
 256
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

Symmetric Encryption Algorithms: Review and

Evaluation study

Mohammed N. Alenezi 1, Haneen Alabdulrazzaq1, and Nada Q. Mohammad1

1Computer Science & Information Systems Department, Public Authority for Applied Education & Training, Kuwait

Abstract: The increased exchange of data over the Internet in the
past two decades has brought data security and confidentiality to the
fore front. Information security can be achieved by implementing
encryption and decryption algorithms to ensure data remains secure
and confidential, especially when transmitted over an insecure
communication channel. Encryption is the method of coding
information to prevent unauthorized access and ensure data
integrity and confidentiality, whereas the reverse process is known
as decryption. All encryption algorithms aim to secure data;
however, their performance varies according to several factors such
as file size, type, complexity, and platform used. Furthermore,
while some encryption algorithms outperform others, they have
been proven to be vulnerable to specific attacks. In this paper, we
present a general overview of common encryption algorithms and
explain their inner workings. Additionally, we select ten different
symmetric encryption algorithms and conduct a simulation in Java
to test their performance. The algorithms we compare are AES,
BlowFish, RC2, RC4, RC6, DES, DESede, SEED, XTEA, and
IDEA. We present the results of our simulation in terms of
encryption speed, throughput, and CPU utilization rate for various
file sizes ranging from 1MB to 1GB. We further analyze our results
for all measures that have been tested, taking into account the level
of security they provide.

 Keywords: Information security, Encryption, Decryption,
Cryptography, Symmetric, Block-Cipher, Hashing.

1. Introduction

With the increased usage of data exchange and

communication through the Internet, it becomes crucial to

secure data from cyber-attacks. Nowadays, providing data

confidentiality and privacy has presented a significant

challenge for researchers and professionals in the realm of

cybersecurity. Data confidentiality means protecting data

against unauthorized access or theft. It can be achieved with

the help of cryptography through data encryption and

decryption. The aim of cryptography is to secure critical data

or documents on a hard disk, or when it is transferred

through an insecure communication channel.

Data encryption is the art of securing messages by converting

them to hidden texts, whereas the inverse process of

retrieving original texts from hidden texts is called

decryption. Encryption/decryption is made possible with the

help of some keys. Every encryption algorithm aims to make

the decryption process as difficult as possible without the

help of the key used in encryption. Figure 1 shows the

general idea of encryption and decryption. There are three

types of cryptographic techniques: symmetric key,

asymmetric key, and hashing shown in figure 2.

Figure1. General Idea of Encryption and Decryption

Figure2. Basic Classification of Cryptography

In the symmetric key technique, both Encryption and

decryption are done based on a single key called a private

key. It is also referred to as a secret key. A secure channel is

required for sharing this private key between the sender and

receiver. Symmetric key cryptographic algorithms are divided

into two types based on the input data: block ciphers and

stream ciphers. In block cipher-based systems, data is being

processed or encrypted on a fixed-length group of bits called

a block, whereas in stream cipher-based systems, data is

being processed on a stream of bits. Figure 3 illustrates the

process of Symmetric Encryption.

Figure3. Symmetric Encryption

Cipher Text

65aljf54

Receiver Sender

 257
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

Asymmetric key cryptographic systems require two keys, one

is kept secret, and the other is a public key. Encryption is

accomplished with the use of a public key, whereas the secret

key is used to decrypt the encrypted text. Both of these keys

are mathematically related. Although asymmetric systems

provide a higher level of security, they might not be well

suited for large sized documents. This is because the speed

is slow compared with symmetric key-based systems and

they also record a higher rate of CPU utilization. Figure 4

illustrates the process of Asymmetric Encryption.

Figure 4. Asymmetric Encryption

The third type of cryptographic algorithms is hashing. In

hashing, an input message is mapped into a compact fixed-

size bit string called a hash. Hash functions are one-way

functions which are mathematical algorithms that map the

input message of arbitrary size into a fixed-size hash or

message digest. Figure 5 presents the general concept of the

hash function. Hash functions are mainly used for password

storage and data integrity check. The most widely used hash

functions are:

Figure 5. Hash function general concept

• Secure Hashing Algorithm(SHA)

• RACE Integrity Primitives Evaluation Message Digest

 (RIPEMD)

• Message Digest Algorithm (MD)

• Whirlpool

Digital signatures are mathematical techniques or algorithms

that are used to validate the authenticity and integrity of

information or messages such as an email, a credit card

transaction, or a digital document. It acts like an electronic

fingerprint to uniquely identify users and to protect user

data. Using a digital signature ensures that a message or

document was not modified from the time it was signed. It is

done by applying hashing to the document or message and

then encrypting the document with the sender’s secret key.

Digital signatures use Public Key Infrastructure (PKI) to

strengthen security. PKI represents the policies and standards

which support the distribution of public keys and the identity

validation of individuals or entities with digital certificates.

The remainder of this paper is organized as follows:

Section 2 shows the related work conducted by various

researchers in comparing different encryption algorithms.

Section 3 presents an overview of the inner workings of

common encryption algorithms. Our performance and

analysis are described in Section 4. Finally, the conclusion

is presented in Section 5, where we summarize our

findings.

2. Related Work

There is a variety of encryption algorithms available to

provide privacy of data and confidentiality. Any encryption

algorithm will secure data; however, choosing an appropriate

algorithm depends on several factors such as performance

measures, system specifications, complexity, and the level of

security provided. Several researchers have evaluated the

performance of various encryption algorithms using different

parameters. In this section, we discuss some of the work

found in the literature.

