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Abstract: in this paper, we solve the problem of  secondary obes 

that are due to noise that comes from constructive and destructive 

multipath interference that are resulted in received signal strength 

(RSS) variation over time. This is to develop a very efficient 

localization algorithm that uses a unique fingerprint of angle of 

arrivals (AOAs) , in a specified range, with associated time delays 

(TDs), in the surrounded sparsity design promoting multipath 

parameter (i.e:RSS). We solve this problem to detect physical 

identity spoofing of nodes in radio wireless networks, and localize 

adversaries and jammers of wireless networks. All radio waves are 

vulnerable to many types of attacks due to the ability to capture 

them and sniff or eavesdropping on them in the open space. 

Physical identity spoofing is used to launch many types of attacks 

against wireless networks like Denial of Service (DOS), Man-In-

The-Middle and Session Hijacking and eavesdropping. 

Eavesdropping is a human-based social engineering attack. Active 

adversaries are able to jam and eavesdrop simultaneously, while 

passive adversaries can only eavesdrop on passed signals. In 

TCP/IP protocol for example, Media Access Card (MAC) Address 

is transferred in 802.11 frames. Detection process was carried out 

by analyzing electromagnetic radio waves that are used to transfer 

data, in the form of radio wave signals that are formed by the 

modulation process which mixes the electromagnetic wave, with 

another one of different frequency or amplitude to produce the 

signal with a specified pattern of frequency and amplitude. We 

depended on the angle of arrival of vectors and time delay across 

scattered areas in the surrounded space to solve the problem of co-

location in detection and localization of jammers. We used 

Maximum Likelihood (ML) angle of arrival determination because 

Maximum Likelihood approaches, known to their higher accuracy 

and enhanced resolution capabilities. And we assessed their 

computational complexity that was considered as the major 

drawback for designers to their implementation in practice.   Our 

solution was tested on a jammer that changed the signal strength of 

received signal at the receiver at an angle of arrival 30 degree. And 

we used scatterers density to determine the angle of arrival of the 

sender. The simulation has observed that the power of the received 

signal has changed from the range of angles 20 to 40 degrees. We 

used scatterers because they describe the density of the signal 

power, and also enhance the signal to noise ratio, that resulted from 

the multipath fading of the signal strength. And also overcoming the 

problem of secondary lobes that are due to signal propagation, 

while determining the angle of arrival of a signal sender. So, we 

developed a new passive technique to detect MAC address spoofing 

based on angle of arrival localization. And assessed the 

computation complexity of the localization technique through 

depending on a range angle to estimate the angle of arrival of the 

adversary within it. And we reduced number of secondary lobes, 

and their peaks, in the importance function, while determining the 

angle of arrival, and so increasing the accuracy of angle of arrival 

measurement. We compared our work to other techniques and find 

that our technique is better than these techniques. 
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1. Introduction 
 

The media access control (MAC) address identifies wireless 

devices in wireless networks, so it can be used in identity-

based attacks. MAC address spoofing is an attack that 

changes the MAC address of a wireless device that is in a 

specific wireless network, using off-the-shelf equipment. An 

attacker can spoof the MAC address of an access point (AP) 

in WLAN-infrastructure mode and replace or coexist with 

that AP to eavesdrop or make jamming on the wireless traffic 

or act as a man-in-the-middle. Also the attacker can flood the 

network with numerous requests using random MAC 

addresses to exhaust the network resources. Many methods 

and researches have been proposed to detect the problem of 

MAC address spoofing, as in [1] and [2]. In [1] they detected 

the spoofing attack and localize the adversary. From [3], 

there are two main types of device localization. The first type 

is Model-based localization, in which a reference 

propagation model is used, and localization is depending on 

received power at a reference distance d 0  from the 

transmitter. And the second type is Fingerprint-based 

localization, in which the problem of localization is tackled 

as a classification problem, where each location corresponds 

to a different class. Our new solution to detection problem 

depended on solving the problem of co-location in 

Fingerprint-based localization, such that increasing the 

accuracy of detection and localization, by means of vectors 

of angle of arrival of signal components that are local 

scatterings that occur in proximity to RT xx
/ antenna [4], 

and spatial consistency [5]. Spatial consistency is obtained 

by environment pattern that contains the most effective 

geometry information. So this environment pattern is useful 

for generating integral and accurate channel geometry. In 

MAC address spoofing, spoofed frames are sent out, by the 

adversary’s rogue device, with spoofed media access card 

address, resulting in congestion in the network from the 

quality of service (QOS) and throughput point of view as in 

[6] and [7], and change in the signal pattern of original legal 

signal in the physical medium [1]. But for the adversary to 

know the legal physical identity and spoof it, he firstly must 

passively sniff on the traffic passing in the propagated signal 

that is broadcasted in the open and diverse wireless medium 

space, between a transmitting source of modulated 

electromagnetic wave, and the destination [6]. And as 

discussed before, in passive sniffing, the adversary only can 

eavesdrop on transmitted data, but in active sniffing, the 

adversary can eavesdrop and jam simultaneously.   

Each wireless antenna is emitting electromagnetic waves that 

represent frames, with a specified pattern of the field radiated 
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by this antenna. The pattern is essentially formed from the 

radiation characteristics of the antenna itself. Signal strength 

of a frame means the power level at which this frame can be 

received at the destination (antenna). We can use this signal 

pattern to detect and localize the adversary because MAC 

address spoofing is resulted in many attacks like ARP-DNS-

web spoofing- Email spoofing as in [8].and we can guarantee 

a full secured system if we ensured the security of it’s 

physical layer. We found that the best way to detect this 

problem is analyzing the direction of arrival of signal and its 

vector pattern. We define some of the common notations that 

will be adopted in this paper, as in [9] 

where{}T
. and{}H

. denote the conjugate and Hermitian (i.e. 

transpose conjugate) operators.  And as in [6], the 

transmitted signal from legitimate transmitter and its 

covariance matrix are denoted by 

sZ and sG = }{ H

sZZE respectively, with normalized 

transmit power constraint for this legitimate transmitter, 

{G s : G s 0 , tr (G s )} where s is the maximum 

tolerable transmission power for it. And the transmitted 

signal from the active  adversary q  to destination and its 

covariance matrix are denoted by z 1q
, and G 1q

= 

E {
H

q1q1ZZ } respectively, with normalized transmit power 

constraint for this 

adversary,{ }PGGG q1q1q1q
≤(tr,0≥: , where q is the 

maximum tolerable transmission power for it. In [4], they 

discussed that determination of angle of arrival in the form of 

distribution is not impossible but the limitation of 

measurement of discreteness of angle is resulting from 

limited width of receiving antenna beam. So modeling local 

scatterers in the surrounded area of cube like in [5] is very 

essential to observe local scatterer distribution, by means of 

significant scatters. Significant scatterers are scatterers that 

have power greater than a specified threshold [5]. So if we 

specify a threshold taken from the surrounded environment, 

such that this threshold differentiates between the presence 

of an attack from legal transmission, we would detect the 

presence of anomalies. And if we specify the surrounded are 

of the receiver as a cube, its width wD
 is defined by the 

environmental pattern, as it is the range of significant 

scattered multipath components along the y-axis of the cube 

as in figure 1.  Y-values can be obtained randomly over  

wD
 using uniform discrete probability density function.  

