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Abstract:  This paper presents an area efficient and high-speed 

FPGA implementation of scalar multiplication using a Vedic 

multiplier. Scalar multiplication is the most important operation in 

Elliptic Curve Cryptography(ECC), which used for public key 

generation and the performance of ECC greatly depends on it. The 

scalar multiplication is multiplying integer k with scalar P to 

compute Q=kP, where k is private key and P is a base point on the 

Elliptic curve. The scalar multiplication uses underlying finite field 

arithmetic operation i.e. addition multiplication, squaring and 

inversion to compute Q. From these finite field operations, 

multiplication is the most time-consuming operation, occupy more 

device space and it dominates the speed of Scalar multiplication. 

This paper presents an efficient implementation of finite field 

multiplication using a Vedic multiplier.  The scalar multiplier is 

designed over Galois Binary field GF(2233) for field size=233-bit 

which is secured curve according to NIST.  The performances of 

the proposed design are evaluated by comparing it with Karatsuba 

based scalar multiplier for area and delay. The results show that the 

proposed scalar multiplication using Vedic multiplier has 

consumed 22% less area on FPGA and also has 12% less delay, 

than Karatsuba, based scalar multiplier. The scalar multiplier is 

coded in Verilog HDL, synthesizes and simulated in Xilinx 13.2 

ISE on Virtex6 FPGA.  
 

Keywords: Elliptic curve cryptography, Scalar multiplication, 

Karatsuba multiplier, Vedic multiplier, FPGA.  
 

1. Introduction 
 

Elliptic Curve Cryptography is public key cryptography 

proposed by Miller and Koblitz in 1985. ECC is gaining 

acceptance for implementing security standards in place of 

well-known RSA, DES cryptography algorithm. In ECC 

smaller key size provides more security i.e. 160-bit key 

provides the same security level compare with the 1024-bit 

key of RSA. Due to the above feature, this cryptosystem is 

suitable for devices, which is having less computation 

power, limited storage, and limited battery backup. 

Following Elliptic curve cryptosystem protocols are 

available for Key generation, Key exchange, Digital 

Signature, and data encryption; 

• Elliptic Curve Diffie Hellman (ECDH) 

• Elliptic Curve Digital Signature Algorithm (ECDSA) 

• Elliptic Curve Integrated Encryption System(ECIES) 

In the above ECC protocols, scalar multiplication is used for 

a public key generation at the sender and receiver end. The 

performance of the ECC protocol greatly depends on the 

efficient implementation of the scalar multiplication 

operation.  

In Elliptic Curve Cryptography scalar multiplication is the 

most focused part for the optimization. Many authors have 

proposed different techniques for optimizing scalar 

multiplication operation. According to literature, 

optimization can be achieved at a different level of scalar 

computation. The author has proposed different approaches 

for optimizing scalar multiplication In the first approach the 

author has presented several techniques to reduce the 

number of iteration of computing point addition and point 

doubling operation.  This can be achieved by representing 

the scalar k, in such a way that it reduces the hamming 

weight of inter k. This will reduce the number of iteration of 

point addition and point doubling operation.  

In [1][2] the author presents methods based on this approach 

which is discussed in section 2.   

In the second approach, the optimization can be done at the 

bottom level by the fast and efficient implementation of 

underlying finite field operation such as addition, 

multiplication, squaring and inversion. From the above finite 

field operation, multiplication, inversion is the most time-

consuming operation and it also occupies more device space.  

In [3] the author have proposed and implemented finite field 

multiplier using Binary, Simple, General and Hybrid 

Karatsuba multiplier over the projective coordinate system. 

The result shows that the Hybrid Karatsuba multiplier is 

more area efficient than other design.  

In [4] Elliptic Curve scalar multiplier architecture for field 

size 163-bit has presented, the delay is reduced by adopting 

the pipeline strategy to implement point addition, point 

doubling, and Karatsuba multiplier. The architecture uses 3, 

4 stage pipelining for ECSMA.  

