
270
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

Hardware Implementation of Efficient Elliptic

Curve Scalar Multiplication using Vedic Multiplier

Rakesh K. Kadu1 and Dattatraya S. Adane2

1, 2Shri Ramdeobaba College of Engineering and Management, Department of Information Technology, Nagpur, India

1Yeshwantrao Chavan College of Engineering, Department of Computer Technology, Nagpur, India

Abstract: This paper presents an area efficient and high-speed

FPGA implementation of scalar multiplication using a Vedic

multiplier. Scalar multiplication is the most important operation in

Elliptic Curve Cryptography(ECC), which used for public key

generation and the performance of ECC greatly depends on it. The

scalar multiplication is multiplying integer k with scalar P to

compute Q=kP, where k is private key and P is a base point on the

Elliptic curve. The scalar multiplication uses underlying finite field

arithmetic operation i.e. addition multiplication, squaring and

inversion to compute Q. From these finite field operations,

multiplication is the most time-consuming operation, occupy more

device space and it dominates the speed of Scalar multiplication.

This paper presents an efficient implementation of finite field

multiplication using a Vedic multiplier. The scalar multiplier is

designed over Galois Binary field GF(2233) for field size=233-bit

which is secured curve according to NIST. The performances of

the proposed design are evaluated by comparing it with Karatsuba

based scalar multiplier for area and delay. The results show that the

proposed scalar multiplication using Vedic multiplier has

consumed 22% less area on FPGA and also has 12% less delay,

than Karatsuba, based scalar multiplier. The scalar multiplier is

coded in Verilog HDL, synthesizes and simulated in Xilinx 13.2

ISE on Virtex6 FPGA.

Keywords: Elliptic curve cryptography, Scalar multiplication,

Karatsuba multiplier, Vedic multiplier, FPGA.

1. Introduction

Elliptic Curve Cryptography is public key cryptography

proposed by Miller and Koblitz in 1985. ECC is gaining

acceptance for implementing security standards in place of

well-known RSA, DES cryptography algorithm. In ECC

smaller key size provides more security i.e. 160-bit key

provides the same security level compare with the 1024-bit

key of RSA. Due to the above feature, this cryptosystem is

suitable for devices, which is having less computation

power, limited storage, and limited battery backup.

Following Elliptic curve cryptosystem protocols are

available for Key generation, Key exchange, Digital

Signature, and data encryption;

• Elliptic Curve Diffie Hellman (ECDH)

• Elliptic Curve Digital Signature Algorithm (ECDSA)

• Elliptic Curve Integrated Encryption System(ECIES)

In the above ECC protocols, scalar multiplication is used for

a public key generation at the sender and receiver end. The

performance of the ECC protocol greatly depends on the

efficient implementation of the scalar multiplication

operation.

In Elliptic Curve Cryptography scalar multiplication is the

most focused part for the optimization. Many authors have

proposed different techniques for optimizing scalar

multiplication operation. According to literature,

optimization can be achieved at a different level of scalar

computation. The author has proposed different approaches

for optimizing scalar multiplication In the first approach the

author has presented several techniques to reduce the

number of iteration of computing point addition and point

doubling operation. This can be achieved by representing

the scalar k, in such a way that it reduces the hamming

weight of inter k. This will reduce the number of iteration of

point addition and point doubling operation.

In [1][2] the author presents methods based on this approach

which is discussed in section 2.

In the second approach, the optimization can be done at the

bottom level by the fast and efficient implementation of

underlying finite field operation such as addition,

multiplication, squaring and inversion. From the above finite

field operation, multiplication, inversion is the most time-

consuming operation and it also occupies more device space.

In [3] the author have proposed and implemented finite field

multiplier using Binary, Simple, General and Hybrid

Karatsuba multiplier over the projective coordinate system.

The result shows that the Hybrid Karatsuba multiplier is

more area efficient than other design.