Abood and Guirguis [1] made a comparative study of

currently available encryption algorithms like AES, DES,

TDES, DSA, RSA, ECC, EEE, and CR4 based on their

performance in security, key size, complexity and time.

Based on this study, AES, BlowFish, RC4, E-DES, and

TDES are the fastest algorithms in terms of encryption, time,

speed and flexibility. They concluded AES is the most

reliable algorithm in terms of speed of Encryption, decoding

complexity, key length, security, as well as flexibility.

Riman and Abi-Char [2] have analyzed the performance of

four block cipher algorithms such as AES, DES, 3DES, and

E- DES based on speed, block size, and key size. They

concluded that E-DES outperforms all the other three models

based on the input files and experimental results. It

encrypts/decrypts the data faster than the other algorithms

that were tested. In comparison to DES, E-DES showed an

improvement in two areas; more straightforward

implementation and more significant key and input blocks to

provide security.

Dixit et al. [3] explained the various available encryption and

decryption methods and compared them in terms of

development, number of rounds, key length, block size,

attacks found, level of security, possible keys, time required

to check all possible keys, etc. They have made a comparison

between traditional as well as hybrid encryption techniques

such as DSA-RSA, AES-RC4, RC4-AES-SERPENT,

SERPENT-RC4, and AES-ECC. They concluded that AES-

ECC reduced time and space complexity and DSA-RSA

hybrid algorithm had better performance and throughput.

Bhanot and Hans [4] compared and analyzed different data

encryption algorithms in both symmetric and asymmetric

categories, to find the best performing algorithm. They

compared the algorithms based on development, key length,

number of rounds needed for encryption and decryption,

block size, various types of attacks found, level of security,

and encryption speed. In their study, they observed that the

strength of each algorithm could be determined by key

management, type of cryptography, number of keys, number

of bits used in a key, etc. They have concluded that BlowFish

and ECC had better performance results. They also stated

that there was no successful attack reported on BlowFish at

the time, whereas ECC has been successfully attacked.

Wahid et al. [5] performed an analysis of various encryption

algorithms such as DES, 3DES, AES, RSA, and BlowFish,

based on their performance, weaknesses, and strengths. In

Cipher Text

My Secret

65aljf54

Receiver Sender

 258
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

their study, they concluded that BlowFish is better in terms

of memory usage, time, and mitigation of attacks. However,

if confidentiality and integrity are the main concerns, then

AES becomes the better choice.

Kaur and Mahajan [6] have conducted a comparison of

symmetric key algorithms on both a local system and a cloud

system. For the two systems, they implemented four

symmetric key algorithms: AES, DES, BlowFish, and

DESede. The local implementation was done using Java on

eclipse and the cloud implementation used eclipse-SDK and

Google App Engine. Their evaluation used input lengths of

10KB, 13KB, 39 KB, and 56 KB. They found that the speed-

up ratio of DES and BlowFish reflected a small change with

an increase in input size, whereas, for AES, it decreases.

They noted that DESede was more time consuming and

BlowFish was the lowest in terms of time consumption.

Their conclusion states that performance-wise, BlowFish,

AES, and DES are the better algorithms and AES

demonstrated high security with the least time consumption.

Hendi et al. [7] devised a light weight cryptosystem referred

to as Simple and Highly Secure Encryption Decryption

algorithm (SHSED) for data storage on cloud computing.

Their system is based on the IDEA encryption algorithm and

its performance was compared against AES, DES, and LED.

The proposed algorithm performed better than AES and

LED, however, its performance was slightly slower than

DES.

Tyagi and Ganpati [8] conducted a theoretical study of four

popular symmetric algorithms, such as DES, 3DES, AES,

and BlowFish. They compared these algorithms based on

various factors like speed, block size, security against

attacks, confidentiality, throughput, power consumption, key

size, etc. Based on their study, BlowFish had better

performance when considering encryption time, decryption

time, and throughput. They also concluded that 3DES was

the lowest in terms of performance.

Princy [9] analyzed various symmetric key algorithms such

as AES, DES, 3DES, BlowFish, RC4, and RC6 with regards

to security, performance, processing time, and number of

rounds. The results showed that BlowFish delivered more

privacy and security in data transmission over an unsafe

channel when increasing its key size from 128 to 448.

Mathur and Kesarwani [10] made a comparison of

performance between DES, 3DES, AES, RC2, RC6, and

BlowFish. They evaluated the performance of these

algorithms based on key length, encoding method, data type,

and packet size. They found that the encoding methods do

not influence the encryption or decryption processes of these

algorithms. BlowFish outperformed all the other algorithms

when the packet size was changed. Moreover, they showed

that RC2 had low performance and throughput in comparison

to the other algorithms. RC2, RC6, and BlowFish faced a

significant disadvantage over the other algorithms when the

data type of input changed from text to image. They also

concluded that higher key length would influence both power

and time consumption.

Nema and Rizvi [11] analyzed DES, 3DES, AES, BlowFish,

Twofish, Threefish, RC2, RC4, RC5, and RC6 based on

throughput, scalability, security, memory usage, power

consumption, speed, and flexibility. Their results show that

BlowFish was the most efficient algorithm in terms of

security, flexibility, memory usage, as well as performance.

Marwaha et al. [12] analyzed DES, Triple DES, and RSA

based on level of security, time taken for

encryption/decryption, and throughput. The performance of

the algorithms varies with different input sizes. They

summarized that the speed and throughput of DES are better

than that of 3DES. Moreover, DES showed less power than

3DES and RSA. 3DES provided more confidentiality and

scalability overall, but in comparison to DES and RSA; it

consumed more power with less throughput.