 In [5] author proposed high speed architectures to 

implement point multiplication on binary Edwards and 

generalized Hessian curves. They perform a data-flow 

analysis and investigate maximum number of parallel 

multipliers to be employed to reduce the latency of point 

multiplication on these curves. Then, they modify the 

addition and doubling formulations and employ a newly 

proposed digit-level hybrid-double Gaussian normal basis 

multiplier to remove the data dependencies and hence reduce 

the latency of point multiplication. The results show that the 

proposed schemes improve the performance of point 

multiplication on binary Edward and generalized Hessian 

curves. 

In [6] author has proposed a Hybrid Karatsuba Multiplier 

which requires least amount of space on a FPGA. 

Comparison shows that the proposed Hybrid Karatsuba 

Multiplier requires lesser number of gates compared with the 

conventional approach. 

In [7] author has reorganized and reordered the critical path 

of the Lopez-Dahab scalar point multiplication architecture 

such that logic structures are implemented in parallel and 

operations in the critical path are diverted to noncritical 
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paths. The proposed design is more area and delay efficient 

than existing design. 

In[8] author proposed new high-speed pipelined application-

specific instruction set processor (ASIP). Different levels of 

pipelining were applied to the data path to explore the 

resulting performances and find an optimal pipeline depth. 

Three complex instructions were used to reduce the latency 

by reducing the overall number of instructions, and a new 

combined algorithm was developed to perform point 

doubling and point addition using the application specific 

instructions. This approach reduces the overall delay of 

scalar multiplication. 

In [9] author presents an implementation of Elliptic Curve 

components i.e. Point addition and Point Doubling over 

binary field GF(2233) and presented the device utilization of 

the design.  

In [10] author A high-performance architecture of elliptic 

curve scalar multiplication based on the Montgomery ladder 

method over finite field GF(2m) is proposed. A pseudo 

pipelined word-serial finite field multiplier, with word size 

w, suitable for the scalar multiplication is also developed. 

A high-performance scalar multiplication scheme based on 

the Montgomery scalar multiplication algorithm has been 

proposed. The proposed scheme has been optimized to be 

dependent only to the number of FF multiplications. It hides 

the multiplier’s overhead and prevents a pipeline multiplier 

from stalling. 

The proposed scheme performs a scalar multiplication in 

25(m-1) clock cycles, which is approximately 2.75 times 

faster than a straightforward implementation and 1.6 times 

faster than the best implementations reported in this category 

in the open literature. 

In [11] author reduces the computational complexity by 

proposing an novel modified Lopez-Dahab scalar point 

multiplication and left-to-right algorithms for point 

multiplication operation. Further bit-serial Galois-field 

multiplication is used in order to decrease hardware 

complexity and field multiplication operations are performed 

in parallel to improve system latency. The  result, shows it 

reduces hardware costs, while the total time required for 

point multiplication is kept to a reasonable amount.  

In this paper, we have proposed the finite field multiplication 

operation using a Vedic multiplier for scalar multiplication. 

For performance evaluation of the proposed scheme, we 

have implemented scalar multiplication using Hybrid 

Karatsuba multiplier and comparative analysis of multiplier 

are presented for area and delay. The scalar multiplier is 

coded using Verilog HDL and implemented on Virtex6 

FPGA in Xilinx 13.2 ISE. 

In the rest of the paper, Section 2 presents the detailed 

working of Scalar multiplication.  Section 3 presents the 

mathematical background of Karatsuba and Vedic 

multiplier. FPGA Implementation of scalar multiplication 

for binary field GF(2233) is discussed in Section 4. In section 

5 we have discussed the implementation results. Section 6 

presents the conclusion. 

 

 
 

2. Scalar Multiplication 
 

Scalar multiplication is one of the most important operations 

and basic operation in Elliptic curve cryptography[12]. The 

scalar multiplication is computing Q=kP, where k is an 

integer and P(x1,y1) and Q(x2,y2) are the points on an Elliptic 

curve.  

The scalar multiplication has the form; 

                                      Q=kP                                            (1) 

This can be calculated by adding point P exactly k-1 times 

itself which is shown in equation 2. 

                 Q= P+P+………..+ P ( k times)                        (2) 

The security of ECC depends on the difficulty of Discrete 

Logarithm Problem (DLP), which is finding k from given P 

and Q. Practically it is very difficult to find k if P and Q are 

known.  

Scalar multiplication plays an important role in computing 

public key Q. It is a multiplication of integer k with scalar P. 