In [4] Elliptic Curve scalar multiplier architecture for field

size 163-bit has presented, the delay is reduced by adopting

the pipeline strategy to implement point addition, point

doubling, and Karatsuba multiplier. The architecture uses 3,

4 stage pipelining for ECSMA.

 In [5] author proposed high speed architectures to

implement point multiplication on binary Edwards and

generalized Hessian curves. They perform a data-flow

analysis and investigate maximum number of parallel

multipliers to be employed to reduce the latency of point

multiplication on these curves. Then, they modify the

addition and doubling formulations and employ a newly

proposed digit-level hybrid-double Gaussian normal basis

multiplier to remove the data dependencies and hence reduce

the latency of point multiplication. The results show that the

proposed schemes improve the performance of point

multiplication on binary Edward and generalized Hessian

curves.

In [6] author has proposed a Hybrid Karatsuba Multiplier

which requires least amount of space on a FPGA.

Comparison shows that the proposed Hybrid Karatsuba

Multiplier requires lesser number of gates compared with the

conventional approach.

In [7] author has reorganized and reordered the critical path

of the Lopez-Dahab scalar point multiplication architecture

such that logic structures are implemented in parallel and

operations in the critical path are diverted to noncritical

271
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

paths. The proposed design is more area and delay efficient

than existing design.

In[8] author proposed new high-speed pipelined application-

specific instruction set processor (ASIP). Different levels of

pipelining were applied to the data path to explore the

resulting performances and find an optimal pipeline depth.

Three complex instructions were used to reduce the latency

by reducing the overall number of instructions, and a new

combined algorithm was developed to perform point

doubling and point addition using the application specific

instructions. This approach reduces the overall delay of

scalar multiplication.

In [9] author presents an implementation of Elliptic Curve

components i.e. Point addition and Point Doubling over

binary field GF(2233) and presented the device utilization of

the design.

In [10] author A high-performance architecture of elliptic

curve scalar multiplication based on the Montgomery ladder

method over finite field GF(2m) is proposed. A pseudo

pipelined word-serial finite field multiplier, with word size

w, suitable for the scalar multiplication is also developed.

A high-performance scalar multiplication scheme based on

the Montgomery scalar multiplication algorithm has been

proposed. The proposed scheme has been optimized to be

dependent only to the number of FF multiplications. It hides

the multiplier’s overhead and prevents a pipeline multiplier

from stalling.

The proposed scheme performs a scalar multiplication in

25(m-1) clock cycles, which is approximately 2.75 times

faster than a straightforward implementation and 1.6 times

faster than the best implementations reported in this category

in the open literature.

In [11] author reduces the computational complexity by

proposing an novel modified Lopez-Dahab scalar point

multiplication and left-to-right algorithms for point

multiplication operation. Further bit-serial Galois-field

multiplication is used in order to decrease hardware

complexity and field multiplication operations are performed

in parallel to improve system latency. The result, shows it

reduces hardware costs, while the total time required for

point multiplication is kept to a reasonable amount.

In this paper, we have proposed the finite field multiplication

operation using a Vedic multiplier for scalar multiplication.

For performance evaluation of the proposed scheme, we

have implemented scalar multiplication using Hybrid

Karatsuba multiplier and comparative analysis of multiplier

are presented for area and delay. The scalar multiplier is

coded using Verilog HDL and implemented on Virtex6

FPGA in Xilinx 13.2 ISE.

In the rest of the paper, Section 2 presents the detailed

working of Scalar multiplication. Section 3 presents the

mathematical background of Karatsuba and Vedic

multiplier. FPGA Implementation of scalar multiplication

for binary field GF(2233) is discussed in Section 4. In section

5 we have discussed the implementation results. Section 6

presents the conclusion.

2. Scalar Multiplication

Scalar multiplication is one of the most important operations

and basic operation in Elliptic curve cryptography[12]. The

scalar multiplication is computing Q=kP, where k is an

integer and P(x1,y1) and Q(x2,y2) are the points on an Elliptic

curve.

The scalar multiplication has the form;

 Q=kP (1)

This can be calculated by adding point P exactly k-1 times

itself which is shown in equation 2.