Nadeem and Javed [13] implemented and compared DES,

3DES, AES, and BlowFish using Java and evaluated their

performance based on varying input types and sizes,

execution speeds, and different hardware platforms. Based on

their comparison, BlowFish had better performance than the

rest. They ranked these algorithms based on execution time:

BlowFish (fastest), DES, AES, Triple DES (slowest). The

execution speed of the block cipher based algorithms

increased when increasing the size of blocks and decreasing

the size of the key. However, in stream cipher algorithms,

speed decreases when increasing the block size. They also

concluded that the security provided by an algorithm

increases with the number of encryption rounds, although it

slowed down the speed of an algorithm.

 Sun [14] presented a recent survey on most privacy

protection techniques proposed in the literature for cloud

systems. The work organizes different techniques available

in the literature for cloud systems. The survey found several

techniques that fall under Attribute-based Encryption (ABE),

Key Policy Attribute-based Encryption (KP-ABE), (KP-

ABE), Ciphertext Policy Attribute-based Encryption (CP-

ABE) and many other techniques. The survey highlights

current challenges related to several proposed protection

technologies for the cloud. The main challenges listed are:

Trust, Access Control, and Encryption. Therefore, encryption

for cloud-based systems remains as a current challenge for

researchers.

3. Common Encryption Algorithms

There are many encryption methods being used in

cryptography. In this section, we detail some common

encryption algorithms based on both stream and block

ciphers as well as explain the different modes of block

cipher-based encryption.

3.1 Caesar

Caesar cipher [15], [16] is one of the most straightforward

symmetric block cipher encryption schemes; therefore, it is

easy to break. The Roman ruler Julius Caesar created and

used this encryption scheme to send military orders to his

legions. It is a substitution cipher where encryption and

decryption keys are the same. The keys used in this scheme

are integers and the most commonly used integer, is 3. In this

encryption technique, each alphabet is shifted right or left by

a key-value, as shown in figure 6 (with key=3).

 259
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

Figure 6. Shifting method in Caesar Encryption

3.2 Data Encryption Standard(DES)

DES [16], [17] is one of the basic symmetric key block

cipher algorithms which takes plain texts as blocks each one

carrying 64 bits and converts ciphertexts using keys of 64

bits. Out of these 64 bits, 8 bits of the key are used for odd

parity which will not count in key length. Therefore there

exist 256
 possible ways to find the correct key. The DES

algorithm performs two permutations (initial permutation and

final permutation) and 16 processing steps, each of which is

called a round, and for each round, a different key is used.

DES is based on two cryptographic operations: substitution

and transposition. In each round of DES, some substitutions

and transpositions are performed. Before starting the first

round, an initial permutation is applied to the plain text. For

example, an initial permutation replaces the first bit of the

plain text with the 58th bit, and the second with the 50th bit,

and so on. The resultant permuted block is divided into two

halves, both having 32 bits and each one is going through

16 rounds of encryption processes. The final permutation is

applied to the combined block to get the ciphertext. DES has

been reported vulnerable and as such was replaced with

3DES [18]. The overall working of DES is explained in

figure 7 [16], [17]. There are three modes of operation for

DES. They are ECB, CBC, and CFB. We explain these

modes in detail in Section 3.14.

3.3 Triple Data Encryption Standard(3DES)

Triple-DES [19] is a block cipher encryption algorithm. As

its name indicates, 3DES applies DES three times to each

data block to enhance the security of the encrypted data.

Since the security of 3DES is three times better than that of

DES, it is now considered more preferable than DES.

However, it does consume a considerable amount of time in

comparison with its predecessor.

3DES works in the same way as DES, in a loop with length

3. Initially, the original plain text is encrypted with one key,

the resulting ciphertext is again encrypted using another

key, and finally, it is performed again with a third key. The

four modes of operation for Triple DES are shown in table 1.

Figure7. The process of DES Algorithm

3.4 Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) [16], [20] is a block

cipher algorithm that came as a replacement for DES and

Triple DES. It encrypts and decrypts a 128-bit block of

data. Based on the choice of key size, 128 bits, 196 bits, or

256 bits, AES can take 10, 12, or 14 rounds for encryption.

Each round consists of four operations: substitute bytes, shift

keys, mix column and add round key. However, mix column

operation is not performed in the last round. Separate round

keys generated from the given cipher key are used in each

round of encryption. Data to be encrypted is divided into

blocks. Each block is represented as an array of data which is

known as a state array. AES is not vulnerable like DES

and is also known to provide a good level of security [18].

The encryption process of AES is shown in figure 8 [16],

[20].

 260
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

Figure 8. Encryption Process of AES

3.5 BlowFish

BlowFish is a block cipher-based encryption algorithm

whose key length varies from 32-bits to 448-bits. Each block

handles 64-bits of data [16], [21]. BlowFish encrypts the data

through 16 rounds of operations. At each round, data under-

goes a key-dependent permutation in P-block and

substitution in S-block. Each S-block carries 32-bits of data.

Figure 9 shows the BlowFish function F, which splits 32-bit

data into four quarters; each carrying 8-bits [16], [21]. These

quarters would be the inputs for the S-block. In S-blocks,

XOR and Modulo 232
 operations are performed to get the

final encrypted data. The reverse process is done to decrypt

the data.

Figure 9. BlowFish function F

3.6 Twofish

Twofish [16], [20], [21] is also a block cipher based

symmetric encryption system that works in a similar manner

to BlowFish. Unlike BlowFish however, Twofish is

considered to be flexible. Twofish allows users to customize

encryption speed, key setup time, code size and works fast in

an 8-bit CPU as well as in smart cards, embedded chips, etc.

It is freely available to use as it is un-patented, license-free

software. Twofish encrypts the documents of 128-bit block

size with key sizes of 128, 198, or 256 bits in 16 rounds of

encryption. The building blocks of Twofish are shown in

figure 10 [21].