Figure 1 shows the layer model of scalar multiplication for 

computing Q. 
 

 

 

 

 

 

 

 

Figure 1. Layer model for Elliptic curve scalar 

multiplication. 

 
Figure 2. Architecture of ECC scalar multiplication 

 

In this paper, we have proposed new Scalar multiplier 

architecture using Vedic mathematics which is shown in 

Figure 2.  The ECC Scalar architecture consists of the 

Control unit (ALU) which calls ECADD and ECDBL. 

ECADD and ECDBL operation computes new Q(x,y) 

coordinate values using arithmetic instructions and finite 

field arithmetic operations. 

The scalar multiplication calls point addition and points 

doubling repeatedly based on k for computing Q. While 

computation integer k is represented in binary 

representation; the multiplication cost depends on the length 

of k and the number of 1’s in binary representation. In binary 

representation, if the bit is 1 then point addition and point 

doubling perform. If the bit is 0 then we only perform point 
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doubling operation. Representing k,  in such a way that it 

reduces 1’s reduces the number of point doubling and 

addition operation, it improves the speed of scalar 

multiplication.  

This can be achieved by reducing the hamming weight of the 

k. In [1] the author presents the following scalar   

multiplication methods and evaluated the computational cost 

for each method: 

• Left to right Binary Method 

• Right to left Binary method 

• Non-Adjacent Form(NAF) 

• Window-NAF method (wNAF) 

• Mutual Opposite Form(MOF) 

• Shamir Method–Parallel Computation 

• Joint Sparse Form(JSF) 

• Direct Doubling 

• Double Base Number System (DBNS) 

• Sliding NAF method 

• Binary Windowing method 

• Montgomery method 

Algorithm1 shows the steps to compute Q using Point 

doubling and Point Addition operation[1].  

Algorithm1: ECC Scalar multiplication  using 

Left to Right Binary  

Input:  

          Integer k ≠ 0 , (kn-1, …,k1, k0)2 

          Base point P(x1,y1) ϵ E. 

Output: Q=kP 

Begin 

Q = O  

        for i= n-2 downto 0 do 

             Q=2Q ( Point Doubling: ECDBL) 

         if (k=1) then 

            Q=P+Q  (Point Addition:ECADD) 

     end 

      end  

Return(Q) 

end 
 

For a given point P(x1,y1), Q(x2, y2) on an Elliptic curve, 

Point Addition (ECADD) and Point Doubling (EDDBL) of 

scalar multiplication are computed using following formulas, 

resulting in new point R=(x3,y3) in the Affine coordinate 

system. 

                    ECADD:  if  P≠Q                                    (3) 

                        x3=2-x1-x2 

            y3=(x1-x3)-y1 

           = y2-y1/x2-x1                                    

                    ECDBL: if  P=Q                                              (4) 

x3=2-2x1                                       

                 y3=(x1-x3)-y1 

  = 3x1
2+a/2y1   

 

If P≠Q then points addition will perform, and if P=Q, then 

point doubling operation will be called. The result of point 

addition or doubling results a new points R will always be 

another point on the Elliptic curve. Figure 3 shows point 

addition and Figure 4 shows the doubling operation on the 

elliptic curve to get third point R on the curve.           

 

 

                                                     

                                      

 

        

                  

 

 

 

 

Figure 3. Point addition: R=P+Q. 
 

                                                                     
Figure 4. Point doubling: R=2P. 

 

3. Karatsuba and Vedic Multiplier for Finite 

Field Multiplication 
 

Multiplier plays a vital role in digital circuit design. Among 

all the arithmetic operation, multiplication is the most 

expensive operation. The computational time for 

multiplication depends on the size of multiplier and 

multiplicand. For large numbers, the naïve multiplier is not 

suitable. In digital design, different multipliers i.e  Array, 

Booth, Wallace- Tree[13], Dadda, and Karatsuba are used 

for performing the multiplication operation.  In [6][14] the 

author has analyzed different multipliers and its variations 

for their performance. In this section, we will present the 

working of Karatsuba multiplier and a Vedic multiplier.   
 

