
358 
International Journal of Communication Networks and Information Security (IJCNIS)                                       Vol. 10, No. 2, August 2018 

 

Statistical-Based Heuristic for Tasks Scheduling in 

Cloud Computing Environment  
 

Ahmad Al-Qerem
1
, Ala Hamarsheh

2
 

 
1Department of CIS, Zarqa University,Zarqa, Jordan  

2Faculty of Engineering and Information Technology, Arab American University, Jenin, Palestine 

 

 

Abstract: Cloud computing is an emerging and innovative 

technology that has taken the business information systems to wider 

extent with the fast sharing of vast web resources over the internet. 

It considers as an extension to distributed and parallel computing. 

Additionally, it enables sharing, organizing and aggregation of 

computational machines to satisfy the user demands. Utilizing the 

resources efficiently is the main challenge of cloud service provider. 

Task scheduling in cloud computing plays the main role in 

decreasing the execution time and cost and hence, increasing the 

profit. This paper addresses the problem independent tasks 

scheduling over different virtual machines in computational cloud 

environment. It introduces two batch mode heuristics algorithms for 

scheduling independent task: high mean absolute deviation first 

heuristic and QoS Guided Sufferage-HMADF heuristic. Besides, 

the paper presented other existing batch mode heuristics such as, 

Min-Min, Max-Min and Sufferage. The four heuristic modes are 

simulated and the experimental results are discussed using two 

performance measures, makespan and machine resource utilization.   
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1. Introduction 
 

Cloud computing has grown rapidly and received enormous 

interest since it offers flexibility and scalability to the users 

and organizations. Cloud computing is a huge distributed 

system which offers a pool of computing resources to cloud 

users using the internet. There are many organizations that 

provide cloud services and run on cloud computing 

environment such as IBM, Amazon, Google Engine, etc. 

These organizations services and resources to customers on 

the basis of pay per use at anytime from anywhere [1]. There 

are three main delivery models that offered by cloud 

computing. These models are Cloud computing offers three 

main delivery models which are Software as a Service 

(SaaS), Platform as a Service (PaaS), and Infrastructure as a 

Service (IaaS). In Software as a Service (SaaS), Applications 

and access management tools are provided to users. Platform 

as a Service (PaaS) provides tools such as operating systems, 

databases, and network so consumers can install and develop 

their own software and applications. Infrastructure as a 

Service (IaaS) provides access to physical devices such as 

hardware and network so consumers can install and develop 

their own operating systems and applications [2]. Clouds in 

cloud computing is of several types based on the scalability 

and pooling up of the resources. Types are public, private, 

community, and hybrid clouds. Public clouds are available to 

the general public in a pay-as-yougo manner and they are 

owned by the cloud provider. Private clouds are operated 

only for a business or an organization and they are controlled 

by that organization or a third party. In community clouds, 

several organizations share the infrastructure of the cloud to 

support certain community that has common concerns. 

Hybrid clouds are combination of public, private, or 

community clouds [3]. Scheduling and allocation of 

resources and tasks are critical problems in cloud computing 

which many researches where carried out on it. Cloud 

providers must serve many consumers in cloud computing 

system. Therefore, scheduling is the major issue in 

establishing cloud computing system in order to reduce the 

execution time and the cost, thus maximizing resource 

utilization.  

There are different types of clouds in which they are 

classified in terms of functionality. For example, 

computational cloud, data cloud, collaborative cloud and 

network cloud [4][5][6][7]. This paper addresses a 

computational cloud. The rest of the paper is organized as 

follows. Section two presents the related work. Section three 

proposes two batch mode heuristic: High Mean absolute 

Deviation First (HMADF) and QoS Guided Sufferage-

HMADF. Section four discusses the simulation results. The 

conclusions and future work are presented in Section five. 
 

2. Related Work 
 

Cloud architecture explains the cloud construction. Besides, 

it describes the components of the cloud and how these 

components are interacted with each others. The architecture 

consists of upper layers and lower layers [11][12][13]. The 

former is a user-centric, while the later is a hardware-centric. 

Upper and lower layers consist of four sublayers. These 

sublayers are described as follows: 

 Cloud Fabric Layer: it consists of several distributed 

resources. For example, PCs, networks, storage device, 

data sources and scientific instruments. The resources are 

represented in the form of clusters of PCs or racks of PCs, 

supercomputers, servers or workstations and regular PCs 

which run on different platforms. Scientific instruments 

such as seismographs (for recording earthquake), 

seismometer (for determining earthquake intensity), 

seismscope (for discovering earthquake), telescope and 

sensor networks offer real- time data that can be stored in 

a storage device or transmitted directly to computational 

sites. 

