate the PHV, and (4) send this vector to the egress 

pipeline. 

Figure 5 shows the abstract architecture of the Header 

Extractors Unit. The buffers store the packet data while 

waiting for the header identifications (type, length, and 

location) from the HIU. Once it receives these 

identifications, it will extract the fields by multiple parallel 

headers extractors. The header extractors, header identifiers, 

and their internal elements run in parallel with minimum 

data dependency. 

HEU unit determines for each byte in the input word if it 

will extract or discard. HEU depends on the state machine's 

output based on the configuration parameters and header 

identifications being input. Bytes, which were marked to 

extract, will be added to the memory blocks' position in the 

output stream. The memory blocks (a wide array of FIFO 
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registers) accumulate the extracted header fields into the 

PHV. FIFO is a 4Kb RAM with four dual ports. HEU also 

contains a crossbar switch that uses programmable and 

dynamic setting multiplexers (one per register). The crossbar 

switch helps extract data from any byte position and select 

between each output field to optimize resource utilization. 
 

  
 
 

 

 

 

Figure 5. Abstract Architecture of the Header Extractors 

Unit (HEU) 

It uses the parameter of the location as an address. 

Algorithm 2 illustrates the generation of the extracted fields. 
Algorithm 2: Header Extractor  

Function ExtractorFields (InputDataPacket; HeaderIdentifications) 
Input: InputDataPacket, HeaderIdentifications 
Output: ExtractedFields 
begin 

Fields = GetFieldList(header) 
for (FieldPos; FieldLength) 

Fields = Extract (packet; HeadedrLocation + FieldLocation; 
FieldLength) 

return (ExtractedFields) 
end 

3.2.3 Pipeline Units   

HP4 uses the pipeline to do a chain of parsing stages to parse 

the protocol stack and arrange the parser units. The pipeline 

functions are: (1) enter the essential data into and through 

HP4 to parse the current header protocol, (2) output the 

required information for the next header parsing stage or to 

the output, and (3) interface between the parser and the other 

elements. The pipeline helps develop by adding additional 

modules to parse new protocol type or reusing modules 

without any modification in the parser's internal structure. 

Several modules are already usable, and most of the parser 

modules for more protocols are almost identical. 

There are three types of the pipeline, as shown in Figure 6: 

(1) Ingress pipeline: it generates the initial required data for 

the first protocol type stage. (2) Inner pipelines: it arranges 

the parser units and connects between each two pipeline 

stages. It is optional (enabled/ disabled) at the run time for 

each protocol type (stage) individually. (3) The egress 

pipeline passes the results to the output. The output pipeline 

plays the role of a bypass unit. The pipeline consists of many 

stages and Stage-Selector. The Stage-Selector receives the 

next protocol type, next header valid, and the configuration 

parameters to generate the Selector signal. The Selector is 

used to enable the suitable stage from the inter pipelines; 

otherwise, select the egress pipeline. The order of protocol 

parsers stages in the pipeline depends on the protocol stack. 

Each stage contains at least one header identifier unit and 

header extractor unit to represent one protocol type of the 

header stack. Multiple copies perform multiple parsers per 

stage. The number of parsers per stage is equal to the 

number of sections (N) per word. P4 generates the pipeline 

unit automatically. Algorithm 3 describes the pipeline 

process. 

 

 

 

 

 

 

 

Figure 6. The abstract structure of the Packet parsing 

pipeline 

Algorithm 3: Pipeline  

Procedure Pipeline (packet; ProcessingChain) 

Input: packet, ProcessingChain 

Output: PacketHeaderVector 

begin: 

do 
/* Generate the Header Identifier Unit*/ 
HeaderIdentifications = HeaderIdentifier (InputDataPacket); 
/* Generate the Header Identifier Unit*/ 
ExtractedFields =HeaderExtractor (InputDataPacket, 
HeaderIdentifications); 
Selector = StageSelector (NextProtocolType; 

NextHeaderValid)  
while (Selector; PipelineStages; HeaderStack) 
/* Output the packet header vector PHV */ 
PHV = ExtractedFields; 

end 
 

4. HP4 Design and Implementation 

4.1 Parse Graph Representation (PGR). 

The Parse Graph Representation (PGR) is an acyclic 

oriented graph generated by the P4 from header description. 

There are two types of parse graph (1) fixed parse graph 

does not change after the implementation. It used in a fixed 

parser (non- programmable), and (2) programmable runtime 

parse graph (our work). 