3.1 Karatsuba multiplier 
 

The Karatsuba multiplier works on divide and conquers 

method for multiplying two numbers. The Karatsuba 

multiplier breaks the large number into smaller numbers and 

algorithm called recursively for subpart for performing 

multiplication. It works on the linear and polynomial 

function as well. In [6] the author has evaluated Padded, 

Binary, Simple and Generalized Karatsuba multiplier and 

proposed a new Hybrid Karatsuba multiplier using Simple 

and Generalized Karatsuba multiplier. Generalized 

Karatsuba multiplier is more area efficient compared with 

other design. In this section, we will discuss the Simple, 

Generalized and Hybrid Karatsuba multiplier.  

The multiplications of two n-bit number perform using three 

multiplications and add operations. Consider x and y are two 

n-bit numbers of any base (base-2 or base-10) and the 

multiplication of these numbers using Karatsuba multiplier 

are performed using the following formulas. The numbers 

are divided into Higher and Lower bits. The High bit 

represent using H and L represents a Lower bit. 

                  a= xHyH 

                  d= xLyL 

                  e= (xH+ xL)(yH+yL)-a-d     

                  xy=abn+ebn/2+d                             (5) 

R=(x3,y3

) P=(x1,y1) 

P(x1, 

y1) 

Q(x2, 
y2) 

R(x3, 

y3) 

R(x3, 

y3) 
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The above requires only three multiplications and multiplier 

called recursively until the number being multiplied is a 

single digit number. 

3.1.1 Method for Polynomial Multiplication 
 

The Karatsuba multiplier can also be used for multiplication 

of polynomials. The finite field multiplication for two 

polynomial of degree-n  A(x) and B(x) ϵ GF(2n)  is defined 

as   

                              C(x)=A(x)B(X)         (6) 

The n-bit multiplicand of equation (6) is divided into two 

term polynomials and multiplication is perform using three 

n/2 multiplication which shown below[6]. 

    C(x) =(Ahxn/2 + Al)(Bhxn/2 + Bl) 

            =AhBhxn+(AhBl+ AlBh)xn/2+AlBl         

            =AhBhxn+((Ah+Al)(Bh+Bl)+AhBh+AlBl)xn/2 +AlBl 

3.1.2 Hybrid Karatsuba Multiplier 
 

The Hybrid Karatsuba multiplier[6] is designed using simple 

and General Karatsuba multiplier which is shown in Figure 

5. 

 
Figure 5. Hybrid karatsuba multiplier. 

 

In Hybrid multiplier, the initial multiplication for all large 

multiplication is done using Simple Karatsuba Multiplier 

and final small multiplication performs using General 

Multiplier. The author has implemented 233-bit Hybrid 

multiplier on FPGA.  The result shows that 233-bit Hybrid 

multiplier is more area efficient, but relatively slower than 

other Karatsuba design.  Let's consider an example of a 4 

digit Karatsuba multiplier, 

Compute 1234*4321, the subproblems will be, 

a1=12*43 

d1=34*21 

e1=(12+34)*(43+21)–a1–d1 = 46*64–a1–d1 

The first subproblem will be, 

a1=12*43 

This has the following sub problems, 

a2=1*4=4 

d2=2*3=6 

e2=(1+2)(4+3)–a2–d2 =11 

Answer: 4*102+11*10+6=516 

The Second sub problem is, 

d1=34*21 

This has the following sub problems, 

a2=3*2=6 

d2=4*1=4 

e2=(3+4)(2+1)–a2–d2 = 11 

Answer:6*102+11*10+4=714 

The Third sub problem is, 

e1=46*64–a1–d1 

This has the following sub problems, 

a2=4*6=24 

d2=6*4=24 

e2=(4+6)(6+4)–a2–d2 = 52 

Answer:24*102+52*10+24-714 -516 = 1714 

And the final answer is, 

1234*4321=516*104+1714*100+714 

= 5,332,114 

This is how Karatsuba multiplier works for large numbers. 
 