 Core Middleware Layer: it provides several distributed 

services. For example, remote process management, 

information registration, security and QoS. Furthermore, 

it hides the complexity and heterogeneity in the fabric 

level. 

 User-level Cloud Middleware Layer: it consists of 

programming tools such as libraries, compilers, and 

application development tools. Additionally, it utilizes the 

interfaces provided by lower level middleware (i.e. core 
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middleware) to provide higher levels of abstractions. 

Resource broker is responsible for managing, picking out 

and scheduling the tasks on machines. 

 Applications and Portals Layer: it basically consists of 

engineering and scientific applications. For example, a 

grand-challenge problem such as LCH@home is required 

to allow the remotely access the data and computational 

power which they are needed to interact with scientific 

instruments and Cloud portals. Cloud portals provide 

web-enabled applications are used to users to submit tasks 

and then collect the results from particular machines.  

Most of the task scheduling algorithms could effect on the 

users’ tasks proficiency as well as in utilizing the resources 

efficiently particularly in IaaS cloud computing environment. 

Therefore, realizing the optimal distribution of users’ tasks is 

still an unhandled issue for task scheduling in this 

environment, as shown in Fig 1. The task scheduling 

algorithms could be implemented in cloud computing 

environment as follows: Firstly, tasks and resources are 

mapped with respect to the current tasks and information of 

resources along with basic procedures. At that stage, tasks 

are mapped among the QoS conditions of cloud users and the 

resources are allocated to the application of the task to 

approve the competence of the task. The summary of the 

consequences is implemented by submitting the users’ 

request [8][9][10][14]. 

 
Figure 1. Task scheduling in cloud computing. 

Cloud scheduling is a process of mapping Cloud jobs to 

resources (i.e. machines) [16]. A Cloud job can be divided 

into many small tasks. One of the main responsibilities of the 

scheduler is to select resources and scheduling jobs in such a 

way that the user and application requirements are 

accomplished, in terms of throughput and cost. 

 Static versus Dynamic Scheduling: static scheduling refers 

to the fact that no new tasks, and tasks with high 

priorities, will be joined till all computations are ended. 

During computations, static scheduling requires that no 

job failures, and the resources have to be available all 

the time. In contrast, dynamic scheduling refers to that 

fact that new tasks cloud be joined during computations. 

Additionally, tasks high priorities cloud be processed 

within scheduling time. The schedule therefore changes 

over time. 

 Immediate versus Batch Mode Scheduling: in immediate 

mode, tasks are scheduled one after another. 

Alternatively, this mode works as first come first served 

(i.e. tasks that arrived first will be computed first). 

Besides, if more than one task arrived simultaneously, 

the first one will be selected and not the best one. In 

contrast, the batch mode works as follows. Tasks are 

collected in batches and arrived at a time, one of the 

tasks is picked out from the batch. This mode does not 

consider the task arrival time and hence, a task that 

arrives first will have no priority. If the batch includes 

only one task, then the batch mode heuristic acts similar 

to immediate mode. 

 Non-preemptive versus Preemptive Scheduling: in non-

preemptive scheduling, when a task is assigned to a 

machine, it cannot be released before it completes the 

computation. A task that depends on the deadline has to 

wait until the computation is over even if it exceeds that 

deadline. In contrast, the preemptive scheduling works 

as follows. A task may be released before it completes 

the computation. In case of a high priority task has 

arrived, the current task checks the priority. If the current 

task priority is lower than the one of the arrived task, 

then the current task releases the machine. Otherwise, it 

continues until the computation is over. 

This paper considers a static, batch and non-preemptive 

scheduling.  

Current and previous research studies have primarily 

concentrated on heuristics based on different criteria. The 

previous work can be categorized into two types, immediate 

and batch mode heuristic. There are two types of heuristics in 

batch mode, QoS and non-QoS. 
 

2.1 Non-QoS batch mode heuristic scheduling algorithms 
 

In this section, four non-QoS batch mode heuristics will be 

explained. 

 Min-Min  

This heuristic assigns highest priorities to tasks that have a 

minimum completion time (i.e. the task which can be 

completed sooner). Min-Min starts with a set of metatask in 

which it contains all unassigned tasks. After that, it computes 

the completion time of all tasks in metatask overall machines. 