Note that in [5], they dealt with the surrounding area of 

transmitter but here we dealt with the surrounding area of 

receiver to detect the adversary that launches the attack on 

the receiver. The position of the scatterer is given as 

[ zyx qqq
,, ], where Nsca

,...,1=q  and Nsca
 is 

determined by density xQ
 i.e., the number of scatters per 

cubic meter, and the cube volume.  This cube width in space 

can be used to accurately selecting the sparsity-promoting 

design parameter 1  that was discussed in [9]. And so we 

could reduce secondary lobes while obtaining the angle of 

arrival of these scatterers that are propagated randomly. And 

so estimation of number of paths that are depended mainly 

on sparsity feature that is inherent to marginal delay, ( )ig 


 

so that we can get time delay estimates from it as was 

discussed in [9], when a signal hitting multiple receiving 

antennae in a homogeneous environment. 

 
Figure 1. Geometrical illustration of the scattered multipath 

Component                  

In [9], they tackled the problem of joint angle and delay 

estimation through multiple reflections of a known signal 

hitting multiple receiving antennae, and they showed that the 

localization performance was below 15 cm accuracy,but the 

computation complexity was the main drawback in 

implementation of the localization technique. In [3] they 

showed that a distinctive fingerprint for localization can be 

defined as the vector of RSSI values, and in [7], the detection 

process depended on observing the effect of the spoofing 

attacks on the quality of service (QOS) of the network and 

data rate of spoofed frames flooding. The challenge was that 

there is no verification mechanism for the nodes’ physical 

addresses. When we looked at the signal pattern as an area 

that is formed from spatial points, the Point is considered to 

be an arbitrary location within an area, and the Event is the 

observation of this location. The signal strength variation 

between different points in a specified area is studied as a 

Mapped Point Pattern, to make a continuous spatial tracing, 

such that all relevant events were recorded by means of 

vectors, and the anomalous events were recognized 

according to spatial continuity analysis. 

An attacker can spoof the MAC address of a legitimate 

wireless device to hide his/her identity to deny service on a 

given wireless network [6].  

In the IEEE 802.11 standards, it is necessary to exchange the 

four-way handshake frames before an association takes place 

between a wireless device and the AP. Once the station is 

associated with the AP, a hacker can disturb this association 

by sending a targeted deauthentication/disassociation [7] 

frame to either disconnect the AP by spoofing the MAC 

address of the wireless user or disconnect the wireless user 

by spoofing the MAC address of the AP, or sending frames 

to all of the wireless users using a broadcast address by 

spoofing the MAC address of the AP. After sending the 

frame, the AP or the user who receives the frame is 

disconnected and has to repeat the entire authentication 

procedure in order to connect again. The attacker can also 

send spoofed deauthentication frames repeatedly to prevent 

the wireless user or the AP from maintaining the connection 

[8].There are also other attacks, such as jamming. 

The attacker can spoof the MAC address of any device in the 

network, either as a wireless device or the AP. Then he/she 

can change his/her transmission power, and sends a jamming 

signal to the reciever. Our aim is similar to [9], which is to 

detect the jammer by localizing the legitimate wireless 
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device and rouge device, using RSS samples. We assume 

that a receiver legitimate station is not mobile. In the 

jamming period, we can actively send packets to a legitimate 

device to show scatterrers in RSS samples to measure the 

angle of arrival. We can detect the attacker if two different 

locations are returned for the same MAC address. 

There are some limitations in the previous work. Sequence 

number approaches suffer from some drawbacks: control 

frames don’t have any sequence number at all, spoofing of 

control frames is possible. Furthermore, some of the tools 

used by the hackers provide the capability of eavesdropping 

and injecting frames that have sequence numbers similar to 

the frames of the legitimate device. OS fingerprinting 

techniques have some weaknesses, like that data frame only 

can be detected by the network layer’s OS fingerprinting. 

Another weakness is that some of the detection techniques 

assume that the attacker spoofs the MAC address using 

Linux-based operating system tools. This assumption could 

cause some attackers to bypass the intrusion detection 

system. The attackers can use a capability that the Windows 

operating system provides to change the MAC address of a 

given user. Finally, vendor information, capability 

information and other similar fingerprinting techniques can 

be easily spoofed using off-the-shelf devices. Reccieved 

signal strength approaches depended on making localization 

according to the signal strength that is variated due to 

propagation in the environment. When the attacker and the 

victim devices are close to each other, the means/medians of 

both devices are close to each other, so distinguishing the 

two devices becomes hard. Furthermore, the distribution of 

the data from a single device can construct two clusters, so it 

is hard for the clustering algorithm-based approaches to 

perform well. The purpose is finding a balancing point at 

which a smaller set of features that let the system to be 

capable of accurately detecting the node of interest. 
 

2. Related Work  
 

2.1 Localization through received signal strength: 

 A previous work in [2], depended on lognormal distribution 

`of received signal and matching it to the location through 

the degree of RSS correlation, according to the central 

tendency of received signal strength values to the medoids of 

one of two classes, as the aim was to find out the spatial 

distance in signal (power strength) space between the 

presence of a spoofing adversary and ordinary legal wireless 

signal strength. This is determined according to the spatial 

correlation in signal power strength between spatial points in 

space which is called by spatial continuity analysis. The 

main problem is that this correlation is calculated upon the 

environmental factors affecting the wireless propagated 

signal. And the main idea of detection depended on cluster 

analysis by using Partitioning Around Medoids (PAM) 

method as it was more robust in the presence of noise and 

outliers, compared to the popular k-means method. In PAM 

method, spoofing detection depended on spatial correlation 

between received signal strength, and measured received 

signal strength, at landmarks, with known reference 

locations. The received signal strength was considered as test 

statistic on the distance between two medoids of two 

partitioned clusters for each node identity, which are legal 

class cluster and spoofed class cluster. 

 

  2.2 Signal strength interpolation 

In [10], they depended on interpolating the signal strength 

values to produce an estimated surface of signal strength 

values, by using kriging method that takes some known 

signal strength values of points spaced by a specified 

distance. But kriging mainly models the spatial structure of 

measured points to give the estimated surface, according to 

the specified distance between these measured points. And in 

[11] for localization, the method of radio frequency 

fingerprinting-based localization depended on designing 

datasets containing features that are selected from the RF 

signal characteristics, in different locations. To form a 

location fingerprint database, the problem is that it requires 

forming a tedious site survey that maps RF signals with the 

physical environment. This requires quite and accurate 

feature selection for making accurate fingerprints by the 

selected features. Then testing the fingerprints of RF signals, 

at random locations in the surveyed area. The signal data 

would be input to the localization System that uses a 

classification algorithm, to see the accuracy of finding the 

true locations of these random fingerprints. The process of 

producing a fingerprint database on a radio map requires a 

user to manually tell the system where they are, so that the 

system can learn the RF signal pattern at that specific 

location. This is very tedious and time-consuming. And if 

few features are used to build the fingerprints, the training 

time and classification time for the machine learning 

algorithm can be shorter. This is good for real time 

classification. But fewer features resulted in the difficulty of 

finding fingerprints that would be unique enough for the 

localization process. And so higher classification error would 

be resulted. So the challenge is finding a balancing point at 

which a smaller set of features that let the system to be 

capable of accurately detecting the node of interest. The 

disadvantage of this method is the probability that two 

locations may be of similar signal pattern. 
 