 Q= P+P+………..+ P (k times) (2)

The security of ECC depends on the difficulty of Discrete

Logarithm Problem (DLP), which is finding k from given P

and Q. Practically it is very difficult to find k if P and Q are

known.

Scalar multiplication plays an important role in computing

public key Q. It is a multiplication of integer k with scalar P.

Figure 1 shows the layer model of scalar multiplication for

computing Q.

Figure 1. Layer model for Elliptic curve scalar

multiplication.

Figure 2. Architecture of ECC scalar multiplication

In this paper, we have proposed new Scalar multiplier

architecture using Vedic mathematics which is shown in

Figure 2. The ECC Scalar architecture consists of the

Control unit (ALU) which calls ECADD and ECDBL.

ECADD and ECDBL operation computes new Q(x,y)

coordinate values using arithmetic instructions and finite

field arithmetic operations.

The scalar multiplication calls point addition and points

doubling repeatedly based on k for computing Q. While

computation integer k is represented in binary

representation; the multiplication cost depends on the length

of k and the number of 1’s in binary representation. In binary

representation, if the bit is 1 then point addition and point

doubling perform. If the bit is 0 then we only perform point

272
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

doubling operation. Representing k, in such a way that it

reduces 1’s reduces the number of point doubling and

addition operation, it improves the speed of scalar

multiplication.

This can be achieved by reducing the hamming weight of the

k. In [1] the author presents the following scalar

multiplication methods and evaluated the computational cost

for each method:

• Left to right Binary Method

• Right to left Binary method

• Non-Adjacent Form(NAF)

• Window-NAF method (wNAF)

• Mutual Opposite Form(MOF)

• Shamir Method–Parallel Computation

• Joint Sparse Form(JSF)

• Direct Doubling

• Double Base Number System (DBNS)

• Sliding NAF method

• Binary Windowing method

• Montgomery method

Algorithm1 shows the steps to compute Q using Point

doubling and Point Addition operation[1].

Algorithm1: ECC Scalar multiplication using

Left to Right Binary

Input:

 Integer k ≠ 0 , (kn-1, …,k1, k0)2

 Base point P(x1,y1) ϵ E.

Output: Q=kP

Begin

Q = O

 for i= n-2 downto 0 do

 Q=2Q (Point Doubling: ECDBL)

 if (k=1) then

 Q=P+Q (Point Addition:ECADD)

 end

 end

Return(Q)

end

For a given point P(x1,y1), Q(x2, y2) on an Elliptic curve,

Point Addition (ECADD) and Point Doubling (EDDBL) of

scalar multiplication are computed using following formulas,

resulting in new point R=(x3,y3) in the Affine coordinate

system.

 ECADD: if P≠Q (3)

 x3=2-x1-x2

 y3=(x1-x3)-y1

 = y2-y1/x2-x1

 ECDBL: if P=Q (4)

x3=2-2x1

 y3=(x1-x3)-y1

  = 3x1
2+a/2y1

If P≠Q then points addition will perform, and if P=Q, then

point doubling operation will be called. The result of point

addition or doubling results a new points R will always be

another point on the Elliptic curve. Figure 3 shows point

addition and Figure 4 shows the doubling operation on the

elliptic curve to get third point R on the curve.

Figure 3. Point addition: R=P+Q.

Figure 4. Point doubling: R=2P.

3. Karatsuba and Vedic Multiplier for Finite

Field Multiplication

Multiplier plays a vital role in digital circuit design. Among

all the arithmetic operation, multiplication is the most

expensive operation. The computational time for

multiplication depends on the size of multiplier and

multiplicand. For large numbers, the naïve multiplier is not

suitable. In digital design, different multipliers i.e Array,

Booth, Wallace- Tree[13], Dadda, and Karatsuba are used

for performing the multiplication operation. In [6][14] the

author has analyzed different multipliers and its variations

for their performance. In this section, we will present the

working of Karatsuba multiplier and a Vedic multiplier.