Eq. 1 illustrates how the completion time is calculated. Min-

Min has two phases. First, it finds the set of minimum 

expected completion time for each task in metatask (i.e. 

selects a suitable machine for each task that gives an earliest 

possible completion time). Second, a task with minimal 

expected completion time from MT will be selected and 

assigned to a corresponding machine. This heuristic requires 

O(m2n) time to assign the tasks to the machines [15][16]. 

Completion time = Execution time + Ready time              (1) 

Ready time of the machine It is also called machine 

availability, which is defined as the time required for a 

machine to complete all assigned tasks. 

 Max-Min 

The Max-Min scheduling is very similar to Min-Min except 

in phase #2. The Max-Min scheduling assigns task with 

maximum expected completion time to a corresponding 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176321#pone-0176321-g001
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machine. This heuristic requires O(m2n) time to assign the 

tasks to the machines [16][17]. 

 Sufferage 

This heuristic considers the sufferage value as a criteria that 

used to assign tasks to a machine. The Sufferage value is 

defined as the difference between the second earliest 

completion time and first earliest completion time. The basic 

idea behind this heuristic is that, a task should be assigned to 

a certain machine, and if it does not assign to that machine, 

the task will suffer [16]. 

 Segmented Min-Min 

This heuristic is considered as an improvement to Min-Min 

scheduling. Unlike Min-Min heuristic, this heuristic aims to 

perform large tasks before performing short ones which leads 

to improve the load balancing. For example, tasks are sorted 

into an ordered list by the average, minimum, or the 

maximum time that is expected for completion. Thereafter, 

the list is divided into segments with the equally sizes (i.e. 

the authors found through experiments that the optimum 

value of the number of segments is four). Then, apply Min-

Min on each segment. The experiments show that this 

heuristic works better than Min-Min when length of tasks is 

dramatically different [21]. 
 

2.2 QoS batch mode heuristic scheduling algorithms 
 

In this section, three QoS batch mode heuristics will be 

explained. 

 QoS Guided Min-Min heuristic 

The traditional Min-Min heuristic does not consider QoS. In 

this context, QoS means bandwidth, speed, deadline, priority 

etc. [22]. In this heuristic, there are two levels of QoS: high 

QoS and low QoS. Tasks with a high QoS request is only 

assigned to high QoS machines. Alternatively, tasks with a 

low QoS request can be assigned to both low QoS and high 

QoS machines. The basic idea is that, heuristic maps the 

tasks that need high network bandwidth before the tasks that 

need low network bandwidth [22]. 

 QoS Sufferage Heuristic 

Similar to QoS guided min-min heuristic, QoS sufferage 

heuristic also divides the tasks into two groups, high QoS and 

low QoS. Then it maps both high QoS and Low QoS tasks by 

using sufferage heuristic [23]. 

 QoS Priority Grouping Heuristic 

In this heuristic, the tasks are distributed into two groups 

based on the number of available machines. Tasks that can be 

executed on all available machines are added to the low QoS 

group. Besides, tasks that cannot be executed on at least one 

machine are added to the high QoS group. Based on QoS 

level, it uses sufferage heuristic to assign the tasks to a 

machine [24]. Table 1 shows the significance of the QoS 

when some of QoS constrains are added to a particular 

heuristic. 

 

 

 

 

 

 

Table 1. Summary of Heuristics with Their Objectives 

Heuristics Makespan 
Resource 

Utilization 

Load 

Balancing 

MET Yes No No 

MCT Yes No Yes 

Min-Min Yes No No 

Max-Min Yes Yes No 

QoS Guided 

Min-Min 

heuristic 

Yes Yes Yes 

QoS priority 

grouping 

scheduling 

heuristic 

Yes Yes Yes 

Qos Suffrage 

heuristic 
Yes Yes Yes 

 

3. Proposed Heuristics  
 

This paper presents two batch mode heuristics, High Mean 

Absolute Deviation First (HMADF) heuristic and QoS 

Guided Sufferage-HMADF heuristic. 
 

3.1 Basic concepts and problem definition 
 

The main items of the scheduling are tasks and machines. 

These items can be represented as a matrix in the form of two 

dimensional array. In this two-dimensional array, rows 

indicate tasks and columns indicate machines. Each entry in 

the matrix indicates the execution time of a task on a 

machine. A task is considered as a set of data or instructions. 

The data is measured in megabytes or in megabits, and the 

instructions are measured in million instruction unit (MI). 

Tasks can be one of two types, independent or dependent. 