  2.3 Localization through angle of arrival 

As discussed in [9], where the reception angle estimation 

was through joint angle and delay estimation, the system 

model was for a transmitted signal modulated over M+1 sub 

carriers. After undergoing multiple reflections, it impinges 

on the receiving antennae array from Ǭ different  

Angles ( )
Q21 α,...,α,α , with associated time delays  

Q

maxQ21 ]Τ,0[⊂)Τ,...,Τ,Τ( , where max can be as large 

as desired. And the channel estimates across all antenna 

elements at each 
thm  sub carrier into a single vector,   

,)]m(h),...,m(h),m(h[=)m(h T

p21   (1)           

)m(w+eγ)α(a=)m(h qTfΔmπ2j

qqm∑   (2)    

Where
T

p mwmwmwmw )](),...,(),([)( 21=  (3), is the 

corresponding noise vector, and 
Tjjmj

m
mpm eeea ],...,,[)( )(,)(,2,1 22)(,2  

    (4),    is the array 

steering vector defined for any direction α, and  is 

constant coefficients across all the sub carriers and antenna 

elements. 
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And as discussed in [2], the detection depended on the 

distance between two main medoids of clusters, taking into 

consideration the parameters of transmission power levels, 

and distance between spoofing node and original node, and 

then classifying the multiple number of adversaries into 

classes. But the main problem with machine learning 

classification and previous solutions was co-location in 

which two or more users are in the same place [3]. 

  2.4 Localization through random forests 

In [12], they used random forests to make the localization. 

But signal attenuation that was because of several factors, 

such as multi-path fading and obstacles that made the signal 

oscillate, especially when there is a significant distance 

between the sender and receiving device, and they depended 

firstly on building a profile of the legitimate device to 

develop characteristics of normal behavior, assuming that 

there is no attacker at the stage of building a profile. And this 

was the first drawback of this solution. The second drawback 

was that they depended on the fact that RSS samples at a 

specific location are similar while the RSS samples at two 

different locations are distinctive, and this is not achieved in 

all cases because as said before, in section 2.2, two different 

locations may be of similar signal pattern. And they 

depended on a machine learning algorithm that requires high 

set of features, and so higher time consuming, and as said 

before in section 2.2 the challenge is finding a balancing 

point at which a smaller set of features that let the system to 

be capable of accurately detecting the node of interest. 
 

3. MAC Address Spoofing Detection by 

Localization through Angle of Arrival 

Determination by using Scatterers  
 

In [4] they depended on clustering of signal components or 

parameters to estimate angle of arrival distribution. These 

parameters are defined on the basis of power delay spectrum 

(PDS) selected points. And they depended on using 

multiellipical model of delayed scattering component and 

von Mises’ power delay profile (PDP) for local scattering 

components, but we depended in obtaining the angle of 

arrival to locate the adversary, on modeling scattered 

multipath components, and this can be achieved by 

observing the distribution of scatterers and their geometry, 

and using the transfer function of amplitude of scatterers [5] 

as follows. 

( )
( )

( ) qφj

q,Rq,T
Sca

e.f,tS
tdfdΠ4

c
=f,tH

  (5) 

Where d q,T  is the time-invariant distance between TX  and 

the 
q

th

 scatterer, and 
( )td q,R  is the time-varying distance 

between 
( )tRx  and the 

q
th

 scatterer, and 
( )ft,s

 refers to 

the scattering coefficient and tφ  is the random phase 

modeled by a uniform distribution over [0, 2π). 

The amplitude of the transfer function is divided into a 

distance-dependent part, and a scattering coefficient part. So 

after subtracting the distance-dependent part, the scattering 

coefficients are evaluated for individual time Instants. It was 

found that the PDFs of ( )ft,s at different times can be 

modeled well by the Gaussian distribution, by which the 

mean values and standard deviations can be estimated using 

the nonlinear least squares regression method. So, the PDF 

of the time-varying scattering coefficient is given as:  
 

( )( )
( ) ( )( )















 −
−=





 
2

2

2

,,
exp

2

1
,f

s

s

s

ftftS
fts  (6) 

    

Where ( )f,tμ
s

 is the mean value at time t for frequency 

f . In [4], they discussed that the problem is that no one 

geometric model is best by all criteria and for all 

environments. Because no definite relationship can explicitly 

associate the parameters of distributions of azimuth and 

elevation angle, with different types of propagation 

environments and the distance between the transmitter (Tx) 

and the receiver (Rx).  

But geometric channel model (GCM) can give the possibility 

of calculating the impact of changes in the position of the 

objects (TX, Rx), on the spatial properties of the received 

signals due to the propagation environment type. And the 

parameters of the GCMs are defined on the basis of the PDS 

or PDP and the relative position of the transmitter and the 

receiver. This is because they reproduce the geometry of the 

spatial relationships among TX, Rx, and the location 

scattering areas with their spatial density and these criteria 

differentiate the individual models. And so they provide the 

basis for theoretical analysis of PDFs of AOA through a 

statistical model of AOA which is a PDF estimator that is 

closely related to the type of propagation environment that 

has temporal characteristics of transmission channel. 
 

4. Determining Angle of Arrival through 

Receiving Antenna Beam Width to 

overcome Co-location problem 
 

Since the idea is that we can detect the Mac address spoofing 

through the signal strength of frames emitted from a 

specified node’s Network Interface Card (NIC), then we 

have looked at the antenna pattern as a group of vectors 

representing the signal strength and frequency, and the 

direction of the field received from an antenna. But due to 

the broadcast nature of signals in wireless medium, and the 

attenuation that comes out from obstacles that face the signal 

in the broadcasting medium, the power and direction can be 

varied. The signal can be exposed to diffraction, scattering, 

reflection, transmission, and refraction while propagation 

[13], but because each sending device has it's signal and due 

to the propagation pattern which can be considered as a 

fingerprint relating the signal at scattered regions 

surrounding the receiving node , spoofing detection can be 

possible if a gap difference in received signal strength of 

frames with the same Mac address exceeds a specified 

threshold determined from the spatial continuity analysis and 

correlation structure of signal propagation in the physical 

environment in which the signal is broadcasted. We have 

used Beam forming as in [14], [15] and [16] and the concept 

of vectors in [9] to determine the directionality of' a signal 

and so sensitivity from it’s radiation pattern. 

As was discussed in [14], Directional beam forming (BF) 

transmissions using antenna arrays overcome the difficulty 

of high signal attenuation and mobility effect of moving 

devices and their orientation, and body shadowing. And as 
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discussed in [4] about local and delayed scatterers and that 

their locations, that we can determine from them, the 

position of   and R which are located at a distance D  

So we have showed directional gain antennas when receiving 

a stream of spoofed frames, the radiation pattern that 

changed the pattern of the legal sending node, over time to 

detect the presence of the adversary as well as localizing it. 

In [9], estimation of number of paths depended mainly on 

sparsity feature that is related to marginal delay, ( )ig 


 that 

we can get time delay estimates from it. So by accurately 

selecting the sparsity- promoting design parameter 1 , as in 

[9], and depending on scatterers density and that is also 

mainly related to path loss characterization in [17] and signal 

strength attenuation as in [12], we could depend on local 

scatterers, without depending on signal strength 

interpolation, so we could reduce the secondary lobes that 

are due to noise contribution and so reducing the mean 

square error in equation (5) and (6). Because the role of this 

design parameter is controlling the spans of main lobes that 

appear around the true unknown angle of arrivals and time 

delays. And the parameter 0 , that it should be sufficiently 

high value that is optimized offline according to observed 

behavior of estimator, as discussed in [9]. We depended on 

scatterers that defined directionality and gain to make the 

detection and localization more accurate, in the surrounded 

scattering areas as in [9], and showed how the distance 

between transmitter and receiver affected the amplitude of 

the signal as discussed in [9] and [5]. And so we showed 

results with the concept of pointing and beamwidth. And we 

have introduced representative sampling in [18], instead of 

random windowing, on multiple trace files, to improve 

coherence discovery in cross spectral density in [19], so that 

forming links and paths by the number of sampled units 

taken from the coherent subset. The size of the coherent 

subset, and inclusion probability that gives the sample size 

and Depending on the distance function that can calculate the 

distance between population units in general auxiliary spaces 

to capture the pattern characteristics.  And in [15], the beam 

is formed at any time n, as y (n) which is a linear 

combination of the data from M antennas, with x (n) being 

the input vector and w (n) is the weight vector. 