3.1 Karatsuba multiplier

The Karatsuba multiplier works on divide and conquers

method for multiplying two numbers. The Karatsuba

multiplier breaks the large number into smaller numbers and

algorithm called recursively for subpart for performing

multiplication. It works on the linear and polynomial

function as well. In [6] the author has evaluated Padded,

Binary, Simple and Generalized Karatsuba multiplier and

proposed a new Hybrid Karatsuba multiplier using Simple

and Generalized Karatsuba multiplier. Generalized

Karatsuba multiplier is more area efficient compared with

other design. In this section, we will discuss the Simple,

Generalized and Hybrid Karatsuba multiplier.

The multiplications of two n-bit number perform using three

multiplications and add operations. Consider x and y are two

n-bit numbers of any base (base-2 or base-10) and the

multiplication of these numbers using Karatsuba multiplier

are performed using the following formulas. The numbers

are divided into Higher and Lower bits. The High bit

represent using H and L represents a Lower bit.

 a= xHyH

 d= xLyL

 e= (xH+ xL)(yH+yL)-a-d

 xy=abn+ebn/2+d (5)

R=(x3,y3

) P=(x1,y1)

P(x1,

y1)

Q(x2,
y2)

R(x3,

y3)

R(x3,

y3)

273
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

The above requires only three multiplications and multiplier

called recursively until the number being multiplied is a

single digit number.

3.1.1 Method for Polynomial Multiplication

The Karatsuba multiplier can also be used for multiplication

of polynomials. The finite field multiplication for two

polynomial of degree-n A(x) and B(x) ϵ GF(2n) is defined

as

 C(x)=A(x)B(X) (6)

The n-bit multiplicand of equation (6) is divided into two

term polynomials and multiplication is perform using three

n/2 multiplication which shown below[6].

 C(x) =(Ahxn/2 + Al)(Bhxn/2 + Bl)

 =AhBhxn+(AhBl+ AlBh)xn/2+AlBl

 =AhBhxn+((Ah+Al)(Bh+Bl)+AhBh+AlBl)xn/2 +AlBl

3.1.2 Hybrid Karatsuba Multiplier

The Hybrid Karatsuba multiplier[6] is designed using simple

and General Karatsuba multiplier which is shown in Figure

5.

Figure 5. Hybrid karatsuba multiplier.

In Hybrid multiplier, the initial multiplication for all large

multiplication is done using Simple Karatsuba Multiplier

and final small multiplication performs using General

Multiplier. The author has implemented 233-bit Hybrid

multiplier on FPGA. The result shows that 233-bit Hybrid

multiplier is more area efficient, but relatively slower than

other Karatsuba design. Let's consider an example of a 4

digit Karatsuba multiplier,

Compute 1234*4321, the subproblems will be,

a1=12*43

d1=34*21

e1=(12+34)*(43+21)–a1–d1 = 46*64–a1–d1

The first subproblem will be,

a1=12*43

This has the following sub problems,

a2=1*4=4

d2=2*3=6

e2=(1+2)(4+3)–a2–d2 =11

Answer: 4*102+11*10+6=516

The Second sub problem is,

d1=34*21

This has the following sub problems,

a2=3*2=6

d2=4*1=4

e2=(3+4)(2+1)–a2–d2 = 11

Answer:6*102+11*10+4=714

The Third sub problem is,

e1=46*64–a1–d1

This has the following sub problems,

a2=4*6=24

d2=6*4=24

e2=(4+6)(6+4)–a2–d2 = 52

Answer:24*102+52*10+24-714 -516 = 1714

And the final answer is,

1234*4321=516*104+1714*100+714

= 5,332,114

This is how Karatsuba multiplier works for large numbers.