The former means that tasks do not require to initiate 

connections with other tasks (i.e. no relationships between 

tasks). Thus, the task scheduling is done sequentially. It is 

with noting that tasks that don’t have any dependency on 

each others are considered as Meta tasks. Hence, meta tasks 

can run in parallel [20]. On the other hand, the dependent 

tasks indicate that there is a dependency between tasks. For 

example, the output of one task can be used as input for other 

task(s).  

Machines are considered as producers or service providers. 

Traditionally, these machines cloud be distributed 

geographically. Furthermore, they can be administered by 

different organizations or domains, and join or leave the 

cloud any time. Besides, the cloud have different 

characteristics and specifications. The scheduler assigns 

specific tasks these machines depending on the functional 

requirements that are provided by the end-user. 

Several cloud scheduling heuristics are presented in recent 

years. The heuristics try to find a near optimal solution using 

matrices. There are three types of Matrices, consistent, 

inconsistent and semi-consistent. A matrix is considered to be 

consistent if the following condition is satisfied. If and only if 

a machine Mi takes a lower execution time to execute a task 

Ti than machine Mj, then the machine Mi always takes 

earliest execution time to execute any task Ti than machine 

Mj. In contrast, a matrix is considered to be inconsistent if 

the following condition is satisfied. If and only if a machine 

Mi takes a lower execution time to execute a task Ti than 

machine Mj, then the machine Mi may possibly take lower 
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execution time to execute any task Ti than machine Mj, or 

may not. A matrix is considered semi-consistent, if and only 

if a subset of an inconsistent matrix is consistent. 

One of the cloud scheduling problems that this paper tried to 

handle is how to schedule m tasks on n machines with 

minimal makespan (i.e. the overall processing time). 

Additionally, the paper proposed solutions that are expected 

to improve the efficiency of the machines. The problem can 

be mathematically described as follows. Consider Ti (where i 

= 1,2,3,…….,m) as m independent tasks need to be 

scheduled, and Mj (where j=1,2,3,……n) as n are the 

available machines. Hence, m tasks and n machines are of m 

× n order. The Expected Execution Time (EET) for task Ti 

on machine Mj is Ei,j. The EET matrix is generated by the 

following methods that are described in [19]. The main goal 

is to find an efficient scheduling strategy SS that minimizes 

the overall processing time and maximizes machine 

utilization. 
 

3.2 System Model 
 

As shown in Fig. 2 the system model consists of four 

components: users, CMB, CRS and Machines. The system 

works as follows, it starts by allowing each user to submit a 

certain tasks. After that, the tasks are collected in a batch and 

sent directly to CMB. The responsibility of the CMB is to 

map tasks to available machines according to a certain 

scheduling method. This paper proposed a new scheduling 

method that used to map tasks to machines efficiently (see 

later). The last component in the system model is the CRS 

module, it provides information that are related to machines 

to CMB. Moreover, it is responsible for machine registration, 

machine directory management and status of the machine.  

 

 
 

Figure 2. The system model 

3.3 Notations 

The following notations are used in the paper. 

Notation        Definition   

 TQ               Task Queue      

  Ti                Task ID of task i 

  Mj               Machine ID of machine j 

  Ci,j              completion time of Ti on Mj 

  Rj                Ready time of machine j 

3.4 High Mean Absolute Deviation First (HMADF) 

Heuristic 

The current heuristics techniques use different decision 

factors in terms of the expected execution time (i.e. 

minimum, maximum, median or mean of the expected 

execution times). These factors don’t consider the actual 

distribution of machines. Moreover, they don’t take into 

account all values of the execution time for a certain task on 

all machines. As a result, the previous concerns can cause a 

wrong assignment of tasks to machines and hence, the 

completion time of these tasks will be effected negatively. 

Therefore, measuring the distribution and considering all 

values of data in EET matrix are needed. In order to alleviate 

this problem, the proposed technique allocates machines 

based on the highest median absolute deviation (MAD).  

In this work, an improved task scheduling heuristic; high 

median absolute deviation first (HMADF) is proposed. It 

considers a new selection factor for task scheduling (i.e. the 

median absolute deviation of the expected execution time of 

tasks on all machines). The proposed technique uses MAD to 

calculate the average distance between each data value and 

the median. The basic idea behind this technique is that, tasks 

with greater median absolute deviation of completion time, 

will be assigned a higher priority than tasks with less median 

absolute deviation. Therefore, delaying the assignment of 

tasks with low MAD values will not affect the system 

performance (i.e. overall makespan). Alternatively, tasks with 

a greater median absolute deviation have more variations in 

their execution time when use different machines.  Hence, if 

the assignment of these tasks is delayed, this will reduce the 

opportunity of mapping these tasks to faster machines. The 

simulation results show that the overall makespan will be 

improved when using this scenario. 