3.2 Vedic multiplier  
 

Jagdguru Shakarachraya Bharti Krishna Teerthaji Maharaj 

proposed different simple methods for all mathematical 

calculations.  Any mathematical calculations perform using 

Vedic mathematics is simple to implement and faster.  The 

Vedic multiplier is more area and delays efficient than other 

multipliers[13].  Jagdguru Shakarachraya proposed 16 sutras 

and 13 sutras for Vedic mathematics from Athrav Veda. Out 

of this 16 sutras following two sutras are used for 

multiplication of two numbers. 

i. Nikhilam Navatascaramam sutra 

ii. Urdhva –Tiryagbhyam sutra 

Among this Urdhav-Triyagbhyam sutra is more efficient. In 

our scalar multiplication, we perform finite field 

multiplication operation using Urdhav-Triyagbhyam. The 

Urdhav-Triyagbhyam multiplication technique can be 

directly applied for decimal and binary number. 
 

3.2.1 Urdhva Tiryagbhyam 
 

Urdhva–Tiryagbhyam sutra is one of the 16 Vedic sutras 

which perform the multiplication operation of two 

numbers[15]. The multiplication technique which is used in 

this sutra is a general technique, which can directly be 

applied to a decimal, binary, small and large number. The 

beauty of this sutra is that the same multiplication method 

can be directly applied to decimal as well as binary numbers. 

“Urdhva” means vertically and “Tiryagbhyam” means 

crosswise, therefore, it is also called as Vertically and 

Crosswise algorithm[15]. Figure 6 shows steps for 

multiplication of two 3-digit decimal numbers using 

vertically and crosswise method and Figure 7 shows an 

alternative method for multiplication of two 4-digit using 

Urdhva–Tiryagbhyam sutra [4]. 

 
Figure 6. Multiplication of two decimal numbers 

 vertically and crosswise technique. 
 

 
Figure 7. Multiplication of two decimal numbers. 
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To demonstrate the working of a typical Vedic 

multiplication algorithm, consider the multiplication of two 

numbers 42*21[12]. The following steps perform this: 

Step1. Multiply the 2 highest digits (4 and 2), which will be  

             resulting in an 8. 

Step2. For the next higher digit, cross multiply 4*1 (4) and   

            2*2 (4), and add together, producing the middle digit  

            of number 8. 

Step3. For the lowest digit, multiply the 2 lowest digits   

            (1*2) together, resulting in a 2. 

Step4. Put all of the digits together to produce your answer   

            using the Vedic multiplier which is 882 

One thing that can and should be noted here is that the order 

in which you go through for the Vedic process does not 

actually matter. So, we can similarly start with the lowest 

digit and work our way up to the highest digit.  
 

3.2.2      Algorithm for 4x4 Vedic Multiplier  
 

The multiplication steps for 4x4 multiplier using vertically 

and crosswise technique is given below. Consider two 4-

digit numbers for multiplication of any base 

A= a3a2a1a0 

B= b3b2b1b0 

Step1:    s0= a0*b0 

Step2: c1s1= a0*b1+a1*b0 

Step3:  c2s2= a0*b2+a1*b1+a2*b0+c1 

Step4:  c3s3= a0*b3+a1*b2+a2*b1+ a3*b0+c2 

Step5:  c4s4= a1*b3+a2*b2+a3*b1+c3 

Step6:  c5s5= a2*b3+a3*b2+c4 

Step7:  c6s6= a3*b3 + c5 

Step8:  Arrange the digit c6s6s5s4s3s2s1s0 to get final result.  
 

Once 4x4 multiplier is designed than this multiplier is used 

recursively to design 8x8, 16x16, 32x32 and higher bit 

multiplier. 
 

4. FPGA Implementation of Scalar 

Multiplication  
 

Scalar multiplication involves multiplication of a scalar 

quantity with a vector quantity, which results in a vector 

output. This type of multiplication is the most basic 

operation in the field of vector computation and is used in 

point multiplication based applications like encryption using 

ECC. Scalar multiplication usually involves multiple normal 

multiplications in order to produce the vector result. The 

following diagram shows the operation of the scalar 

multiplication.  
 

 

 
Figure 8. Scalar multiplication using simple multiplier. 

 

From Figure 8, we can see that for an N dimension vector, 

we need N simple multiplier instances. Thus as the 

dimension of the vector quantity increases, the number of 

multipliers increase linearly. If the complexity of a simple  

multiplier is O(n), then for an N dimension vector, the scalar 

multiplier complexity will be N*O(n), similarly, the area and 

power of the scalar multiplier follow the same pattern. Thus 

it is essential to optimize the simple multiplier unit in order 

to optimize the performance of the scalar multiplier. 