3.2 Vedic multiplier

Jagdguru Shakarachraya Bharti Krishna Teerthaji Maharaj

proposed different simple methods for all mathematical

calculations. Any mathematical calculations perform using

Vedic mathematics is simple to implement and faster. The

Vedic multiplier is more area and delays efficient than other

multipliers[13]. Jagdguru Shakarachraya proposed 16 sutras

and 13 sutras for Vedic mathematics from Athrav Veda. Out

of this 16 sutras following two sutras are used for

multiplication of two numbers.

i. Nikhilam Navatascaramam sutra

ii. Urdhva –Tiryagbhyam sutra

Among this Urdhav-Triyagbhyam sutra is more efficient. In

our scalar multiplication, we perform finite field

multiplication operation using Urdhav-Triyagbhyam. The

Urdhav-Triyagbhyam multiplication technique can be

directly applied for decimal and binary number.

3.2.1 Urdhva Tiryagbhyam

Urdhva–Tiryagbhyam sutra is one of the 16 Vedic sutras

which perform the multiplication operation of two

numbers[15]. The multiplication technique which is used in

this sutra is a general technique, which can directly be

applied to a decimal, binary, small and large number. The

beauty of this sutra is that the same multiplication method

can be directly applied to decimal as well as binary numbers.

“Urdhva” means vertically and “Tiryagbhyam” means

crosswise, therefore, it is also called as Vertically and

Crosswise algorithm[15]. Figure 6 shows steps for

multiplication of two 3-digit decimal numbers using

vertically and crosswise method and Figure 7 shows an

alternative method for multiplication of two 4-digit using

Urdhva–Tiryagbhyam sutra [4].

Figure 6. Multiplication of two decimal numbers

 vertically and crosswise technique.

Figure 7. Multiplication of two decimal numbers.

274
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

To demonstrate the working of a typical Vedic

multiplication algorithm, consider the multiplication of two

numbers 42*21[12]. The following steps perform this:

Step1. Multiply the 2 highest digits (4 and 2), which will be

 resulting in an 8.

Step2. For the next higher digit, cross multiply 4*1 (4) and

 2*2 (4), and add together, producing the middle digit

 of number 8.

Step3. For the lowest digit, multiply the 2 lowest digits

 (1*2) together, resulting in a 2.

Step4. Put all of the digits together to produce your answer

 using the Vedic multiplier which is 882

One thing that can and should be noted here is that the order

in which you go through for the Vedic process does not

actually matter. So, we can similarly start with the lowest

digit and work our way up to the highest digit.

3.2.2 Algorithm for 4x4 Vedic Multiplier

The multiplication steps for 4x4 multiplier using vertically

and crosswise technique is given below. Consider two 4-

digit numbers for multiplication of any base

A= a3a2a1a0

B= b3b2b1b0

Step1: s0= a0*b0

Step2: c1s1= a0*b1+a1*b0

Step3: c2s2= a0*b2+a1*b1+a2*b0+c1

Step4: c3s3= a0*b3+a1*b2+a2*b1+ a3*b0+c2

Step5: c4s4= a1*b3+a2*b2+a3*b1+c3

Step6: c5s5= a2*b3+a3*b2+c4

Step7: c6s6= a3*b3 + c5

Step8: Arrange the digit c6s6s5s4s3s2s1s0 to get final result.

Once 4x4 multiplier is designed than this multiplier is used

recursively to design 8x8, 16x16, 32x32 and higher bit

multiplier.

4. FPGA Implementation of Scalar

Multiplication

Scalar multiplication involves multiplication of a scalar

quantity with a vector quantity, which results in a vector

output. This type of multiplication is the most basic

operation in the field of vector computation and is used in

point multiplication based applications like encryption using

ECC. Scalar multiplication usually involves multiple normal

multiplications in order to produce the vector result. The

following diagram shows the operation of the scalar

multiplication.

Figure 8. Scalar multiplication using simple multiplier.

From Figure 8, we can see that for an N dimension vector,

we need N simple multiplier instances. Thus as the

dimension of the vector quantity increases, the number of

multipliers increase linearly. If the complexity of a simple

multiplier is O(n), then for an N dimension vector, the scalar

multiplier complexity will be N*O(n), similarly, the area and

power of the scalar multiplier follow the same pattern. Thus

it is essential to optimize the simple multiplier unit in order

to optimize the performance of the scalar multiplier.