3.4.1 Pseudo code: HMADF-heuristic 

1. while TQ !=Null 

2. for all meta-tasks Ti in TQ 

3.      for all machines Mj  

4.      compute  C i,j = Ei,j + Rj 

5.      end for 

6. end for 

7. Compute the mean absolute deviation 

of each task       

8. Find a task ti having the highest 

mean absolute deviation 

9. Assign task ti to machine mj which 

gives the earliest completion time 

10. Delete task ti from TQ 

11. Update machine mj availability time 

(Rj) 

12. Update completion time of all 

unmapped task(s) 

13. end while 

14. Compute “Makespan” and other 

performance measures 
 

3.4.2 Description  

The previous pseudo code first finds the absolute deviation 

of each task. Then, a task with the highest mean absolute 

deviation will be selected. Thereafter, a task with the highest 

mean absolute deviation will be assigned to a machine that 

gives the earliest completion time. This scenario will be 

repeated until no meta-tasks are present in TQ. 
 

3.5 QoS Guided Sufferage-HMADF heuristic 
 

The main goal of the currently scheduling algorithms, such as 

Min-Min, Max-Min and sufferage is to reduce the makespan. 

Such scheduling algorithms did not take into account the 

need for QoS, and hence, the overall scheduling performance 
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will be negatively affected [12]. The authors believe that the 

addition of QoS constraints to the current scheduling 

algorithms will improve their scheduling performance. There 

are some of QoS guided algorithms have considered only 

one-dimension of QoS parameters. For example, QoS guided 

min-min and QoS guided Sufferage. These algorithms 

consider the bandwidth as QoS parameter. However, they did 

not take into account other important parameters, such as, the 

availability of application tasks requirements. This can be 

calculated as the ratio of the total time that the computing 

resource is functioning during a given interval. Since the 

communication between machines in the cloud are unreliable 

and changed dynamically, add the availability constraint to 

QoS will be needed in cloud scheduling. This proposed 

heuristic implements both the bandwidth and the availability 

as QoS constraints in the scheduling algorithm to achieve a 

better performance.  

The proposed heuristic considers binding between tasks with 

high QoS request and machines based on the traditional 

sufferage heuristic as this heuristic shows a better makespan 

among other batch mode heuristics [12].  Basically, not all 

machines can have the ability to run tasks with high QoS. 

Thus, neglecting this consideration when binding between 

high QoS tasks and machines decreases the number of 

machines that provide high QoS as these machines might be 

assigned to low QoS tasks. As a result, the overall makespan 

will be increased if high QoS tasks are assigned to low QoS 

machines. The sufferage heuristic overcomes this problem 

because it binds each high QoS task with high QoS machine.  

For tasks with low QoS request, we considered the matching 

of these tasks and machine based on the proposed heuristic 

HMADF. 

3.5.1 Pseudo code:QoS Guided Sufferage HMADF heuristic 

1. while TQ !=Null 

2. for all meta-tasks Ti in TQ 

3.    for all machines Mj  

4.      compute  C i,j = Ei,j + Rj 

5.    end for 

6. end for 

7. do until all tasks with high QoS 

request in TQ are mapped 

8. // Applying Sufferage        

9. for each tasks with high QoS in TQ , 

find a machine mj in the QoS 

qualified machine set that provides 

the earliest completion time  

10. find the task Ti with the maximum 

sufferage value 

11. assign task Ti to the machine mj 

that gives earliest completion time 

12. delete task Ti from TQ 

13. update machine mj availability time  

14. update completion time of all 

unmapped task(s) 

15. end do  

16. do until all tasks with low QoS 

request in TQ are mapped 

17. // Applying HMADF 

18. for each tasks with low QoS in TQ , 

find a machine mj that provides the 

earliest completion time  

19. find the task Ti with the high mean 

absolute deviation    

20. assign task Ti to the machine mj 

that gives earliest completion time 

21. delete task Ti from TQ 

22. update machine mj availability time 

23. update completion time of all 

unmapped task(s) 

24. end do  

25. end while 

26. Compute “Makespan” and other 

performance measures 

3.5.2 Description 

The previous pseudo code handles the scenario of matching 

between high QoS tasks’ requests and machines based on the 

traditional Sufferage heuristic approach. Furthermore, the 

pseudo code handles the scenario of matching between low 

or non-QoS tasks’ request and machines based on traditional 

Min-Min heuristic.  The code starts by calculating and 

finding out the completion time of all tasks in Meta-task 

(MT) on all machines (from step# 1 to step# 6). After that, it 

divides the tasks in MT into two categories: high QoS and 

low QoS. It applies the Sufferage heuristic to tasks that have 

high QoS (from step# 7 to step# 14), these steps are repeated 

untill the mapping of all the high QoS tasks is done. 