)(*)()( nxnwnY H=   (7),  

Where weight vector )(nW  can be defined as: 


−

=

=
1

0

)(
M

n

wnnw  (8) 

And input vector )(nx can be defined as 


−

=

=
1

0

)(
M

n

Xnnx   (9) 

In [9], it was discussed that the approximate concentrated 

likelihood function (CLF) decomposition which is the 

superposition of the separate contributions pertaining to the 

Q angle-delay pairs, to be separable in terms of the angle-

delay pairs as originally required.  

We can use the equation of PDF of time varying scattering 

coefficient, (equation (6)), instead of the part of the 

periodogram of the signal that was discussed in the CLF 

equation that was equation (38) in [9], as follows: 

( )
=+


Q

q
qqc

I
MP 1

,
)1(

1
   (10)  

Where ( ) qq
I , is the periodogram of the signal given by: 

 ( )=,I
( ) ( )

2

1

2/

2/

,2
2*

 
= −=

−
−P

p

M

Mm

mmpj

e eh
wmj

p




 (11) 

In which (m) is the p
th

 element of the vector h (m) 

And the factor
)1(

1

+MP
 is absorbed in the new design 

parameter, pp
01

 . 

And after exploiting the approximation of the above CLF as 

importance function (upon normalization) which is 

equation (40) in [9] as: 
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
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q
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1
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1

1
1

,exp...
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,  (12) 

And after factorizing it in equation (41) in [9], to be 

separable in terms of the angle-delay pairs as originally 

required as follows 
 

( ) 
=

=
Q

q 1

, ḡ ( )
qq

,,  (13) 

So, we could carefully design the importance function, and 

compute time delays and angles of arrival expectations at 

any desired degree of accuracy, by increasing number of 

realizations using the corresponding sample mean estimates, 

as it would be discussed, but in a defined range of angles, 

where, 
 

ḡ ( )
( )

 







=

e

e
ddIp

Ip


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

'
,,

'
'''

,1

,1

  (14) 

Is a common private distribution for all angle-delay pairs. So 

vector realizations 
)()( rr

and  can be generated using 

the multidimensional distribution ( ) ,  by generating 

Q independent couples ( )
r

q

r

q
,  using ḡ ( ) ,,  then 

constructing 

( ) ( ) ( ) ( )
],...,[

21 
r

Q

rrr
=  and  

( ) ( ) ( ) ( )
],...,[

21 
r

Q

rrr
= , by factorizing the joint 

distribution ḡ ( ) ,,  as the product of marginal and 

conditional pdfs, in two equivalent forms, as equations (49) 

and (50) in [9] as follows: 
  

ḡ ( ) ,, = ḡ ( )  ḡ ( ) ||   (15), and 

ḡ ( ) ,, = ḡ ( )  ḡ ( ) ||  (16) 
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Where ḡ  [resp., ḡ ( ) ] is the marginal pdf of   [resp. 

 ] and ḡ ( ) || [resp., ḡ ( ) || ] is the conditional 

pdf of   given  [resp.,  given  ] 

Then we can generate the required realizations through the 

following two alternatives: 

1) Alternative 1: generating 
( )


r

q
 using ḡ ( )  and then 

using ḡ
( )( )

r

q
=||

 to generate 
( )


r

q
 

2) Alternative 2: generating 
( )


r

q
 using ḡ ( )  and then 

use ḡ
( )( )

r

q
=||

 to generate 
( )


r

q
 

But we selected the first alternative as it was discussed in [9], 

that the second alternative would be not good option since 

ḡ ( )  can't allow resolution of closely-spaced angles. And 

ḡ ( )  is able to resolve closely-spaced delays even if the 

two paths are also extremely closely spaced in the angular 

domain and it always exhibits Q  main lobes around the true 

unknown time delays (TDs),  q

Q

q 1=
, and after evaluating  

ḡ ( )  as equation (51)in [9],as follows: 

ḡ ( ) =   ḡ ( )  d,,   (17) 

This is then used to generate r
th

vector of delay 

realizations

( ) ( ) ( ) ( ) 
 ],...,[

21

r

Q

rrr
= , then each 

 q
th

Q

q 1=

 conditional angle pdf in equation (52) in [9] as: 

ḡ
( )( )==

r

q
|,  ḡ

( )( )

r

q
,,  / ḡ

( )( )
r

q
     (18), 

that is found to exhibit exactly a single main lobe around the 

true angle  q
 associated to    q

 .   ḡ ( )  was used with 

lemma 1 to generate required delay realizations  
)(

1

r
q

R

r=

  

⁓ ḡ ( )  for every q=1,2,3….., Q as follows: 

lemma1: let xX be any RV with pdf )(xf X  and CDF 

)(xFX and denote the inverse CDF (.)1−

XF : [0, 1] →X, 

u→X such that ( ) uxF X
= , Then, for any uniform RV, 

( )UX F x

1~ −
=  is distributed according to ( ).f

x
. 

1- Generate R realizations  u
r

q

R

r

)(
1=

 ⁓ U[0,1],  

2- Obtain 
( )


r

q
= ( ))(1 r

quG −

  where (.)G is the 

cumulative distribution function associated to  

ḡ ( ) . 

The two steps were performed because depending on the 

SNR, the direct use of the marginal pdf ḡ ( )  faces the 

following major problems in practice: 

1- At low SNR, outliers  = ( )uG 1−

 , which are delay 

realizations that don’t correspond to any of the true delays, 

would appear from realization,   u ⁓ U[0,1]that falls within 

the range of spurious slopes (along the y−axis) in the CDF 

( )G , as seen in Fig. 2(a),   

 

Figure 2. Pseudo-pdfs in a single-carrier system illustrated 

for Q = 2 and SNR = −5 dB: (a) marginal CDF of τ, (b) 

marginal pdf of τ, (c) local pdf of τ around
1 , (d) local pdf of 

τ around
2 , (e) local CDF of τ around

1 , and (f) local CDF 

of τ around 
2 . 

And which are coming from secondary slopes that are 

exhibited from ḡ ( ) , as shown in fig. 2(b) 

This phenomenon is also illustrated in Fig. 2(a) for the two 

typical realizations u and u  .  In order to obtain outliers-

free realizations, we could rid ḡ ( )  from its secondary 

lobes by choosing a sufficiently large value for the design 

parameter ρ1. But taking a large value for ρ1, however, 

renders the main lobes in ḡ ( ) extremely narrow making it 

more likely that the true delays lie outside their very short 

spans. And so, all outliers-free realizations will be shifted, 

resulting in an inevitable estimation bias. 

2-At sufficiently high SNR levels, the secondary lobes are 

naturally absent and thus a small value for ρ1 can be chosen. 

Since the difference in main lobes’ sizes results in out-of-

proportion slopes in the CDF, an unbalanced number of 

realizations will be generated under the different main lobes. 