Generally, Karatsuba multiplier is used as the basic building 

block for the scalar multiplier, the Karatsuba multiplier has 

many advantages including but not limited to, 

• Increased speed of operation when compared to shift 

and add method 

• Less number of computations, thus less area when 

compared to shift and add method 

• Low power consumption 

But, the performance of the Karatsuba based scalar 

multiplier can be further enhanced by using a Vedic 

multiplier in place of the Karatsuba multiplier. The Vedic 

multiplier based scalar multiplication diagram can be 

represented as follows, 
 

 
Figure 9. Scalar multiplication using vedic multiplier 

 

Figure 9 shows; we have replaced the existing normal 

multiplier with the Vedic multiplier. The Urdhva 

Tiryakbhyam sutra is used, which is described in the 

previous section. Using the Vedic multiplier for scalar 

multiplication design gives the following advantages, 

• Delay of the Vedic multiplier is one clock cycle, thus 

the scalar multiplication happens very quickly 

• The power consumption of the circuit reduces as the 

number of clocks for which the circuit is active is 

reduced to 1, thereby reducing the overall energy 

requirement of the system 

• Vedic multiplier uses less number of operations when 

compared to the Karatsuba multiplier, thus the overall 

area of the scalar multiplier reduces drastically 
 

Figure 10, shows schematic diagram of a 2x2 Vedic 

multiplier, 

 
Figure 10. Schematic of 2x2 vedic multiplier using  

two half adder. 
 

Figure 10, shows the operation of straight and cross as 

defined by the Urdhva Tiryakbhyam sutra is performed. First 

the values a0 and b0 are ANDed (straight), then the values 

a1, b0 and a0, b1 (cross) are ANDed and their respective 

products are XORed in order to get the sum and carry. 

Finally a1, b1 (straight) are ANDed and XORed with the 

previous carry to get the final MSB bit. 
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The combinations of 4 Vedic multipliers of 2 bits, along 

with 4-bit adders are sufficient to produce a complete 4-bit 

multiplier. The block diagram for a 4-bit multiplier can be 

seen in the following figure, 
 

 
Figure 11. 4-bit vedic multiplier using four 2x2 multipliers. 

 

In Figure 11, the 2x2 multiplier is the same Vedic multiplier, 

which was previously described. In the 4x4 multiplier, we 

use the same Urdhva Tiryakbhyam sutra, which first 

multiplies LSBs of X and Y, then MSB of  X with LSB of Y, 

& LSB of  X with MSB of Y, and then finally MSB of X and 

Y. The final result is shown from the P vector in the above 

figure. The complete operation doesn't require any recursion 

(like Karatsuba multiplier), and thus the entire 4 bits get 

multiplied in a single clock cycle. There by reducing the 

delay of the system to 1 clock cycle. A similar process is 

applied for 8x8, 16x16 and NxN Vedic multiplier in order to 

perform parallel multiplication. Due to simplicity in 

construction, the power and area requirements of this design 

are less too. Based on these advantages, we evaluated the 

performance of the Vedic multiplier based scalar multiplier 

and obtained some very interesting results which are 

described in the next section.  
 

5. Implementation Results 
 

This section present implementation results of Scalar 

multiplication using Karatsuba Multiplier and Vedic 

multiplier. The scalar multiplier is designed for the binary 

field for 233-bit GF(2233) which is secured curved 

recommended by National Institute of Standards 

Technology(NIST) recommended in his Federal Information 

Standards(FIPS) 186-3[16]. The Curve value of  Curve 

constant b and base point will be taken from the above 

standard document is as given below[16]. 
 

Curve B-233 

Curve Constant  

b = 066 647ede6c 332c7f8c 0923bb58 213b333b 20e9ce42  

      81fe115f 7d8f90ad  

Base Point P(x, y) 

Gx = 0fa c9dfcbac 8313bb21 39f1bb75 5fef65bc 391f8b36  

          f8f8eb73 71fd558b  

Gy = 100 6a08a419 03350678 e58528be bf8a0bef  

          f867a7ca36716f7e 01f81052  
 

The 32-bit key is used in this design, which is k in scalar 

multiplication used as a private key in ECC.  The arithmetic 

and logic unit (ALU) for Scalar multiplier which calls 

Karatsuba and the Vedic multiplier is designed using Verilog 

HDL and implemented on Virtex6 FPGA in Xilinx 13.2 ISE. 