Alternatively, it applies the HMAD heuristic to the remains 

tasks that have low QoS (from step #15 to step# 22). 
 

4. Simulation and Results  
 

This section analyzes the performance metrics (i.e. makespan 

and machine utilization) of proposed heuristics and compare 

them with the existing heuristics (see later). The simulator 

considers the data sets (or instance) that is presented by 

Braun et al. [14]. The main parameters of the data set are in 

the following general form: t_mmnn, where t indicates the 

types of matrices: consistent, inconsistent and semi-

consistent. We adopted consistent, inconsistent and semi-

consistent in our experimental studies. “mm” indicates the 

task heterogeneity which is defined as the average variation 

along the columns. Similarly, “nn” indicates the machine 

heterogeneity which is defined as the average variation along 

the rows [14]. Each type of heterogeneity (task and machine) 

is divided into categories: high (hi) and low (lo) 

heterogeneity. Therefore, each type of matrix includes four 

test sets. For example, hihi, hilo, lohi and lolo.  As a result, 

we have twelve data sets. These are: c_hihi, c_hilo, c_lohi, 

c_lolo i_hihi, i_hilo, i_lohi, i_lolo, s_hihi, s_hilo, s_lohi, 

s_lolo. The size of data set is 512×16 that was used to 

evaluate HMADF heuristic performance. In order evaluate 

QoS Sufferage-HMADF heuristic, we have used 1024×32 

dataset. Where the first value indicates the number of tasks 

and the second value indicates the number of machines. We 

have simulated the proposed heuristics algorithms using 

MATLAB R2013a version 8.1.0.604. Table 2 shows the 

simulation parameters of the data set. 
Table 2. Simulation Parameters 

Parameters Value 

No. of Tasks 512,1024 

No. of Resources 16,32 

 

Task Heterogeneity 

Upper Bound- Φb 3000 

Lower Bound- 

Φb 

100 

Resource Heterogeneity Upper Bound- Φr 1000 

Lower Bound- Φr 10 
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Two performance measures are used to evaluate the 

heuristics, the makespan and resource utilization.  
 

4.1 Makespan 
 

The Makespan is defined as the maximum completion time 

that is required to assign all tasks to machines. This metric is 

important during the scheduling phase as it should be 

minimal as much as possible in order to achieve a better 

performance.  

The makespan is computed as follows: 

makespan = max (CT(ti, mj)) , where  i=1,2,…,M  , 

j=1,2,….,N                     (2) 
Correspondingly, it can be computed as the following: 

makespan = max (RTj), j=1,2,….,N                     (3) 

Here,  RTj  is the maximum computed machine ready time 

(i.e. the  time  when  machine  mj  complete  execution  of  

all  the assigned tasks). 
 

4.2 Resource Utilization 
 

Resource utilization is defined as the time that the machine is 

busy during the scheduling time.  

The resource utilization of the jth resource is computed as 

follows: 

    ru j =   , for j= 1,2,………., N        (4)                                              

The average resource utilization is:  

  Avg-RU=                              (5)                                                                                                  

The average resource utilization (in percentage) is: 

 %RU= ×100                        (6)           

Fig. 3 and Fig. 4 show the makespan and machine utilization 

for the following heuristics: min-min, max-min, sufferage and 

the proposed HMADF heuristic. Fig. 3 shows that the 

proposed HMADF heuristic scheduling algorithm produces 

the smallest makespan values in the twelve types of ETC 

matrices. Thus, the HMADF produces the best makespan 

values among the existing batch mode heuristic scheduling 

algorithms. Fig. 4 illustrates the comparisons between 

HMADF heuristic and the existing heuristic scheduling 

algorithms in terms of resource utilization. We notice that the 

max-min heuristic gives better resource utilization values 

among the other heuristic scheduling algorithms.  
 