As a brute-force remedy, one could be tempted by choosing 

an  

extremely large value of realizations to guarantee that 

a sufficient number of  realizations be generated 

under each main lobe. In order to solve all these 

problems, we have to use a method that allows to 

generate all the realizations around the true delays 

and angles, and ensure that the realizations are 

generated in exactly the same number under each of 

the main lobes irrespectively of their relative sizes. 
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To do so, initial estimates of the unknown true TDs, 

are extracted through broad line search in equation 

(53) in [9] as follows: 
( ) ( ) ( )



 QQ
maxarg],...,,[

00

2

0

1
ˆˆ = ( )   (18) 

Where .maxarg
Q

returns the positions of the Q  

largest peaks of any objective function. This initial 

broad line search is performed using a relatively large 

grid step ∆  , and it doesn’t provide the delay MLEs 

even by taking an arbitrarily small value for ∆  , 

because the main lobes of ḡ ( )  are shifted as in 

figure(3):           

 
Figure3. main lobes shifting 

 

And initial estimates for the associated AoAs are obtained as 

in equation (54) in [9] as: 
 

( )


 maxargˆ

0

=
q


( )( ) ˆ
0

q
= , q = 1 ,…, Q   (19) 

That is performed also with a large grid step. So to force 

( ) 
r

q

R

r 1=

  and ( ) 
r

q

R

r 1=

to be generated in the vicinity of 

 q
and q

, respectively, the following Q local intervals 

were fixed as in [9] as follows: 

( ) ( ) ( )D
qqq 





+−=  

ˆˆˆ
000

,
  

And 

( ) ( ) ( )D
qqq 





+−=  

ˆˆˆ
000

,
 

Which are centered at 
( )

̂
0

q
 and 

( )

̂
0

q

. And the sizes of local 

delay and angle intervals are governed by the design 

parameters  
 and 

 , and the associated delay and angle 

impulse functions were defined as follows: 
 

    ( ) ( )
( )






 
=

otherwise

Dforh
h q

q

q

,0

ˆ
,

ˆ

0

0









 (20) 

 

( ) ( )
( )






 
=

otherwise

Dforh
h q

q

q

,0

ˆ
,

ˆ

0

0









  (21) 

 

Then the 
thq  delay and angle pseudo-pdfs which are 

referred to hereafter as local pseudo-pdfs will be used to 

generate the realizations in ( )D
q̂
0  and ( )D

q̂
0  are 

given by equations (57) and (58) in [9]: 

ḡ ( )
 h
q

q =)(, ḡ )(   (22) 

ḡ ( )
 h
q

q =)(, ḡ )(   (23) 

For Qq ,...2,1= , the constants h
q


andh

q


, are 

computed such that the local pseudo-pdfs in (22) and (23) 

sum up to one thereby yielding equations (59) and (60) in 

[9] as follows: 

( )

( )
( )

1

0

0

ˆ

ˆ
−

















−

+
=  dt

q

qq

h 















  (24) 

( )

( )
( )

1

0

0

ˆ

ˆ
−

















−

+

=  















d

q

qq

h  (25) 

Then by applying the impulse functions in (22) and (23), we 

can obtain a separate isolated local angle/delay pseudo-pdf 

for each
thq path. So, in practice, the processes of generating 

the required realizations locally around each true delay/angle 

couple, ),( qq  , can be implemented separately and run in 

parallel with faster and less complex execution. For better 

illustration, figures 2( c ) and 2(d) show the isolated local 

delay pseudo-pdfs, ( ) 1, and ( ) 2, , in case of 2=Q . 

And as seen from figures 2-e and 2-f, the associated local 

CDFs, ( ) 1,G and ( ) 2,G , exhibit a single slope that is 

located around the corresponding true delay. So by applying 

the result of lemma 1, each uniform realization 
( ) ]1,0[r

qu  

will yield a delay realization 
( )

( )0ˆ
q

Dr

q 
   in the vicinity 

of q . And so all angle realizations that are generated using 

the
thq isolated conditional pdfs fall in the vicinity of q . 

Then we can apply implementation details in section 8 in [9], 

on equation (6) in this paper, to localize the adversary. 
 

These implementation details are: 

1-Local generation of the required realizations: 

Step1: 

Evaluate the joint pdf ),(,   locally at new discrete 

points ( ) ( )




ˆˆ
, 00

qq

DDji    as in equation (61) in [9] 

which is: 

( ) 
( )  

=

i j

broadbroad

ji

ji

ji
Ip

Ip









,1exp

,1exp
),(,  (26), 

which is the evaluation of the periodogram ),( jiI  at 

multiple grid points ),( ji  with large discretization steps 

broad

  and
broad

 , and then approximating integrals with 

discrete sums to evaluate the joint pdf 
 

Step2: compute the 
thq marginal delay pdf at every point 

( )




ˆ
0

q

Dj  as in equation (62) in [9] which is: 

( ) ( ) ,, broad

i

jij   =  max,0   j  
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Where the initial delay estimates 
( ) ̂
0

1q

Q

q=

are the discrete 

delay points that correspond to the largest Q  maxima of 

(27), then for each q=1, 2… Q , the conditional pdf of 

the
thq angle corresponding to

( )

̂
0

q
, can be obtained as in 

equation (63) in [9] as: 

( )( )
( )( )

( )( ) 






 
−==

2
,

2
,

,

ˆ

ˆ
ˆ 0

0

,0

i

q

qi

qi 
















                                                                                    (27)  

Then we could have equation (64) in [9] as: 

( ) ( ) =
small

jijq 
 ,

,
    ( )




ˆ
0

q

Dj   (28) 

 

Step 3: 

Compute the
thq local delay CDF as equation (65) in [9] as 

follows: 
small

l

jl

qjqG   = 


)()( ,,      ( )




ˆ
0

q

Dj   (29) 

Step 4: 

Generate R realizations 
( ) R

r

r

qu
1=

⁓  1,0U  and invert 

(.),qG via linear interpolation in order to obtain the local 

delay realizations 
( ) ( )( )r

qq

r

q uG 1

,

−=    for r=1, 2…R. 
 

Step 5: 

For r=1, 2… R, obtain immediately the local pdf of the 
thq  AOA conditioned on

( )r

q from the local joint pdf that 

are evaluated in step1 as equation (65) in [9] as follows: 

 
( )( )

( )( )
( )( )















r

qq

r

qir

qi

,

, ,
==     ( )




ˆ
0

q

Di   (30) 

Step 6: 

Evaluate the
thq local angle CDF, ( )iqG 




,
 similarly to,    

( )jqG 


, , in (29), and generate the 
thr  angle 

realization
( ) ( )( )r

qq

r

q uG 1

,

−=  , using linear interpolation 

also. 
 

2-Estimation of time delays and angle of arrivals 
 

After generation of all the required realizations, more 

accurate IS-based parameter estimates can were obtained by 

applying the circular sample mean instead of the linear 

sample mean. Because the latter averages out all the 

realizations and outlier seeds will result in an inevitable 

estimation bias. However, the circular mean succeeds in 

selecting the best angle and delay realizations in terms of 

Euclidean distance to the true multipath-resolution 

parameters. The circular mean of any transformation ( )f   

of a given random variable [ , ]  − with distribution 

( )p  is obtained as equation (66) in [9] as follows: 

( )( )

1

1ˆ
( )

r
R

r j

r

f e
R

 
=

=   (31) 

Where, where φ(r) ∼ pΦ(.) are R realizations of Φ. 