Figure 10. The building blocks of Twofish

The actual processing of each round of Twofish starts and

ends with pre-whitening and post-whitening (meaning text

blocks are XORed with additional subkeys), respectively.

Two 32-bit words are given as input to function F, which is

split into four bytes and sent to four different key-dependent

S- blocks. The outputs of these four S-blocks are combined

with the help of a Maximum Distance Separable (MDS)

matrix to form a 32-bit word. Then these two 32-bit words

are combined by using a Pseudo Hadamard Transform

(PHT), two round subkeys are added, and then the right half

of the text is XORed with it. Before and after the XOR

operation, a 1-bit rotation is performed. After repeating

these rounds 16 times, the last swap is reversed, and an XOR

operation is performed between four keywords with another

four keywords to get the final encrypted text.

3.7 Threefish

Threefish [16], [17], [21] is a tweak-able block cipher based

encryption standard that takes three inputs: a key, a tweak,

and plain text, to be encrypted. Threefish uses the same

length key as the data block size for encrypting a block of

data. This encryption method is used for data blocks of size

256, 512, and 1024 bits. Threefish scheme produces

encrypted data by repeating the same sequence of operations

72 times (or rounds) except for 1024-bit block of data, which

takes 80 rounds. A 128-bit tweak value is used for all of

these data block sizes. Operations of Threefish encryption

standards are of three types: addition, XOR, and rotations.

Threefish is also free to users since it is an unpatented and

license-free encryption standard. Figure 11 shows in detail

how each round of Threefish-256 works [22].

 261
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

 Figure 11. One round of Threefish-256

3.8 International Data Encryption Algorithm (IDEA)

IDEA [23] is a block cipher encryption algorithm that

processes 64-bit data blocks with the help of a 128-bit key.

This 64-bit data block is divided into four equal sub-blocks,

each of size 16 bits. Each of these sub-blocks undergoes

eight rounds of repeated sequences of operations and one

output transformation phase. For each round of operation,

this system needs six unique keys, which are all generated

from the 128- bit original key. The output of each round is

given as the input to the next round except in the eighth

round. The output of the eighth round is given to the output

transformation phase, which performs only arithmetic

operations, and it needs four keys. The output transformation

phase produces the final cipher key. The entire process of

encryption needs 52 keys. The process of IDEA is depicted

in figure 12 [23].

Figure 12. The Process of IDEA Encryption Algorithm

3.9 Rivest Cipher 2(RC2)

RC2 [16], [24] is a symmetric block cipher, also known as

ARC2. It handles data blocks of 8 bytes (64-bits), and each

data block is divided into four words each of size 2 bytes

(16- bits), represented as R[0], R[1], R[2], R[3]. The entire

process of encryption and decryption is done on this array as

input and output are also stored in the same array. RC2 uses a

key of variable length - from a byte to 128-bytes. After

accepting a key value to RC2, it expands this key value to

get new 128 key bytes to use in both encryption and

decryption. RC2 also accepts another value as input, called

key bit limit, to identify maximum adequate key size,

represented in bits. RC2 has a heterogeneous round structure

with two mashing rounds and 16 mixing rounds. RC2 is

mainly based on four operations: AND, NOT, XOR, and

modular addition.

Every 64-bit data block is encrypted using 64 words of the

expanded key. Each mixing or mashing operation consists of

4 mixing or four mashing operations, respectively.

3.10 Rivest Cipher 4(RC4)

RC4 [16], [24] is a symmetric stream cipher algorithm in

which each character is encrypted one at a time, commonly

used in wireless routers. The key length of RC4 varies

from 40 to 2048-bits. To get a more robust encrypted text,

16-byte keys are preferred. Data blocks are XORed with

keystream bytes one by one to encrypt the data. The working

of RC4 is mainly relayed on the creation of keystream bytes,

which is entirely independent of plain text.

The overall working of encryption using RC4 is depicted in

figure 13 [16]. An S-block of size 8*8 (whose entries are

permutations of numbers from 0 to 255) and a state table

of 256 bytes long (initialized with variable length key from 1

to 256 bytes) are generated as an initial step of RC4. This

state table is used for the creation of pseudo-random bytes

and pseudo-random stream. The plaintext is XORed with this

generated pseudo-random stream to get ciphertext.

Figure 13. RC4 Encryption Algorithm

 262
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

The entire working of RC4 is done in 2 phases: keystream

generation and actual encryption. The encryption key is

generated by using state array and key. It performs several

mixing operations, and each consists of swapping and

modulo operations.

3.11 Rivest Cipher 5 (RC5)

RC5 [24] is also a symmetric key block cipher. It encrypts

the data as block sizes of 32, 64, or 128 bits, but the more

suitable size is 64 bits. The key length of RC5 ranges from

0 to 2040 bits, 128 bits is the most suggested one. RC5 can

be implemented in both software and hardware since it

performs only simple operations that can be performed by a

microprocessor. The entire process of RC5 is depicted in

figure 14 [24].

It uses two 32 bit registers A and B to store plain as well as

ciphertexts; initialized with plaintext and after encryption, it

is replaced with the ciphertext. It can take any rounds 1-255

to perform encryption (usually, it takes 12 rounds).

 Figure 14. RC5 Encryption Algorithm

3.12 Rivest Cipher 6(RC6)

RC6 [24] is a block cipher similar to RC5, which uses all

operations that RC5 uses in addition to multiplication. It

performs encryption in 20 rounds of subsequent operations.