Generally, Karatsuba multiplier is used as the basic building

block for the scalar multiplier, the Karatsuba multiplier has

many advantages including but not limited to,

• Increased speed of operation when compared to shift

and add method

• Less number of computations, thus less area when

compared to shift and add method

• Low power consumption

But, the performance of the Karatsuba based scalar

multiplier can be further enhanced by using a Vedic

multiplier in place of the Karatsuba multiplier. The Vedic

multiplier based scalar multiplication diagram can be

represented as follows,

Figure 9. Scalar multiplication using vedic multiplier

Figure 9 shows; we have replaced the existing normal

multiplier with the Vedic multiplier. The Urdhva

Tiryakbhyam sutra is used, which is described in the

previous section. Using the Vedic multiplier for scalar

multiplication design gives the following advantages,

• Delay of the Vedic multiplier is one clock cycle, thus

the scalar multiplication happens very quickly

• The power consumption of the circuit reduces as the

number of clocks for which the circuit is active is

reduced to 1, thereby reducing the overall energy

requirement of the system

• Vedic multiplier uses less number of operations when

compared to the Karatsuba multiplier, thus the overall

area of the scalar multiplier reduces drastically

Figure 10, shows schematic diagram of a 2x2 Vedic

multiplier,

Figure 10. Schematic of 2x2 vedic multiplier using

two half adder.

Figure 10, shows the operation of straight and cross as

defined by the Urdhva Tiryakbhyam sutra is performed. First

the values a0 and b0 are ANDed (straight), then the values

a1, b0 and a0, b1 (cross) are ANDed and their respective

products are XORed in order to get the sum and carry.

Finally a1, b1 (straight) are ANDed and XORed with the

previous carry to get the final MSB bit.

275
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

The combinations of 4 Vedic multipliers of 2 bits, along

with 4-bit adders are sufficient to produce a complete 4-bit

multiplier. The block diagram for a 4-bit multiplier can be

seen in the following figure,

Figure 11. 4-bit vedic multiplier using four 2x2 multipliers.

In Figure 11, the 2x2 multiplier is the same Vedic multiplier,

which was previously described. In the 4x4 multiplier, we

use the same Urdhva Tiryakbhyam sutra, which first

multiplies LSBs of X and Y, then MSB of X with LSB of Y,

& LSB of X with MSB of Y, and then finally MSB of X and

Y. The final result is shown from the P vector in the above

figure. The complete operation doesn't require any recursion

(like Karatsuba multiplier), and thus the entire 4 bits get

multiplied in a single clock cycle. There by reducing the

delay of the system to 1 clock cycle. A similar process is

applied for 8x8, 16x16 and NxN Vedic multiplier in order to

perform parallel multiplication. Due to simplicity in

construction, the power and area requirements of this design

are less too. Based on these advantages, we evaluated the

performance of the Vedic multiplier based scalar multiplier

and obtained some very interesting results which are

described in the next section.

5. Implementation Results

This section present implementation results of Scalar

multiplication using Karatsuba Multiplier and Vedic

multiplier. The scalar multiplier is designed for the binary

field for 233-bit GF(2233) which is secured curved

recommended by National Institute of Standards

Technology(NIST) recommended in his Federal Information

Standards(FIPS) 186-3[16]. The Curve value of Curve

constant b and base point will be taken from the above

standard document is as given below[16].

Curve B-233

Curve Constant

b = 066 647ede6c 332c7f8c 0923bb58 213b333b 20e9ce42

 81fe115f 7d8f90ad

Base Point P(x, y)

Gx = 0fa c9dfcbac 8313bb21 39f1bb75 5fef65bc 391f8b36

 f8f8eb73 71fd558b

Gy = 100 6a08a419 03350678 e58528be bf8a0bef

 f867a7ca36716f7e 01f81052

The 32-bit key is used in this design, which is k in scalar

multiplication used as a private key in ECC. The arithmetic

and logic unit (ALU) for Scalar multiplier which calls

Karatsuba and the Vedic multiplier is designed using Verilog

HDL and implemented on Virtex6 FPGA in Xilinx 13.2 ISE.