We need to transform 
( )r

q  and 
( )r

q  that are respectively in 

max[0, ] and [ / 2, / 2] − into interval[ , ] − .So 

transformations 
( ) ( )

1 max( ) 2 ( / 1/ 2) [ , ]r r

q q      = −  −  and  

( ) ( )

2 ( ) 2 [ , ]r r

q q    =  − , were applied for Uniform 

Linear Arrays (ULAs ).so the circular mean is first applied 

using 
( )

1( )r

q and 
( )

2 ( )r

q , then the true TDs and AoAs 

are then estimated using the inverse transformations 

1

1 max

1 1
( ) ( )

2 2
x x



− = +  and 
1

2

1
( )

2
x x− =  as as in 

equations (67) and (68) in [9] as follows: 

( ) ( )( )

( )

















+

















= 
=














−

2

1
,

2

1ˆ

1

2

1
2

max

max

R

r

j

rr

q

r
q

e










                                                                                    (32) 
 

( ) ( )( )
( )( )









= 

=

−
R

r

jrr

q

r
qe

1

2
,

2

1ˆ 
  (33) 

Where the weighting coefficient was expressed as equation 

(69) as: 
( ) ( )

( ) ( ) 0

( ) ( )

1 1

exp{ ( , )}
( , )

exp{ ( , )}

r r
r r c

Q r r

q qq

P

P I

   
  

 
=

=


 (34) 

where 

1 1

0

... exp{ ( , )}

... exp{ ( , )}

Q

q qq

c

P I d d

P d d

   


    

=
=

 

 
 (35) 

By defining the quantity: 

Ψ ( , ) 
0 1

1

( , ) ( , )
Q

c q q

q

P P I    
=

 −    (36) 

And using the following normalized weighting coefficient 
( ) ( )( , ) expr r   = {Ψ

( ) ( )( , )r r  -  

1
max

r R 
Ψ

( ) ( )( , )r r  }  (37) 

 instead of the weighting coefficient  in (34)   
  

To reduce the computational load with no changes in the 

final results. 

To generate vector realizations that jointly minimize the 

Euclidean distance to the true delay and angle parameters, 

such that: 

( ) ( )

2 2
( ) ( )

,

ˆˆ[ , ] arg min( )
r r

r r

 

     = − + −   (38) 

This is according to lemma 2 which says that: 

The circular-mean estimates 

1 2
ˆ ˆ ˆ ˆ[ , ,..., ]

Q
   = and 1 2

ˆ ˆ ˆ ˆ[ , ,..., ]
Q

   = , obtained in 

(32) and (33) by using the normalized factor in (37) 

correspond to the vector realizations that jointly minimize 
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the Euclidean distance to the true delay and angle 

parameters. These circular-mean estimates are applied to 

obtain more accurate IS-based parameter estimates, other 

than linear sample mean estimates, as shown before.  

Where the weighting coefficient was expressed as equation 

(69) as: 
( ) ( )

( ) ( ) 0

( ) ( )

1 1

exp{ ( , )}
( , )

exp{ ( , )}

r r
r r c

Q r r

q qq

P

P I

   
  

 
=

=


 (39) 

And  

1 1

0

... exp{ ( , )}

... exp{ ( , )}

Q

q qq

c

P I d d

P d d

   


    

=
=

 

 
 (40) 

And defining the quantity: 

Ψ ( , ) 
0 1

1

( , ) ( , )
Q

c q q

q

P P I    
=

 −   (41) 

 To generate vector realizations that jointly minimize the 

Euclidean distance to the true delay and angle parameters, 

such that: 

( ) ( )

2 2
( ) ( )

,

ˆˆ[ , ] arg min( )
r r

r r

 

     = − + −   (42) 

 

Stage 1: 

Generate R1 << R2,
( )  1

1

R

r

r

q =
  and

( )  1

1

R

r

r

q =
 in the local 

intervals ( )0ˆ
q

D


and ( )0ˆ
q

D


, and obtain the estimates q̂ and 

q̂  as in (32) and (33). 
 

It was found that initial estimates 
(0)ˆ

q  and 
(0)ˆ
q are shifted 

respectively by at most   and   from the true delays and 

angles such that 
(0)ˆ

q q  −   and
(0)ˆ

q q  −  . And 

the exact MLEs are obtained by IS-based estimates in (32) 

and (33), with R0 = 20000 realizations that are generated 

locally using 2  =   and 2  =  , and using 

normalized weighting coefficients as in equation (72) in [9] 

as follows: 
( ) ( )( , ) expr r   = {Ψ

( ) ( )( , )r r  - 
1
max

r R 
Ψ

( ) ( )( , )r r  } 

                                                                                      (43) 

Note that the typical values for  and  are chosen so that 

the corresponding local intervals 

(0) (0) (0)ˆ ˆ ˆ[ , ]
q q q

D D D   
 = − +  and 

(0) (0) (0)ˆ ˆ ˆ[ , ]
q q q

D D D   
 = − + include the true values of 

the unknown parameters because they verify 

(0)ˆ / 2q q   −   and
(0)ˆ / 2q q   −  . And this 

ensures that a portion of the R0 = 20000 realizations are 

generated on both sides of each true TD and AoA. 
 

Stage 2: 

Regenerate R2 << R0 new realizations 
( )  2

1

R

r

r

q =
  and 

( )  2

1

R

r

r

q =
  over narrower intervals that are centered around 

the estimates q̂ and q̂ obtained in stage1, such that 

 
 +−=

qq
q

D ˆ,ˆ
ˆ  and 

 
 +−=

qq
q

D ˆ,ˆ
ˆ  with 

10/  = and 10/  = , then compute the AOA 

Maximum Likelihood estimation (MLE), using the new 

angle realizations, 
( ) ( ) ( ) ( )   2

1
21 ,...,,

R

r

r

Q

rrr

=
=   and 

the delay estimates  =
Q
 ˆ,...,ˆ,ˆˆ

21
obtained in stage 1 

as equation (74) in [9] as follows: 

( )( )
( )( )









= 

=

−
2

1

2

,
ˆ,

2

1ˆ
R

r

jr

MLEq

r
qe


  (44) 

Then all the AOA MLEs obtained in 

(43),  =
MLEQMLEMLEMLE ,,2,1

ˆ,...,ˆ,ˆˆ  , are then used 

with the delay realizations, 

( ) ( ) ( ) ( )   2

121 ,...,,
R

r

r

Q

rrr

=
=   to find the Time Delay 

(TD MLEs) as equation (75) in [9] as follows: 

( )( )
( )

















+


= 
=














−


2

1

2

1
2

max,
2

1ˆ,
2

1ˆ max

R

r

j

MLE

r

MLEq

r
q

e







                                                                                     (45) 

So, the MLEs obtained in (43) and (44) are not constrained 

to be on the considered sampling grid (the PDF of the time-

varying scattering coefficient in equation (6), because the 

generated angle and delay realizations are not constrained to 

be on the grid points due to the use of the linear interpolation 

in STEP 4 and STEP 6 in “Local Generation of the Required 

Realizations” section 

Then when assessing the performance of importance 

sampling-based maximum likelihood (IS-based ML) 

estimator in terms of root mean square error (RMSE) which 

determined for each 
thq time delay and angle of arrival. 

 

RMSE=
Mc

q
m
MLEq

Mc

m
∑ ˆ

1

2

][
,= 















         (46) 

 
 

RMSE (deg) = 
Mc

q
m
MLEq

Mc

m −= 













1

2

][
,

ˆ 
 (47) 

 

Where Mc = 5000 is the total number of Monte-Carlo runs, 

in all simulations, and 
][

,
ˆ m

MLEq  and 
][

.
ˆ m

MLEq  are, respectively, 

the estimates of q  and q during the 
thm  Monte-Carlo 

run. 
 

And then obtaining the joint ML estimates of  α  and  τ  as a 

solution to reduced – dimension optimization problem in 

equation (6) [9]. 