The Synthesis,  PAR reports are used to get the device 

utilization and delay of the design. Table 1, shows the device 

utilization summary of Karatsuba and Vedic based Scalar 

multiplier. 
 

Table 1. Device utilization comparison of karatsuba and 

vedic scalar multiplier. 
 

Device Utilization Summary 
 
 

Area 

reduction  
Slice logic 
utilization 

Scalar 
using 

Karatsuba 

multiplier 

Scalar 
using 

Vedic 

multiplier 

No of 
devices 

availab

le 

Number of Slice 

Registers 
48 37 

948,48

0 
22.92 % 

Number of Slice 

LUTs 
3016 2761 

474,24

0 
8.45% 

Number of 
occupied Slices 

999 832 
118,56

0 
16.72% 

Number of LUT 

Flip Flop pairs 
used 

3016 2764  8.36% 

Number of 
bonded IOBs 

501 501 1,200  

Average Fanout 
of Non-Clock 

Nets 

3.33 2.83   

 

 

Figure 12. Comparison of device utilization  

for karatsuba and vedic scalar multiplier. 
 

In Table 2, we have presented the delay comparison of 

Karatsuba and Vedic based Scalar multiplier.  The 

combinational path delay of the Vedic multiplier is 0.984ns, 

which is less compared with Karatsuba multiplier 1.117ns. 

Based on maximum combinational path delay parameter 

Vedic multiplier based scalar multiplier is 12% more delay 

efficient compared with Karatsuba multiplier.  
 

Table 2. Delay comparison of karatsuba and vedic scalar 

multiplier.  

Delay parameters 

Scalar 
multiplication  

using Karatsuba 

multiplier 

Scalar 
multiplication 

with Vedic 

multiplier 

Performan
ce 

improvem

ent in  

Minimum period 1.895ns 0.895ns 52.77% 
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Minimum input 

arrival time 

before the clock 

1.438ns 1.267ns 11.89% 

Maximum output 
required time 

after the clock 

2.920ns 1.376ns 52.88% 

Maximum 

combinational 

path delay 

1.117ns 0.984ns 11.91% 

 

 

Figure 13. Delay comparison of karatsuba and vedic scalar 

multiplier. 
 

The test-bench is created for testing the design and design is 

simulated using ISim simulator. Both the scalar multiplier 

design are tested with the same data set on Virtex6-

xc6vlx760-ff1760 FPGA device.  Figure 14 and Figure 15, 

shows the simulation results of Scalar multiplier design.  The 

base point P(BPX, BPY), key[31:0] is key are the input for 

the design and Sx, Sy is the resultant values after Scalar 

multiplication. Initially clock signal is low and when it 

becomes high the multiplication operation is started and after 

completion of scalar multiplication, the status of the done 

signal is high. 

 
Figure 14. Simulation result of scalar multiplier using 

karatsuba multiplier. 

 
Figure 15. Simulation result of scalar multiplier using vedic 

multiplier. 

The Sx and Sy values received after Scalar multiplication is 

the public key Q used to encrypt the data in Elliptic Curve 

Cryptography.  
 

6. Conclusions 
  

The proposed work indicates that Vedic multiplier has 

definitive advantages when compared to Karatsuba 

multiplier. These advantages are utilized in our paper, and 

we proposed a scalar multiplier based on Vedic 

multiplication technique, which outperforms the Karatsuba 

based multiplier in terms of delay requirement, power 

consumption, and area requirements. We observe that the 

Vedic multiplier based implementation is nearly 12% more 

delay efficient than Karatsuba based implementation, and 

has 22% less device utilization. Due to which the overall 

power consumption also reduces. These advantages make 

the Vedic based scalar multiplication circuit more usable for 

low power and high speed embedded systems, and also 

allows for the given circuit to perform better when applied to 

high complexity applications like encryption and 

communication. In the future, we plan to integrate the 

optimized scalar multiplier with a highly complex elliptic 

curve cryptosystem and analyze its performance. 
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