The Synthesis, PAR reports are used to get the device

utilization and delay of the design. Table 1, shows the device

utilization summary of Karatsuba and Vedic based Scalar

multiplier.

Table 1. Device utilization comparison of karatsuba and

vedic scalar multiplier.

Device Utilization Summary

Area

reduction
Slice logic
utilization

Scalar
using

Karatsuba

multiplier

Scalar
using

Vedic

multiplier

No of
devices

availab

le

Number of Slice

Registers
48 37

948,48

0
22.92 %

Number of Slice

LUTs
3016 2761

474,24

0
8.45%

Number of
occupied Slices

999 832
118,56

0
16.72%

Number of LUT

Flip Flop pairs
used

3016 2764 8.36%

Number of
bonded IOBs

501 501 1,200

Average Fanout
of Non-Clock

Nets

3.33 2.83

Figure 12. Comparison of device utilization

for karatsuba and vedic scalar multiplier.

In Table 2, we have presented the delay comparison of

Karatsuba and Vedic based Scalar multiplier. The

combinational path delay of the Vedic multiplier is 0.984ns,

which is less compared with Karatsuba multiplier 1.117ns.

Based on maximum combinational path delay parameter

Vedic multiplier based scalar multiplier is 12% more delay

efficient compared with Karatsuba multiplier.

Table 2. Delay comparison of karatsuba and vedic scalar

multiplier.

Delay parameters

Scalar
multiplication

using Karatsuba

multiplier

Scalar
multiplication

with Vedic

multiplier

Performan
ce

improvem

ent in

Minimum period 1.895ns 0.895ns 52.77%

276
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

Minimum input

arrival time

before the clock

1.438ns 1.267ns 11.89%

Maximum output
required time

after the clock

2.920ns 1.376ns 52.88%

Maximum

combinational

path delay

1.117ns 0.984ns 11.91%

Figure 13. Delay comparison of karatsuba and vedic scalar

multiplier.

The test-bench is created for testing the design and design is

simulated using ISim simulator. Both the scalar multiplier

design are tested with the same data set on Virtex6-

xc6vlx760-ff1760 FPGA device. Figure 14 and Figure 15,

shows the simulation results of Scalar multiplier design. The

base point P(BPX, BPY), key[31:0] is key are the input for

the design and Sx, Sy is the resultant values after Scalar

multiplication. Initially clock signal is low and when it

becomes high the multiplication operation is started and after

completion of scalar multiplication, the status of the done

signal is high.

Figure 14. Simulation result of scalar multiplier using

karatsuba multiplier.

Figure 15. Simulation result of scalar multiplier using vedic

multiplier.

The Sx and Sy values received after Scalar multiplication is

the public key Q used to encrypt the data in Elliptic Curve

Cryptography.

6. Conclusions

The proposed work indicates that Vedic multiplier has

definitive advantages when compared to Karatsuba

multiplier. These advantages are utilized in our paper, and

we proposed a scalar multiplier based on Vedic

multiplication technique, which outperforms the Karatsuba

based multiplier in terms of delay requirement, power

consumption, and area requirements. We observe that the

Vedic multiplier based implementation is nearly 12% more

delay efficient than Karatsuba based implementation, and

has 22% less device utilization. Due to which the overall

power consumption also reduces. These advantages make

the Vedic based scalar multiplication circuit more usable for

low power and high speed embedded systems, and also

allows for the given circuit to perform better when applied to

high complexity applications like encryption and

communication. In the future, we plan to integrate the

optimized scalar multiplier with a highly complex elliptic

curve cryptosystem and analyze its performance.