 
 

Figure 3. Comparison of makespan values obtained by Heuristics 

 

 
 

 Figure 4. Comparison Results on Resource Utilization 

The following scenario evaluates and compares the 

performance of both heuristics: sufferage-HMADF heuristic 

and guided min-min heuristic. All experiments are made 

using three distinct groups. These groups are classified based 

on the percentage of the number of high QoS tasks with 

respect to the number of low QoS machines. In each group, 

there are 1024 tasks and 32 machines. Group #1 consists of 

30% high QoS tasks and need to be assigned to 70% low 

QoS machines. Group #2 consists of 50% high QoS tasks and 

need to be assigned to 50% low QoS machines. Group #3 

consists of 70% high QoS tasks and need to be assigned to 

30% low QoS machines. 

Fig. 5, Fig. 6 and Fig. 7 illustrate the makespan comparison 

of the three groups using QoS guided Min-Min heuristic and 

the proposed heuristic QoS Guided Sufferage-HMADF. 

Additionally, Fig. 8, Fig. 9 and Fig. 10 illustrate the resource 

utilization comparison of the three groups using QoS guided 

Min-Min heuristic and the proposed heuristic QoS Guided 

Sufferage-HMADF. 

 
Figure 5. Comparison of makespan values obtained by Heuristics 

over 1024x32 for Group1 

 

Figure 6. Comparison of makespan values obtained by Heuristics 

over 1024x32 for Group2 
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Figure 7. Comparison of makespan values obtained by Heuristics 

over 1024x32 for Group3 

 
Figure 8. Comparison of Resource Utilization obtained by 

Heuristics over 1024x32 for Group1 

 
Figure 9. Comparison of Resource Utilization obtained by 

Heuristics over 1024x32 for Group2 

 

Figure 10. Comparison of Resource Utilization obtained by 

Heuristics over 1024x32 for Group3 

 

In all experiments, the proposed QoS Guided Sufferage-

HMADF heuristic achieves better results in makespan metric 

particularly in consistency and semi consistency instances for 

all groups. Moreover, the proposed heuristic achieves better 

results in the resource utilization metric in all groups over 

twelve instances. On the other hand, the QoS guided Min-

Min heuristic shows better results particularly in 

inconsistency instances. The proposed heuristic gets the 

lowest averaged makespan values over twelve instances in 

each group.   

 

5. Conclusion and Future work  
This paper proposed two batch mode heuristics, HMADF 

heuristic and QoS Guided Sufferage-HMADF. The 

experimental results show that the HMADF heuristic 

achieves the best performance with respect to the makespan 

metric. Whereas, the Max-min heuristic performs well in the 

resource utilization metric. Alternately, the next proposed 

heuristic QoS Sufferage-HMADF exceeds the existing QoS 

guided Min-Min heuristic with respect to overall makespan 

and resource utilization metrics.  

The future will go towards applying a deadline for task 

assignment. Furthermore, it will go towards improving the 

proposed scheduling approach by using a set of mechanisms 

such as, fault-tolerance, dynamic priority, predicative 

scheduling and security 

 

Acknowledgment  

This research is funded by the deanship of Research and 

Graduate Studies in Zarqa University /Jordan" 

 

References 
 

[1] V. Manglani, A. Jain, and V. Prasad, “Task Scheduling in 

Cloud Computing.,” Int. J. Adv. Res. Comput. Sci., vol. 8, 

no. 3, 2017.  

[2] L. Liu and Z. Qiu, “A survey on virtual machine scheduling in 

cloud computing,” in 2016 2nd IEEE International 

Conference on Computer and Communications (ICCC), 2016, 

pp. 2717–2721.  

[3] D. P. Chandrashekar, “Robust and fault-tolerant scheduling for 

scientific workflows in cloud computing environments.” 

University of Melbourne, Australia, 2015. 

[4] Naga Raju Dasari, Saritha V, “Architecture for Fault Tolerance 

in Mobile Cloud Computing using Disease Resistance 

Approach”, International Journal of Communication 

Networks and Information Security (IJCNIS), Vol. 8, No. 2, 

2016. 

[5] Pradeep Singh Rawat, Anuj Kumar Yadav, Varun Barthwal, 

“Grid resource computing environment simulation using 

GridSim toolkit”, 2015 2nd International Conference on 

Computing for Sustainable Global Development 

(INDIACom), 2015. 

[6] I. Foster and C. Kesselman, “The Grid: Blueprint for a New 

Computing Infrastructure”, Morgan Kaufmann, 1999. 