Figures 7 shows an example of a parse graph for 2xVLAN, 

IPv4, IPv6, TCP, UDP, ICMP, ICMPv6. Each graph node 

(state) represents one header type. Starting with the root 

node, and each edge (leaf) represents the next protocol type. 

Each path is a header sequence. The topological ordering of 

PGR nodes depends on the Depth-First Search (DFS) 

algorithm. The P4 packet parser description program also 

defines the condition of a transition. If the state is not 

described in the P4 program and required by the parser, it 

will be the infinite state, and the transit state is the terminate 

(end) state. Loop edge can represent the situation to support 

more protocols of the same protocol type in the protocol 

stack (like the two VLAN). HP4 will translate each node 

into VHDL code automatically, and an optional pipeline will 

separate between every two nodes. 

The represented parse graph in Figure 7 is unsuitable for a 

fast parser because it contains many paths. Then it will 

require many bypass pipelines. The increase in the pipeline 

number tends to a series of delays and increases in resource 

usage. HP4 optimizes this graph to present a suitable PGR 

for the high-speed network. The steps of the parse graph 

optimization are: 
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Figure 7. Original Parse Graph Representation 

 (1) get the original parse graph representation from the 

compilation of the P4 program description as shown in 

Figure 7, (2) determine the level for each node by computing 

the path length (distance from the root node to each node), 

(3) find out the longest paths of the parser graph, (4) 

eliminate and delete the redundant paths (the children's 

paths) for each longest path, and then (5) generate the 

optimized parse graph as shown in Figure 8. 

 

 
 
 
 
 
 
 

Figure 8. Final optimized Parse graph  

4.2 P4  

P4 utilized to describe each header field (name, size in bits, 

and the sequence), and the extract fields (type, length, and 

location), and define the constraints of the field size. 

Because the field size can be constant or variable, the header 

length may be fixed (the length is the sum of all field sizes) 

or variable length. The problem in the variable header field 

length where its value is nondeterministic. P4 solves this 

situation by defining the header length as a variable. Then 

the variable header length is a formula calculates the derived 

fields’ sizes from the input data raw at the runtime like the 

following [14]: 
 header_type ethernet { 

fields { 
dst_mac : 48; 
src_mac : 48; 
ethertype : 16; 
} 

} 
header_type ipv6_ext_t { 

fields { 
nextHdr : 8; 
totalLen : 8; 
frag : 12; 
padding : 3; 
fragLast : 1; 
} 

length : (totalLen + 1) * 8; 
max_length : 1024; // Bytes 

} 
header_type vlan_t { 

fields { 

pcp : 3; 

cfi : 1; 

vid : 12; 

ethertype : 16; 

} 

} 

header_type udp_t { 

fields { 

srcPort : 16; 

dstPort : 16; 

length : 16; 

checksum : 16; 

}} 

P4 presents the transition in the pipeline states by a switch-

case command in a tuple form (value, next state) and extract 

command to parse the fields and constructs the parse graph. 

The switch case command uses the extracted data to present 

the next state (next protocol type). It determines which 

subset of the defined header types could occur at each 

pipeline stage. If the header is unknown, the P4 uses the 

default ingress to drop the packet, go to the end state, and 

start a new ingress. The extract instruction determines fields 

will extract. The return ingress command indicates that the 

current parsing stage is complete. It returns the next parsing 

stage to the start and demonstrates the beginning of the 

pipeline, for example [14]: 
header ethernet eth; 

parser ethernet { 

extract(eth); 

switch(eth.ethertype) { 

case 0x8100: vlan; 

case 0x9100: vlan; 

case 0x800: ipv4; 

default: ingress; 

} 

} 

extract(udp); 

return ingress; 

The P4 program is also used to define the three HIU's 

identifiers as an object's method for running at runtime, the 

header fields, and the needed information for the identifiers. 

The StageSelector method checks the current parsing stage's 

output, decides to allow a new pipeline stage or considers it 

the last, and passes it to the output stage. 

4.3 HP4 Implementation 

The P4 compiler converts the HP4 abstract architecture from 

the P4 program to the VHDL code using the code generation 

unit. Xilinx Vivado 2018.2 design suite tool synthesized this 

VHDL code to Xilinx Virtex-7 870HT FPGA. The HP4 

design is then synthesized with the various setting 

parameters (data bus width and number of pipeline stages), 

placed and routed, and generated a Bitstream (physical 

FPGA programming information). The automatic generation 

of code has many advantages, such as 1) the simplicity of 

generating VHDL code, and 2) the modularity to allow by 

the extension in two ways: (i) adding externally defined 

features and (ii) changing or removing the basic block.  