[ ] ( )τ,αmaxarg=, ςτα
c

τ,α
MLEMLE

 (48) 
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In order to find the maximum likelihood estimates for all 

unknown path gains,
MLE̂ .  An important aspect of the 

proposed detection system is that this system can 

differentiate two devices even at the same location, which 

was not well addressed by previous approaches. Our 

extensive experimental results demonstrated the 

effectiveness of the system, even when devices are co-

located. In [20] they showed how directionality and gain at 

the physical layer affects the received power. And we used 

this idea to detect and localize the adversary especially in 

adaptive beam forming [21] where a direction of arrival 

(DOA) algorithm can be used to determine the direction of 

the signal received from the user. In [9], they depended on 

estimating number of paths of the received signal, but we 

depended on determining paths of the received signal in the 

reproduced statistical location of scatterers, to make the 

detection and localization more accurate, increase the 

performance of the localization algorithm. In [9], they 

depended on the Expectation of ( )Q , (i.e.: ( ){ }E Q ) to 

determine the number of signal paths, such that: 

( )
( )

( )





=









totQ

q q

Q

q q

g

g
Q

2

2




 (49)         And  

 

( )
( )

( )





=−







−



totQ

q q

Q

q q

g

g
Q

2

1 2

1



 (50), and they made 

these two simple steps to get the number of signal paths 

where they depended to optimize the threshold level, , 

offline, in [9], to obtain lowest Q estimation error. They 

made Monte-Carlo simulations for all 1 .totQQ  , and 

these two simple steps which are: 

1-getting the points  .totQ

qq
 , corresponding to all peaks in 

{ ]Τ,0[∈Τ∀)Τ(g maxiiΤ } with Q
tot

being total number 

of peaks where Q
tot

is always greater than Q  due to the 

presence of secondary lobes 

2- Sorting the squared magnitudes ( )  .2 totQ

qqg 


 , 

corresponding to   .totQ

qq
  to get an estimate Q

ˆ
 for the 

actual number of paths as the first number of peaks Q  

whose combined energy frictions is above the threshold K   
 

2- Designing the data sample to be representative, and 

spatially balanced (well-spread).  As discussed in 

above. The sample is said to be representative sample 

if  each coherent subset has the same proportion of the 

population and it is said to be spatially balanced if for 

each coherent subset, the number of sampled units is 

approximately equal to the summation of inclusion 

probability for each element in the coherent subset, so 

the sample design we made was with equal inclusion 

probability, such that all population units was included 

in the sample with equal probability, so we generated a 

well spread sample, and so it was representative. 
  

5. Results 

We showed how to use angle of arrival of scatterers [4, 5] in 

detection and localization of adversaries in homogeneous 

wireless networks. The observation of the pattern of received 

signal and its identification was based on the observation of 

the signal strength (intensity), and its direction. This is a 

spatial behavior in space, and it characterizes the spatial 

relationship between selected points in the space of 

surrounding scattered areas. 

      5.1  Sampling that verified the Geometrical   Channel       

      Model (GCM) 

We showed above, that collection sampling we incorporated, 

has improved coherence and it was accurate sampling that 

can capture the needed characteristics in the geometry of 

receiver’s surrounded area (scatterers) [5], to detect the 

anomaly, and localize its source, by means of points in 

pointing vectors, through beam width of angle of arrival [9]. 

And this would be deterministic due to the predefined 

sampled points in the incorporated geometry of scatterers 

structure instead of a predicted modeled spatial structure 

[10]. 

In [18], they defined the coherent subset as follows: 

Let u∈i  and let 0≥r  be a given radius. We say thatU
* , 

is a coherent subset of U  if the following holds. Unit j    

U  is included in U
* if and only if d ( )ji,   r , where 

d ( )ji, is the distance between i and j , thusU
* , can be 

constructed by including all units within a ball of radius r 

from some unit i . 

So, a coherent subsetU
* , of a population, can be formed 

from j units if distance between j  and i  less than or equal 

to a specified radius, where i element inU .  
 

The number of sampled units n
*  from the coherent subset 

U
*
 can be expressed by: 

n
*
 = ( )NNn

*

/ , where n is the sample size, and N  is the 

number of units of population, and N
*
 is the size of U

*  

.5.2 in our simulation, all spoofed frames were detected 
 

In our simulation, all spoofed frames were detected, and 

neither false positive nor false negative alarm was raised.  As 

showed in [22], the effect of a parabolic reflector on Wi-Fi 

reception was discussed and when analyzing results in [22] 

and analyzing results in [5] and [9], we found that in [22], 

the power distribution on direct path component and 

components of local scattering is showed from the Focal 

point where the signal powers were the best at all three 

fitting positions  of the Focal, Inner (= 1/2 focal length), and 

Outer (= 3/2 focal length) points. and in [5], when using the 

scattered transfer function to observe the amplitude in figure 

4, it was observed that as travel distance increase, as power 

of single bounced rays and double bounced rays decrease but 

power slightly rises with the increase of travel distance, this 

is because increasing travel distance leads to increasing in 

incidence angle in the their geometry, and reflection loss 

rapidly decrease as figure 5 shows, faster than growth rate of 

distance-dependent loss. And this results in increase 

tendency which proves significance of angle information in 

modeled transfer function. Note that ray power with travel 
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distance and incidence angle, but they used travel distance at 

the horizontal axis for compaction. And our approach 

considers the non-stationary as well as the spatial 

consistency. And in [5] and [22], they used the concept of 

radius to define the local scattering area but we depended on 

geometry based stochastic channel model [5] that builds on 

specific transmitter Tx , receiver Rx  and scatterer 

geometries (scattered ray geometry) that is predefined 

according to certain statistical distribution of significant 

scatterers, to define local scattering area to measure the 

actual angle of arrival and not estimation of it and so we 

could determine the beam width of a specified received 

signal. This was shown when we compared our results to the 

idea of power spatial density in hyperbolic scattering areas 

[22], and we found that our results are going with results in 

[22] and [5] and [4] in the distance between the sender and 

receiver, that influences on the amplitude.  

 
Figure 4. Comparisons of the ray powers obtaining from 

the RT simulation and the modeled transfer function for 

the SBRs and DBRs. 
 

 
Figure 5. Validation of the model for the reflection 

coefficients of the SBRs, the reflection coefficient in dB vs. 

the incidence angle. 
 

Since Probability Distribution Function [4] can be used in 

finding correlation and decorrelation distances [23], , we 

selected the sample size as discussed in [18] by assuming 

that each unit i  element in U  has a prescribed inclusion 

probability, so we didn’t depend on an estimated surface an 

in [18], and we depended on analysis of scattered multipath 

component (SMC), through scattered ray geometry , that 

gave us the ability to observe the significant scatterer 

distribution, that are due to flooding of frames at the MAC 

[24] layer, and it’s power observation through the transfere 

function and scattering coefficients. So this gave us the 

ability to identify and know the sparsity promoting parameter 

and measuring the angle of arrival as in [9] with reduced 

secondary lobes that are caused by the uncertainty of sparsity 

promoting parameter 

According to the difference between what we have proposed 

and previous researches is that we showed how to enhance 

the accuracy of detection by depending on real geometry of 

scatterers, and not estimated surface as in [10]. In our 

research and experiment we showed the enhancement of the 

way of detection and localization of multiple adversaries 

than previous researches, through measurement of angle of 

arrival and it’s beam width, and from the concept of vectors 

and signal directionality and coherence, instead of previous 

methods due to co location problem.  

6. The Experiment 

We have used Optimized Network Engineering Tool 

(OPNET) in creating a radio dynamic network topology. 

Figure 6(a) shows the simulation was designed through 

parametric simulation to show the difference in signal to 

noise ratio in case of directionality and isotropic wireless 

radio stationary nodes, through the well spread, and good 

designed sampling, and the mobile radio wireless node that 

represents the spoofed node in our simulation experiment. 

Figure 6(b) shows the locations where the adversary was 

closest to the receiving node. We have used also the antenna 

pattern editor to create directional antenna pattern so that we 

could determine and show the power gain by which the 

signal was received in the direction of the transmitter of 

interest. 

A legal transmitting wireless node was created to send 

frames to the wireless receiver node with a uniform strength 

in all directions without any interference from the adversary. 