RC5 and RC6 are parameterized algorithms. RC6 is

represented as RC6w/r/b; where w is word size in bits, r is

the number of rounds to complete the encryption process,

and b i s the size of the encryption key in bytes. The basic

operations of RC6 are addition, subtraction, XOR,

multiplication, left rotation, and right rotation.

In comparison with other algorithms, the variants in the

family of RC encryption algorithms were proven to be

vulnerable against certain types of attacks.

3.13 Rivest-Shamir-Adleman Algorithm(RSA)

RSA is a widely used asymmetric or public key- based

cryptosystem. RSA is considered to be one of the secure

encryption algorithms used [18]. It encrypts the data in

one particular round. It is a block cipher that uses two

different keys for encryption and decryption. The security

of RSA depends on the factoring problem, which is the

practical difficulty in factoring the product of two prime

numbers. Anyone with good knowledge of prime numbers

is able to decrypt the data. RSA algorithm creates both

private and public keys as follows. Let the two prime

numbers be p and q; it calculates n as the product of p and

q and ψ (n) = (p – 1) (q – 1). Then the algorithm chooses

e as 1 < e < ψ(n)), where e and n are co-prime. Once e is

selected, the algorithm calculates a value for d as (d  e)

%ψ (n) = 1. The resultant private key is (d, n), and the

public key is (e, n). Encryption and decryption are done

using equations 1 and 2, respectively.

𝐶 = 𝑀ℯ(𝑚𝑜𝑑 𝑛) (1)

𝑀 = 𝐶𝑑(𝑚𝑜𝑑 𝑛) (2)

3.14 Modes of Block Cipher based Encryption

When the same key is used for encrypting multiple blocks of

data, intruders can easily break the message. To overcome

this issue, we need to avoid creating an identical ciphertext

block from the identical plain text by giving an additional

input to each block of encryption, which is the mixture of

plain text and ciphertext from the previous block. This idea

is called block cipher modes of operation [25]–[27]. Multiple

encryption modes are used when we are encrypting a large

stream of data using block cipher based methods without

affecting its security. Each mode has its pros and cons. The

encryption modes widely used are: Electronic Code Book

(ECB), Cipher Block Chaining (CBC), Propagating or

Plaintext Cipher Block Chaining (PCBC), Cipher Feedback

(CFB), Output Feedback (OFB) and Counter (CTR).

1) ECB: In ECB [28], each block is encrypted and

decrypted separately, as shown in figure 15.

Figure 15. Encryption and Decryption in ECB mode

2) CBC: In CBC mode [25], each plaintext block is

XORed with a previously created ciphertext block. Due to

this chaining, each ciphertext block depends on its previous

block. The first block is XORed with a random initialization

vector that has the same length as the plaintext block. Figure

16 explains encryption and decryption using CBC mode. In

this mode, we cannot recover the plain text from ciphertext if

a single-bit transmission error in plaintext occurs. However,

if a single bit error occurred in ciphertext, it will not affect

the entire text; it will damage only two plaintext blocks.

 263
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

Figure 16. Encryption and Decryption in CBC mode

3) PCBC: PCBC [29] is similar to CBC mode. It mixes

plaintext and ciphertext blocks of the previous block with the

plaintext of the current block. Here, a single-bit transmission

error will affect the entire decryption, and the plaintext

cannot be recovered. The way PCBC mode works is shown

in figure 17.

Figure 17. Encryption and Decryption in PCBC mode

4) CFB: In CFB mode [30], the ciphertext data from the

previous block is encrypted first and then added to the

plaintext of the current block. It uses the same encryption

procedure for both encryption and decryption depicted in

figure 18. A single-bit transmission error in plaintext block

will damage all the subsequent ciphertexts, but single-bit

errors in ciphertexts affect only two subsequent blocks.

Figure 18. Encryption and Decryption in CFB mode

5) OFB: OFB mode [31] is similar to the way stream

cipher works. The ciphers in OFB mode create keystream

bytes to encrypt subsequent blocks. A single-bit transmission

error in this mode will damage the corresponding plain or

ciphertext bit only. Figure 19 shows the encryption and

decryption in OFB mode.

Figure 19. Encryption and Decryption in OFB mode

6) CTR: CTR [32] works in a similar manner to a stream

cipher. It uses additional input for encrypting the plaintext;

this additional input is created by adding an increasing

counter with a nonce value (means number used once).

Figure 20 shows encryption and decryption in CTR mode.

Figure 20. Encryption and Decryption in CTR mode

4. Performance and Analysis

4.1 Simulation and System Setup

In order to evaluate and compare the performance of the

presented encryption algorithms, a simulation in Java

programming language is created. Java by default offers Java

Cryptography Extension (JCE) [33] to support encryption.

However, not all the encryption algorithms are available

within JCE. To facilitate testing other encryption algorithms

not included in JCE, we incorporated the use of Bouncy

Castle [34] which offers a wide range of encryption

algorithms. The algorithms tested in our simulation are

AES, BlowFish, RC2, RC4, RC6, DES, DESede, SEED,

XTEA, and IDEA. The block cipher mode selected in our

simulation is Cipher Block Chaining (CBC). In this

simulation, the speed of encryption (execution time) and the

throughput are evaluated with respect to different file sizes.

The sizes tested are 1MB, 10MB, 100MB, 500MB and 1GB.

 264
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

Furthermore, the percentage of CPU usage is calculated for

each encryption algorithm. Encryption time is considered to

be an essential metric in evaluating any encryption

algorithm. Based on [35], the throughput can be calculated

using equation 3.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑐

𝑡
 (3)

where c represents the total encrypted plaintext in bytes and t

represents the encryption time. The input parameters are

standardized for all encryption algorithms to ensure fairness

in the conducted comparison. To reduce the variance in the

results, we have adopted using an average of 10 runs for each

algorithm’s results. Table 2 shows the parameters of the

system that were used in the simulation.