HP4 uses two types of memories (TCAMs and SRAM) in 

the implementation. TCAM stores bit sequences to perform 

the longest prefix and parallel match to identify headers. 

SRAM stores the next state information, extracted fields, and 

any other data needed during the parsing to perform the 

hash-based binary match and the exact match rapidly. The 

field buffer design is flexible: it is a set of registers (array) to 

help the extracted fields transmit in a parallel to downstream 

components. HP4 minimizes the number of the extracted 

fields to reduce the field buffer size and resource utilization. 

HP4 uses a 4Kb packet header vector during parsing. 

There many steps to implement HP4: (1) Writing the P4 

program to describe the protocols. (2) Creating the PGR 

from the P4 program. (3) Optimizing the PGR by 
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eliminating the children's paths as in Figure 8. (4) Creating 

the processing chain from the PGR and pipeline stages. Each 

node contains a number represent the node level (stage 

number). Some levels have more than one node on the same 

level; then, several parsers will connect in serial with the 

ordinary ordering. The analyzers of the same level connect 

in parallel. The serial connection allows HP4 to keep the 

processing chain's homogeneous structure, as shown in 

Figure 9. (5) Generating the VHDL code of the Header 

Identifiers Unit and Header Extractor Unit. (6) Creating and 

identifying the configuration parameter and the essential 

control elements in generating the parser units (such as the 

window size, the number and size of the parsed lookup table, 

and the programmable memory TCAM/RAM)  size. 

Algorithm 4 demonstrates the generation of HP4 from the P4 

program. 

 

 

 

Figure 9. Generated processing chain 
 
Algorithm 4: Generating the HP4 (Transformation from P4 to HP4 

Procedure HP4Transformation(P4Program) 
Input : P4Program 
Input : InputDataPacket 
Input: configuration-parameters 
Output: HP4 VHDL Code 
begin: 

/* Get the Parase Grapgh Represntation*/  
ParseGraph= ReadParseGraphRepresentation(P4Program); 
/* Discover the node levels */ 
NodeLevel= GetNodeLevel(ParseGraph); 
/*Find out the longest path*/ 
LongestPath= FindLongestLevel (ParseGraph, NodeLevel); 
/* Optimize the parse grapgh*/ 
OptimizedParseGrapgh= EliminateChilderenPaths (PraseGrapgh, 

NodeLevel, LongestPath);  
 /* Generate the Pipeline Stages*/ 
PipelineStages= GenerateProcessingChaine 

(OptimizedParseGrapgh, InputDataPacket); 
Pipeline (packet; ProcessingChain) 
end 

 

4.4 HP4 Optimization 

HP4 supported many optimizations, saving significant 

resource utilization, reduced latency, and increased 

throughput. HP4 achieves high throughput in high-speed 

network processing by working in two dimensions. (1) 

Increasing the input data bus width to process multiple 

packets or partial packets per one clock cycle. The 

throughput depends on the word width and the expected 

clock frequency. (2) Maximizing the header stack size to 

increase the number of pipeline stages. The user supplies 

these two parameters to the P4 compiler and setting at the 

runtime.  

The ingress and egress pipelines are the same in a physical 

block and the field allocation function for the optimization. 

HP4 also aggregates multiple parallel small packet parsers in 

each pipeline stage to parse one packet per the stage for each 

type of protocol in the stack. A single parser instance's 

processing affects latency and resource utilization for two 

reasons: (1) the packet data bus increases in width and needs 

more resources, and (2) additional headers can occur within 

a single processing data bus's section, requiring more 

header-specific processor instances for parsing processing. 

The following section will demonstrate these reasons. HP4 

achieved throughput more than 600 Gb/s by grouping 16 

instance parser of 40Gb/s running at 1 GHz.  

5. Test and Evaluation 

HP4 parser tested the design properties with two separate 

protocol stacks: (1) Full parse: 4×VLAN, 4×MPLS, IPv4 or 

IPv6 (2×extension headers), TCP or UDP, and (2) Simple 

parse: IPv4 or IPv6, (2×extension headers), TCP or UDP. 