An antenna pattern, with a gain of 50 dB in one direction and 

a gain of 0 dB in all other directions (directional antenna) 

was created to use it at the wireless receiver node to see its 

affect while receiving spoofed frames coming from the 

adversary node while it was in motion, and see the affect 

when receiving malicious frames from this adversary with 

isotropic antenna versus directional antenna. 
 

 
Figure 6 (a) shows the jammer in motion towards closest 

position relative to the receiver 
 

 
Figure 6 (b) Closest position of jammer relative to receiver              

The difference between the attack scenario and the other 

legal scenario was shown by the adversary node which sends 

frames that are different in the modulation also, and so 

appeared to be noise to the receiver and changes the power 

of legal frames when receiving them. 
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The scenario also was held while the attacker was in motion 

towards to and away from the receiver node. And this 

increased and decreased the interference at receiver. And 

results of bit error rate, throughput, and received power 

statistics in case of directional antenna pattern at receiver 

antenna gain (power coupled statistics) were recorded. 

Figure 7(a) records results of the bit error rate, throughput, 

and received power statistics for the isotropic antenna, with 

respect to time, and adversary node and transmitter node 

positions. 

Figure 7(b) and figure 7(c) diagrams shows that received 

power Coupled Statistics of the isotropic gain antenna in 

receiver. Received power from the transmitter is constant, 

which is expected since both transmitter and receiver are 

fixed nodes. The received power from the jamming node 

follows a similar pattern as the bit error rate in figure 7(a) in 

that it reached a maximum when the distance between the 

jamming node and the receiver is smallest. Note that the two 

humps matched the two locations when the jamming node is 

closest to the receiver           

               
              Figure 7(a) shows the bit error rate, 

               At the receiver in presence of jammer 
 

 
Figure 7(b) shows the received power statistics from the 

               Jammer directional antenna  
 

 
Figure 7(c) shows the received power statistics from the 

legal stationary isotropic antenna. 

 

Figure 7(d) shows the statistics of packets received from the 

stationary transmitter node  

Once again from figure 7(a) and 7 (b), the bit error rate 

pattern matches the received power from the jamming node. 

The very large power values from transmitter and jamming 

node are due to the 50dB gain provided by the antenna 

pattern of the jammer.  

The bit error rate at the receiver node is non-zero initially as 

the distance between the jamming node and receiver node 

decreases, as in figure 7(a)  

However, after about 1 minute, the direction vector between 

the jamming antenna and the receiver antenna was no longer 

in line with the direction of greatest gain for the receiver 

antenna. So, the receiver node stopped receiving interference 

from the jamming node and the bit error rate at the receiver 

dropped to 0. This drop dramatically increased the number of 

packets received (power at figure 7(c)) from the stationary 

transmitter node (as seen in the graphs 7(a), and 7 (d)  

After about 6 minutes, the jamming node comes back into 

the antenna's cone, at which point the bit error rate increases 

and the number of packets received first drops (as the 

jamming node approaches the receiver), then increased again 

(as the jamming node got far). Once the jamming node 

leaves the antenna's cone, the bit error rate drops back to 0. 

When comparing our results to figure 8 [4], we have found 

that it has the maximum peaks that can be used to get an 

estimate 
Q
ˆ

 for actual number of paths. 
 

The following diagram in figure 8 shows the power level 

peaks with respect to time ,representing variation between 

the power delay spectrum and it’s trend (strength variation 

between local maximums – the pattern of beam width)). 

 
Figure 8. maximum peaks for number of paths 

 

1-In our contribution, we depended on evaluation of the joint 

pdf in the range angle of scatterers with significant hight 

power values, because we depended on the periodogram of 

the signal with only high power values instead of the 

periodogram of the whole signal (equations 10-12), and 

assessed the local interval of realizations generation at stage 

1 and 2. And so getting angle-delay pairs, and vector 

realizations 
)()( rr

and  that can be generated using the 

multidimensional distribution ( ) ,  by generating 

Q independent couples ( )
r

q

r

q
,  using ḡ ( ) ,,  that 

depends on the periodogram of the signal with only high 

significant power level, and so decreasing the time of 

evaluation and also errors coming from unwanted secondary 

lobes and other un significant power. The following diagram 

in figure 9a shows the periodogram of an ordinary signal and 

figure 9b shows the periodogram of a jammed signal. 
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                Figure 9a. periodogram of ordinary signal 
 

 
                Figure 9b. periodogram of a jammed signal 
 

In stage 2 at equation (39) and (40), we depended on getting 

the candidate angles within a defined range angle that has 

only scatterrers with highest power level instead of the whole 

range angle defined in [9] as  [−π/2,π/2] for Uniform Linear 

Arrays (ULAs), and [0,2π] for Uniform Circular Arrays 

(UCAs). The following diagram in figure 10 shows the range 

angle of two signals. One signal originates from 30 degrees 

azimuth and has a power of 10 W. A second incoming signal 

originates from 60 degrees azimuth and has a power of 5 W. 

The two signals are not correlated with each other, and the 

noise is white across all array elements, and the SNR is 10 

dB. 
 

 
  Figure 10: two signals that are not correlated to each other 

7. Conclusion 

We depended in adversary detection and localization on 

Importance Sampling-based Maximum Likelihood Joint 

Angle Delay Estimation (IS-based ML JADE), but in shorter 

time of estimation, and less complexity, and in more defined 

range of angles, as table 1 shows: 

It was observed that the signal began to be changed its power 

from the angle 20 degree to angle 40, so we have to generate 

realizations, estimate number of paths, time delays and angle 

of arrivals at the range of angles from 20 to 40, so we have 

to: 

1-scan the surrounded area defined in [−π/2,π/2] for ULAs 

and [0,2π] for UCAs  

2-get scatterers with highest significant power and define 

their locations as in equation (6), depending on the distance 

between them and the receiver. 

3-get their multipath range and range angle. 

4-Generate realizations in the range of newly defined angles, 

estimate time delays and angle of arrivals and number of 

paths as in [9], but in the range of newly defined angles. 
 

Table 1. Comparison between our method and IS-based 

ML JADE method 

 IS-based  ML JADE Our method 

Range  of 

estimation 

[0,2π] [20,40] 

Number of 

estimation 

times at 

worst case 

(2π/(
][

.
ˆ m

MLEq =5))=72 

estimation times 

(20/(
][

.
ˆ m

MLEq =5))=4 

estimation times 

only 

Root Mean 

Square error 

calculation 

times (for 

time delays 

and Angle 

of arrival) 

][

.
ˆ m

MLEq =5 

][

.
ˆ m

MLEq =10 

       . 

       . 

       . 
][

.
ˆ m

MLEq =40  

 

(40 times  )    

][

.
ˆ m

MLEq =20 

][

.
ˆ m

MLEq =25 

       . 

       . 

       . 
][

.
ˆ m

MLEq =40 

 

(20 times only) 
 

The proposed solution studied the case of launching the 

jamming while MAC address spoofing taking into 

consideration the range and anglerange, and directionality. In 

some researches, the attack detection by the QOS 

degradation was studied. Specification (like the bit error rate 

and throughput) that mainly depends on the protocol used to 

launch the communication process at the data link layer was 

used to infer the influence of the attack on the 

communication process. These observations can be assessed 

by measuring downlink flooding of the spoofed stream of 

frames. But we used Angle of Arrival localization and 

directionality of vectors at the physical layer, to localize the 

adversary, while overcoming of drawbacks of other detection 

and localization techniques that were discussed above . The 

trade off may come from the time elapsed to begin the 

operation of the detection system, but if we ensured that it 

would begin with the communication process, it would give 

better results. 
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