References

[1] E. Karthikeyan, “Survey of Elliptic Curve Scalar

Multiplication Algorithms,” Int. J. Advanced Networking and

Applications, vol. 04, no. 02, pp. 1581–1590, 2012.

[2] I. Setiadi, A. I. Kistijantoro, and A. Miyaji, “Elliptic curve

cryptography: Algorithms and implementation analysis over

coordinate systems,” in International Conference on

Advanced Informatics: Concepts, Theory and Applications,

2015, no. November.

[3] C. Rebeiro and D. Mukhopadhyay, “High Performance

Elliptic Curve Crypto-Processor for FPGA Platforms,” in

Proceedings of the 21 st International Conference on VLSI

Design , Hyderabad, IEEE Computer Society., p. pp 706–

711.

[4] S. S. Roy, C. Rebeiro, and D. Mukhopadhyay, “Theoretical

modeling of elliptic curve scalar multiplier on LUT-based

FPGAs for area and speed,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 21, no. 5, pp.

901–909, 2013.

[5] R. Azarderakhsh and A. Reyhani-masoleh, “Parallel and

High-Speed Computations of Elliptic Curve Cryptography

Using Hybrid-Double Multipliers,” IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS, vol. 26, no.

6, pp. 1668–1677.

[6] C. Rebeiro and D. Mukhopadhyay, “Hybrid Masked

Karatsuba Multiplier for GF (2^233),” in Proceedings of the

11th IEEE VLSI Design and Test Symposium , Kolkata, VLSI

Society of India., no. 1, p. pp 379-387.

[7] M. Masoumi and H. Mahdizadeh, “Efficient Hardware

Implementation of an Elliptic Curve Cryptographic Processor

over GF(2^163),” International Journal of Computer,

Electrical, Automation, Control and Information Engineering

2012 International, vol. 6, no. 5, pp. 725–732, 2012.

[8] W. N. Chelton, S. Member, M. Benaissa, and S. Member,

“Fast Elliptic Curve Cryptography on FPGA,” IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 16, no. 2, pp. 198–205, 2008.

[9] M. M. Panchbhai and U. S. Ghodeswar, “Implementation of

Point Addition & Point Doubling for Elliptic Curve,” IEEE

International Conference on Communication and Signal

Processing – ICCSP’15, pp. 746–749, 2015.

[10] B. Ansari, M. A. Hasan, and S. Member, “High-Performance

Architecture of Elliptic Curve Scalar Multiplication,” IEEE

TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11,

NOVEMBER 2008, vol. 57, no. 11, pp. 1443–1453, 2008.

[11] T. T. Nguyen and H. Lee, “Efficient Algorithm and

Architecture for Elliptic Curve Cryptographic Processor,”

Journal Of Semiconductor Technology and Science, vol. 16,

no. 1, pp. 118–125, 2016.

[12] V. S. Iyengar, “Novel Elliptic Curve Scalar Multiplication

277
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

Algorithms for Faster and Safer Public-Key Cryptosystems,”

International Journal on Cryptography and Information

Security, vol. 2, no. 3, pp. 57–66, 2012.

[13] S. Vaidya and D. Dandekar, “Delay-Power Performance

Comparison of Multipliers in VLSI,” International Journal of

Computer Networks & Communications (IJCNC), vol. 2, no.

4, pp. 47–56, 2010.

[14] V. Kaushik and H. Saini, “A Review on Comparative

Performance Analysis of Different Digital Multipliers,”

Advances in Computational Sciences and Technology, vol.

10, no. 5, pp. 1257–1272, 2017.

[15] S. P. Pohokar, R. S. Sisal, K. M. Gaikwad, M. M. Patil, and

R. Borse, “Design and Implementation of 16 x 16 Multiplier

Using Vedic Mathematics,” no. Icic, pp. 1174–1177, 2015.

[16] P. National Institute of Standards and Technology

Gaithersburg, “Archived publication,” Federal Information

Processing Standards Publication, Digital Signature

Standard (DSS), vol. 3, no. August 2009, 2010.