4.2 Results and Discussion

The performance measures that were tested in our simulation

are: execution time, throughput, and CPU utilization, for the

encryption algorithms listed in section 4.1. Table 3 shows the

results of execution time and throughput. The results of CPU

utilization rate are presented in table 4. Figures 21 to 25

illustrate the encryption time, throughput, and CPU usage for

the encryption algorithms under consideration at different

input sizes 1GB, 500MB, 100MB, 10MB, and 1MB,

respectively.

The simulation results for encryption time in table 3 reflect

the speed of the encryption algorithms that were tested. The

algorithm that takes the least amount of time to encrypt a plain

text file is considered the fastest. The results for execution

time illustrated in figures 21(a) to 25(a) show that the RC4,

RC6, and AES are the fastest algorithms to produce

encrypted data. RC4 and RC6 have previously been known

to be vulnerable to attacks, while AES has withheld its level

of security, as it has been approved by the US National

Institute of Standards and Technology (US-NIST).

Therefore, to ensure security of encrypted data, AES seems

to be the better choice. DESede was the slowest in terms of

execution time; however, it does perform DES encryption

thrice. Therefore, if time is not a concern, it can be a suitable

candidate to consider for highly confidential data. All

encryption algorithms that were tested demonstrated a

proportional increase in execution time when linked with the

increase in the file sizes being tested.

An increase in throughput indicates less power consumption

by an encryption algorithm. The results for throughput are

illustrated in figures 21(b) to 25(b). The encryption

algorithms, arranged in decreasing order of throughput value

are: RC4, RC6, AES, BlowFish, SEED, DES, IDEA,

XTEA, RC2, and DESede. It should be emphasized that

choosing an appropriate encryption algorithm takes many

factors into account. Weighing the factors against each other

can help in choosing an adequate algorithm. Since RC4 and

RC6 algorithms have been compromised before; AES would

be a better fit when taking into account all the factors being

considered.

The percentage of CPU utilization of the encryption

algorithms for the different file sizes tested are shown in

figures 21(c) to 25(c). For the most part, all the values are

comparable, with minimal variances detected. However,

distinct differences are found in CPU utilization for file size

1GB. The CPU utilization rates of all the tested algorithms, at

different file sizes, are listed in table 4. The CPU utilization

rate is closely coupled with the system specifications and

setup at hand. The same algorithms being tested might

produce different results on other systems than the results

observed here.

To summarize our findings, RC4, RC6, and AES algorithms,

have produced better results compared with their

counterparts. However, these results should not be taken at

face value. There are many factors that come into play when

choosing an appropriate encryption algorithm to implement.

One such factor is the level of security needed for the data.

Highly classified or confidential data require a higher level of

security to be implemented and therefore a more complex

encryption algorithm might be favorable despite the

execution time it takes. Another factor to consider is whether

the encryption will take place at the file level or the

application level. The performance of an encryption

algorithm at the application level will produce larger

overhead in terms of performance. Therefore, choosing an

encryption algorithm based on the system setup and

specifications at hand become vital. Applications that are

executed in real-time might favor encryption speed over

complexity. Furthermore, some encryption algorithms have

been considered vulnerable against different types of attacks,

therefore, striking a balance between the factors being

considered when selecting an encryption algorithm for

implementation, becomes essential.

5. Conclusion

Encryption algorithms play a pivotal role in providing

security in today’s digital exchange of data. There are

various ways to compare encryption algorithms and

demonstrate both their strengths and weaknesses. In order to

choose an appropriate encryption algorithm, users can

consider different factors such as speed, throughput,

complexity, CPU utilization, security level, etc. In this paper,

we provided an overview of several encryption algorithms

detailing the inner workings of each one. Furthermore, we

compared and analyzed the results produced by ten

encryption algorithms: AES, BlowFish, DES, DESede,

SEED, IDEA, RC2, RC4, RC6, SEED, and XTEA in terms

of encryption time, throughput, and CPU utilization.

Simulation of these algorithms was performed at different

plaintext file sizes such as 1GB, 500MB, 100MB, 10MB, and

1MB. From our results, we observed that RC4, RC6 and AES

have produced the best results in terms of encryption time

and throughput. We have determined that AES is the better

candidate for its performance as well as the level of security

it provides. Our results are reflected only for the chosen

parameters in our experimental setup. It should be noted,

when selecting an appropriate encryption algorithm, factors

other than performance measures must be considered. A

good encryption algorithm provides a balance between the

reported performance measures, the required level of

security, and the nature of the data or application being

encrypted.

References

[1] O. G. Abood and S. K. Guirguis, “A survey on

cryptography algorithms,” International Journal of

Scientific and Research Publications, vol. 8, no. 7, pp.

 265
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

410–415, 2018.

[2] C. Riman and P. E. Abi-Char, “Comparative analysis

of block cipher-based encryption algorithms: A

survey,” Information Security and Computer Fraud,

vol. 3, no. 1, pp. 1–7, 2015.

[3] P. Dixit, A. K. Gupta, M. C. Trivedi, and V. K. Yadav,

“Traditional and hybrid encryption techniques: a

survey,” in Networking Communication and Data

Knowledge Engineering. Springer, 2018, pp. 239–248.

[4] R. Bhanot and R. Hans, “A review and comparative

analysis of various encryption algorithms,”

International Journal of Security and Its Applications,

vol. 9, no. 4, pp. 289–306, 2015.