The two protocol stacks were described in a P416 language 

and synthesized with various data bus width settings (512, 

1024, 2048, and 4096 bits) and pipeline stages. In these 

cases, the data bus parameter allows adequate and efficient 

wire-speed parsing even for the smallest packets (512 bits) 

and the large packets with a varying N as specified in section 

(III.A). The setting of data bus width (N sections) and the 

number of pipelines tend to a wide range of possible outputs. 

From the different data bus width settings and the number of 

pipeline stages with the two protocol stacks, the HP4 parser 

state-space is different in throughput latency and resource 

use. The FPGA resource utilization contains two parts: 

resources consumed by the shared fixed runtime functions of 

all P4 programs, and the unique P4 components resources, 

which varied and dependent on the parameters. FPGA 

resource is the sum of the used LUTs and registers. 

The results obtained by Vivado after synthesis of the Xilinx 

Virtex-7 870HT FPGA are throughput, latency, and resource 

use. HP4 evaluation occurred in two stages. Firstly, HP4's 

ability to manage a varied range of P4 parsers. Secondly, the 

generated parser can work online, using a collection of 

testbench circuits, with different setting parameters and the 

two protocol stacks (Full and Simple parses). The generator 

produced testbench circuits to verify the parser. Finally, in 

summary, Pareto's principle checks the results with the 

various configuration parameters to find the optimal solution 

for the HP4. 

The following sections illustrate the HP4 test cases (Simple 

and Full parse) by three graphs per case. These graphs show 

the relationship between (1) throughput and resource 

utilization, (2) throughput and latency, and (3) resource 

utilization and latency. In addition to two graphs with Pareto 

sets for the two parse types show the optimization for: (1) 

the throughput and resource utilization, and (2) the 

throughput and latency. 

5.1 Test 

5.1.1  Simple Parser Test 

Figure 10 shows the resource utilization with the 

throughputs for the Simple parser. From the graph, FPGA 

resource utilization linearly increases with the achieved 

throughput. In addition to doubling the data bus width does 

not double the FPGA resource utilization because there is a 

consumed resource in the computing components and the 

fixed functions. Figure 11 shows the latency and throughput 

for different settings of the Simple parser. From the graphs, 

the latencies are increasing as the achieved throughput is 

rising, because the high throughput requires more extensive 

registering. Generally, the latency depends on the configured 
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number of registers in the enabled pipeline stages and the 

working frequency. 
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Figure 10. The relationship between Throughput and 

Resources of the Simple parser with a different data bus 

width 

 

Figure 11. The relationship between Throughput and 

Latency of the Simple parser with a different data bus width 

Figure 12 shows the relation between the latency and the 

resource utilization of the Simple parsers. The resource 

utilization rises considerably with the data bus width from 

the graph, and the latency pretty much stays in the same 

boundaries. 

 

Figure 12. The relationship between Resources and Latency 

of the Simple parser with a different data bus width  

5.1.2 Full Parser Test 

The Full parser is much larger than the Simple parser in the 

size because it parses many protocols. The Full parser's 

state-space with the combinations of the set parameters is 

enormous for each word width. Therefore, HP4 synthesized 

only some hand-picked and randomly selected 

configurations of the possibilities. Figure 13 shows the 

resource utilization and effective throughput of the 

synthesized Full parsers. The resource utilization reaches 

nearly two times higher values. 

 

Figure 13. The relationship between Throughput and 

Resources of the Full parser with a different data bus width. 

Figure 14 shows the latency and throughput relation of 

different configurations of Full parsers.   

 

Figure 14. The relationship between Throughput and 

Latency of the Full parser with a different data bus width  

The full parsers use more of the pipeline stages. Hence, their 

latency and resource utilization are much higher, nearly four 

times in some cases than the simple parsers. Figures 14 and 

15 show the latency and throughput relation of the full 

parsers with different configurations. 
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Figure 15. The relationship between Resources and Latency 

of the Full parser with a different data bus width  

5.1.3 Summary of the Parser Test 

Figure 16 shows sets of tested parsers with Pareto optimal 

results of the resource utilization with the throughput. The 

Full parsers' resource utilization is up to two times larger 

than the Simple parser from the graph.  