[7] Santhosh B; Manjaiah D H, “A hybrid AvgTask-Min and 

Max-Min algorithm for scheduling tasks in cloud computing”, 

2015 International Conference on Control, Instrumentation, 

Communication and Computational Technologies 

(ICCICCT), 2015. 

[8] M. Murshed, R. Buyya and David Abramson, “GridSim: A 

Toolkit for the Modeling and Simulation of Global Grids”, 

Technical Report, Monash University, Australia, 2001. 

[9] Fatos Xhafa, Ajith Abraham, “Natures Heuristics for 

Scheduling Jobs on Computational Grids”, Future Generation 



365 
International Journal of Communication Networks and Information Security (IJCNIS)                                       Vol. 10, No. 2, August 2018 

 
Computer Systems, Volume 26, Issue 4, April 2010, Pages 

608–621. 

[10] Marek R. Ogiela, Leonard Barolli, “New paradigms for 

information and services management in grid and pervasive 

computing”, Future Generation Computer Systems, Volume 

67, February 2017, Pages 227-229. 

[11] Mieso K. Denko, Tao Sun, Isaac Woungang, “Trust 

management in ubiquitous computing: A Bayesian approach”, 

Computer Communications, Volume 34, Issue 3, 15 March 

2011, Pages 398-406. 

[12] R. Buyya, High Performance Cluster Computing, Pearson 

Education, 2008. 

[13] D. Zhu and J. Fan, An Introduction to Aggregation Grid, 

“Proceedings of the Second International Conference on 

Semantics”, Knowledge, and Grid (SKG), IEEE, pp.  86   87, 

2006. 

[14] D. Zhu and J. Fan, “Aggregation Grid”, Proceedings of the 

IEEE International Conference on Information Technology 

(ICIT), pp. 357  364, 2007. 

[15] R. Buyya and S. Venugopal, “A Gentle Introduction to Grid 

Computing and Technologies”, Computer Society of India 

Communications, Vol. 29, No. 1, pp. 9  19, 2005. 

[16] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen and R. F. 

Freund, “Dynamic Mapping of a Class of Independent Tasks 

onto Heterogeneous Computing Systems”, Journal of Parallel 

and Distributed Computing, Vol. 59, No. 2, pp. 107  131, 

1999. 

[17] Tracy D. Braun, Howard Jay Siegel, and Noah Beck, 

“Performance of Various Mapping Algorithms is Independent 

of Sizable Variances in Run-time Predictions, Stochastic-

based robust dynamic resource allocation for independent 

tasks in a heterogeneous computing system”, Journal of 

Parallel and Distributed Computing, Volume 97, Pages 96-

111, 2016. 

[18] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. 

Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys and 

B. Yao, “A Comparison of Eleven Static Heuristics for 

Mapping a Class of Independent Tasks onto Heterogeneous 

Distributed Computing Systems”, Journal of Parallel and 

Distributed Computing, Vol. 61, No. 6, pp. 810 - 837, 2001. 

[19] F. Dong, J. Luo, L. Gao and L. Ge, “A Grid Task Scheduling 

Algorithm Based on QoS Priority Grouping”, Proceedings of 

the Fifth International Conference on Grid and Cooperative 

Computing (GCC), IEEE, pp. 58 61, 2006. 

[20] S. Abuelenin, ”Trust Based Grid Batch Mode Scheduling 

Algorithms”, The 8th International Conference on 

INFOrmatics and Systems (INFO), pp. 46 - 54, 2012. 

[21] Qinma Kang, Hong He, “A novel discrete particle swarm 

optimization algorithm for meta-task assignment in 

heterogeneous computing systems”, Microprocessors and 

Microsystems, Volume 35, Issue 1, Pages 10-17, February 

2011. 

[22] H. Xiaoshan, S. Xianhe and G. V. Laszewski, “QoS Guided 

Min-Min Heuristic for Grid Task Scheduling”, Journal of 

Computer Science and Technology, Vol.  18, No.  4, pp.  442 

- 451, 2003. 

[23] E. U. Munir, J. Li and S. Shi, “QoS Sufferage Heuristic for 

Independent Task Scheduling in Grid”, Information 

Technology Journal, Vol. 6, No. 8, pp. 1166 1170, 2007. 

[24] F. Dong, J. Luo, L. Gao and L. Ge, “A Grid Task Scheduling 

Algorithm Based on QoS Priority Grouping”, Proceedings of 

the Fifth International Conference on Grid and Cooperative 

Computing (GCC), IEEE, pp. 58 61, 2006. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