[5] M. N. A. Wahid, A. Ali, B. Esparham, and M. Marwan,

“A comparison of cryptographic algorithms: Des, 3des,

aes, rsa and BlowFish for guessing attacks

prevention,” J Comp Sci Appl Inform Technol, vol. 3,

no. 2, pp. 1–7, 2018.

[6] G. Kaur and M. Mahajan, “Evaluation and comparison

of symmetric key algorithms,” International Journal of

Science, Engineering and Technology Research

(IJSETR), vol. 2, no. 10, pp. 1960–1962, 2013.

[7] A. Y. Hendi, M. O. Dwairi, Z. A. Al-Qadi, and M. S.

Soliman, “A novel simple and highly secure method

for data encryption-decryption,” International

Journal of Communication Networks and Information

Security, vol. 11, no. 1, pp. 232–238, 2019.

[8] N. Tyagi and A. Ganpati, “Comparative analysis of

symmetric key encryption algorithms,” International

Journal of Advanced Research in Computer Science

and Software Engineering, vol. 4, no. 8, pp. 63–70,

2014.

[9] P. Princy, “A comparison of symmetric key algorithms

des, aes, BlowFish, rc4, rc6: A survey,” International

Journal of Computer Science & Engineering

Technology (IJCSET), vol. 6, no. 5, pp. 328–331,

2015.

[10] M. Mathur and A. Kesarwani, “Comparison between

des, 3des, rc2, rc6, BlowFish and aes,” in Proceedings

of National Conference on New Horizons in IT-

NCNHIT, vol. 3, 2013, pp. 143–148.

[11] P. Nema and M.A.Rizvi, “Critical analysis of various

symmetric key cryptographic algorithms,”

International Journal on Recent and Innovation Trends

in Computing and Communication, vol. 3, no. 6, pp.

4301–4306, June 2015.

[12] M. Marwaha, R. K. Bedi, A. Singh, and T. Singh,

“Comparative analysis of cryptographic algorithms,”

International Journal of Advanced Engineering

Technology, pp. 16–18, 09 2013.

[13] A. Nadeem and M. Y. Javed, “A performance

comparison of data encryption algorithms,”

International Conference on Information and

Communication Technologies, pp. 84–89, 2005.

[14] P. J. Sun, “Privacy protection and data security in cloud

computing: a survey, challenges, and solutions,” IEEE

Access, vol. 7, pp. 147 420–147 452, 2019.

[15] F. Zhang, Z.-y. Liang, B.-l. Yang, X.-j. Zhao, S.-z.

Guo, and K. Ren, “Survey of design and security

evaluation of authenticated encryption algorithms in

the caesar competition,” Frontiers of Information

Technology & Electronic Engineering, vol. 19, no. 12,

pp. 1475–1499, 2018.

[16] W. Stallings, “The principles and practice of

cryptography and network security 7th edition, isbn-

10: 0134444280,” Pearson Education, vol. 20, no. 1,

p. 7, 2017.

[17] W. Tuchman, A Brief History of the Data Encryption

Standard. USA: ACM Press/Addison-Wesley

Publishing Co., 1997, Ch. 16, pp. 275–280.

[18] N. Advani, C. Rathod, and A. M. Gonsai,

“Comparative study of various cryptographic

algorithms used for text, image, and video,” in

Emerging Trends in Expert Applications and Security.

Springer, 2019, pp. 393–399.

[19] R. P. Adhie, Y. Hutama, A. S. Ahmar, M. Setiawan et

al., “Implementation cryptography data encryption

standard (des) and triple data encryption standard

(3des) method in communication system based near

field communication (nfc),” in Journal of Physics:

Conference Series, vol. 954, no. 1. IOP Publishing,

2018, p. 012009.

[20] J. Katz and Y. Lindell, Introduction to Modern

Cryptography, ser. Chapman & Hall/CRC

Cryptography and Network Security Series. CRC

Press, 2014. [Online]. Available: Link.

[21] B. Schneier, “The BlowFish encryption algorithm,”

Link, 2008, [Online; Accessed 1 July 2020].

[Online]. Available: Link.

[22] N. At, J.-L. Beuchat, and I. San, “Compact

implementation of threefish and skein on fpga,” in

2012 5th International Conference on New

Technologies, Mobility and Security (NTMS). IEEE,

2012, pp. 1–5.

[23] S. Basu, “International data encryption algorithm

(idea)– a typical illustration,” Journal of global

research in Computer Science, vol. 2, no. 7, pp.

116–118, 2011.

[24] S. Charbathia and S. Sharma, “A comparative study

of rivest cipher algorithms,” International Journal of

Information & Computation Technology. ISSN, vol. 4,

pp. 0974–2239, 2014.

[25] M. Dworkin, “Recommendation for block cipher

modes of operation. methods and techniques,”

National Inst of Standards and Technology

Gaithersburg MD Computer security Div, Tech. Rep.,

2010, [Online; accessed 27 June 2020]. [Online].

Available: Link.

[26] P. Rogaway, “Evaluation of some blockcipher modes

of operation,” Cryptography Research and Evaluation

Committees (CRYPTREC) for the Government of

Japan, 2011, [Online; accessed 27 June 2020].

[Online]. Available: Link.

[27] A. J. Malozemoff, J. Katz, and M. D. Green,

“Automated analysis and synthesis of block-cipher

modes of operation,” in 2014 IEEE 27th Computer

Security Foundations Symposium. IEEE, 2014, pp.

140–152.

[28] W. Stallings, “Nist block cipher modes of operation

for confidentiality,” Cryptologia, vol. 34, no. 2, pp.

163–175, 2010.