Figure 17 shows Pareto optimal sets of parsers 

configurations in latency to throughput, where the latency 
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increases with the throughput.  
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Figure 16. Pareto optimization of throughput and resources 

for different parses and data bus width 
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Figure 17. Pareto optimization of throughput and latency for 

different parses and data bus width 

The results demonstrated that the data bus width increment 

tended to increment throughput (as intended). With doubling 

the data bus width, the resource utilization is slightly less 

than the double. The latency remained large with the 

increasing data bus. 

5.2  Evaluation 

Table 1 presents a comparative study between HP4 and other 

parsers: Gibb [13], handwritten VHDL parser (Golden) [6], 

Benácek (BK) [6] and Silva [4] with a throughput of less 

than or equal to 100 Gb/s in both Simple and Full parsers. 

HP4 nearly achieves the same performance with the same 

constraints while reducing the resource utilization and 

latency as BK [6] in the cases of Simple and Full parses. The 

best is the Golden parser, where it is hand-optimized. 

However, due to the additional pipeline registers and the full 

data bus width, HP4 design requires more resources than 

Gibb [13]. However, the HP4 throughput can reach high 

even in processing the shortest packets. Due to the low data 

bus and throughput, Gibb achieved less resource utilization 

than HP4. 

Table 1. Comparative Study-1 

Parser Type  
Data 
Bus [b] 

Throughput 
[Gb/s] 

Resources 
Utilization  

Latency 
[ns] 

Gibb [13] 

Simple 
Parser 

256 47 2.22% N/A 

Golden [6]  512 100 1.49% 15 

BK [6] 512 100 3.58% 29 

Silva [4] 320 100 2.03% 19.2 

HP4 4096 100 2.45% 22.3 

Gibb [13] 

Full 
Parser 

64 11 1.18% N/A 

Golden [6]  512 100 1.94% 27 

BK [6] 512 100 3.79% 46.1 

Silva [4] 320 100 2.67% 25.6 

HP4 4096 100 2.98% 33.53 

 

Also, the HP4 compared with the other parsers: Puš [2], 

Attig and Brebner (AB) [12], Golden parser [6], and Jakub 

Config [9] for the same protocol stack (Simple and Full) and 

throughput ranges from 100 to 400 Gb/s based on Xilinx 

Virtex-7 XCVH870T as shown in Table 2. The throughput 

of AB parser is up to 578 Gb/s, BK parser up to 478 Gb/s, 

and Config parser with a maximum of 926 Gb/s. HP4 

(highlighted) requires less resource utilization and latency as 

opposed to the AB parser. The Golden and Config parsers 

are better in both dimensions than HP4. To overcome these 

limitations, HP4 can use and repeat the Golden parser (e.g., 

4 x 400 Gb/s) and replace the Viretex-7 platform with 

UltraScale FPGA. Thus HP4 resource utilization and latency 

will decrease, and the throughput increase. 

Table 2. Comparative Study-2 
Parser Throughput Resources Utilization  Latency 

Puš [2] 

> 100Gb/s 

1.19% 21.1 

AB [12] 9.5% 320 ns 

Golden [6]  1.94% 45 ns 

Config [9] 2.05% 69 ns 

HP4 5.85% 76 ns 
Puš [2] 

>400 Gb/s 

4.88% 35.8 

AB [12] 22.7% 365 ns 

Golden [6]  5.87% 56 ns 

Config [9] 6.38% 67 ns 

HP4 7.42% 88 ns 

6. Conclusions  

Most of the network devices need the packet parser to 

complete their functions. This paper presented a novel 

architecture of high-performance programmable pipeline 

packet parser HP4 based on FPGA at the line rate.  

HP4 used the P4 language to describe the packet header 

parsing to generate FPGA-appropriate VHDL code  

dynamically.  

The generating unit converts the abstract definition to FPGA 

synthesis without in-depth knowledge of the hardware 

definition language. It minimized the design and 

implementation time. The data bus width and the number of 

pipeline stages are configurable parameters to optimize 

resource utilization, throughput, and latency. 

HP4 evaluated on a variety of characteristics. The results 

highlight the scalability of HP4 by illustrating a wide variety 

of packet throughputs via adjusting the variable parameters. 

HP4 equilibrates the throughput, the used resources, and 

latency even in the worst case when parsing a set of short 

packets. It can parse a different line-rate throughput from 1 

to over 600 Gb/s on a single Xilinx Virtex-7 870HT FPGA 

by considering latency and used resources in the case of the 

full protocol as well. Latency was about 88 ns, and resource 

utilization was nearly 7.42% of the FPGA's resources. Thus, 

the rest of the FPGA resources remain available for other 

requirements. HP4 can use in accelerators, smart NICs, and 

various network security applications (filtering and packet 

inspection).  