[29] C. J. Mitchell, “Cryptanalysis of two variants of

pcbc mode when used for message integrity,” in

Australasian Conference on Information Security and

https://books.google.com.kw/books?id=-iDcBQAAQBAJ
https://www.schneier.com/academic/blowfish/
https://www.schneier.com/academic/blowfish/
https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf

 266
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

Privacy. Springer, 2005, pp. 560–571.

[30] T. Syben, “Introduction to block cipher,” Link, April

2011, [Online; accessed 30 June 2020].[Online].

Available: Link.

[31] S. Almuhammadi and I. Al-Hejri, “A comparative

analysis of aes common modes of operation,” in 2017

IEEE 30th Canadian conference on electrical and

computer engineering (CCECE). IEEE, 2017, pp. 1–4.

[32] D. Bujari and E. Aribas, “Comparative analysis of

block cipher modes of operation,” in International

Advanced Researches & Engineering Congress, 2017,

pp. 1–4.

[33] Java, “Cryptography extension (jce),” Link, [Online;

accessed 30 June 2020]. [Online]. Available: Link

[34] BouncyCastle, “The legion of the bouncy castle,”

Link, 2014, [Online; accessed 30 June 2020]. [Online].

Available: Link.

[35] A. A. Tamimi, “Performance analysis of data

encryption algorithms,” Retrieved October, vol. 1,

2008. Available: Link.

https://cosec.bit.uni-bonn.de/fileadmin/user_upload/teaching/11ss/blockciphers/Talks/Tim_Syben.pdf
https://java.sun.com/j2se/1.4/docs/guide/security/CryptoSpec.html
https://www.bouncycastle.org/
https://pdfs.semanticscholar.org/3fc6/c15cb8b95607c83a4bd914d143fc6cfe6615.pdf?_ga=2.55258539.1403370063.1595499057-1644091176.1593966546

 267
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

 Algorithm Algorithm

Encryption Algorithm

Figure 21. (a) Time, (b) Throughput and (c) CPU usage for different encryption algorithm with a file size: 1GB

 268
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

 Algorithm Algorithm

Encryption Algorithm

Figure 22. (a) Time, (b) Throughput and (c) CPU usage for different encryption algorithm with a file size: 500MB

 269
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

 Algorithm Algorithm

Encryption Algorithm

Figure 23. (a) Time, (b) Throughput and (c) CPU usage for different encryption algorithm with a file size:100MB

 270
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

 Algorithm Algorithm

Encryption Algorithm

Figure 24. (a) Time, (b) Throughput and (c) CPU usage for different encryption algorithm with a file size: 10MB

 271
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

 Algorithm Algorithm

Encryption Algorithm

Figure 25. (a) Time, (b) Throughput and (c) CPU usage for different encryption algorithm with a file size:1M

 272
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 2, August 2020

Table 1: Triple DES modes of operation

Mode Definition

EEE3 a block of data is encrypted three times using three different keys.

EDE3
The block of data is encrypted using one key, then decrypt with another key, and finally

encrypted with a third key.

EDE2 It is like EDE3, with only two keys being used.

EEE2 It is like EEE3, with only two keys, first and last keys are the same.

Table 2: System and Experiment Setup

Component Parameter

Programming language Java

Application platform Java SE JDK 14.01 & Bouncy Castle 1.65

Operating system Windows 10, 64-bit

Computer specs CPU Intel® Xeon® CPU X5570 @ 2.93 GHz and 32 GB for RAM

Encryption algorithms AES, BlowFish, RC2, RC4, RC6, DES, DESede, SEED, XTEA, and IDEA

File type plaintext

File sizes 1MB, 10MB, 100MB, 500MB, and 1GB

Table 3: Encryption Time and Throughput for Various Algorithms

Algorithms
Encryption Time (in seconds) Throughput (in MB)

1GB 500MB 100MB 10MB 1MB 1GB 500MB 100MB 10MB 1MB

AES 29.41 14.62 2.91 0.3 0.03 36.51 35.85 35.98 35.32 33.93

BlowFish 41.91 20.31 4.13 0.42 0.04 25.62 25.81 25.37 25.13 24.44

DES 49.35 24.19 4.87 0.49 0.05 21.76 21.67 21.55 21.58 23.31

DESede 118.92 58.05 11.65 1.18 0.12 9.03 9.03 9 8.92 8.93

IDEA 49.95 24.53 4.81 0.48 0.05 21.5 21.37 21.78 21.66 22.8

RC2 68.75 33.52 6.77 0.68 0.07 15.62 15.64 15.5 15.5 15.47

RC4 14.45 7.14 1.48 0.15 0.01 74.3 73.47 70.92 72.12 76.54

RC6 28.36 13.91 2.85 0.29 0.03 37.86 37.7 36.81 36.45 36.54

SEED 46.13 22.47 4.55 0.46 0.04 23.28 23.34 23.04 29.98 23.35

XTEA 54.79 26.61 5.42 0.54 0.05 19.6 19.7 19.33 19.28 19.2

Table 4: CPU Utilization Percentage for Various Algorithms

Algorithms

CPU Utilization Percentage

 1GB 500MB 100MB 10MB 1MB

AES 13.28 14.35 13.55 13.74 1.88

BlowFish 13.71 12.78 12.98 13.49 2.31

DES 14.85 13.35 13.22 13.75 1.61

DESede 13.48 12.76 12.79 12.92 3.93

IDEA 20.67 13.14 13.62 14.61 1.3

RC2 12.95 12.72 13.26 13.3 2.84

RC4 13.61 13.92 16.91 13.79 1.5

RC6 12.88 12.82 16.77 12.51 1.8

SEED 13.6 12.81 13.06 13.29 1.96

XTEA 14.02 12.74 14.19 13.72 4.2