References  

[1] Z. Cao, H. Zhang, J. Li, M. Wen and C. Zhang, "A fast 

approach for generating efficient parsers on 

FPGAs", Symmetry, vol. 11, no. 10, pp. 1265, Oct. 2019.  

[2] V. Pus, L. Kekely, and J. Korenek, “Design methodology of 

configurable high performance packet parser for fpga,” in 

Design and Diagnostics of Electronic Circuits & Systems, 

17th International Symposium on, pp. 189–194, April 2014.  



363 
International Journal of Communication Networks and Information Security (IJCNIS)                                    Vol. 12, No. 3, December 2020 

 
[3] X. Wang, L. Qinrang, and Y. Binghao, "A Design of 

Programmable Parser Generation System Based on Dynamic 

Programming." In 2017 International Conference on 

Information, Communication and Engineering (ICICE), pp. 

325-328. IEEE, 2017. 

[4] J. Santiago da Silva, F.-R. Boyer, and J. Langlois, "P4-

Compatible High-Level Synthesis of Low Latency 100 Gb/s 

Streaming Packet Parsers in FPGAs," in Proceedings of the 

2018 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pp. 147-152, : ACM, 2018. 

[5] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The 

P4 → NetFPGA workflow for line-rate packet processing,” in 

Proceedings of the 2019 ACM/SIGDA International 

Symposium on Field-Programmable Gate Arrays. ACM, pp. 

1–9, 2019. 

[6] P. Bencek, V. Pu, and H. Kubtov, “P4-to-VHDL: Automatic 

Generation of 100 Gbps Packet Parsers,” in 2016 IEEE 24th 

Annual International Symposium on Field-Programmable 

Custom Computing Machines (FCCM), pp. 148–155, May 

2016. 

[7] Lixin, M., Qingrang, L., & Xin, W. (), “Software-Defined 

Protocol Independent Parser based on FPGA”, In Proceedings 

of the International Conference on Industrial Control 

Network and System Engineering Research, pp. 42-46, ACM, 

March 2019. 

 

[8]   H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. 

Foster, and H. Weatherspoon, “P4fpga: A rapid prototyping 

framework for p4,” in Proceedings of the Symposium on 

SDN Research, ser. SOSR ’17, , pp. 122–135, 2017. 

[9] J. Cabal, P. Bena´cek, L. Kekely, M. Kekely, V. Pu ˇ s, and J. 

Ko ˇ ˇrenek, “Configurable fpga packet parser for terabit 

networks with guaranteed wire-speed throughput,” in 

ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays. ACM, pp. 249–258, 2018. 

[10] C. Kozanitis, J. Huber, S. Singh, and G. Varghese, Leaping 

multiple headers in a single bound: Wire-speed parsing using 

the Kangaroo system," in IEEE INFOCOM, pp. 830-838, 

2010.  

[11] Y. H. E. Yang and V. K. Prasanna, “High Throughput and 

Large Capacity Pipelined Dynamic Search Tree on FPGA,” 

in Proceedings of the 18th annual ACM/SIGDA international 

symposium on Field Programmable Gate Arrays (FPGA), pp. 

83–92, 2010. 

[12] M. Attig and G. Brebner, “400 Gb/s programmable packet 

parsing on a single fpga,” in In Proceedings of the 2011 

ACMJIEEE Seventh Symposium on Architectures for 

Networking and Communications Systems, ANCS ’11. IEEE 

Computer Society, pp. 12–23, 2011. 

[13] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown, 

“Design principles for packet parsers,” in ACM/IEEE 

Symposium on Architectures for Networking and 

Communications Systems, ser. ANCS’13. IEEE, pp. 13–24, 

2013. 

[14] M. Budiu and C. Dodd, “The p416 programming language,” 

ACM SIGOPS Operating Systems Review, vol. 51, no. 1, pp. 

5–14, 2017.  

[15]  M. Sone, " Physical Layer Security for Wireless Networks 

Based on Coset Convolutional Coding ", IJCNIS, vol. 12, no. 

1, pp. 95-100, 2020. 

[16] https://www.xilinx.com/products/design-tools/ise-design-

suite.html Last Access Date 11/15/2020 

https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html

