
358
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

Statistical-Based Heuristic for Tasks Scheduling in

Cloud Computing Environment

Ahmad Al-Qerem
1
, Ala Hamarsheh

2

1Department of CIS, Zarqa University,Zarqa, Jordan

2Faculty of Engineering and Information Technology, Arab American University, Jenin, Palestine

Abstract: Cloud computing is an emerging and innovative

technology that has taken the business information systems to wider

extent with the fast sharing of vast web resources over the internet.

It considers as an extension to distributed and parallel computing.

Additionally, it enables sharing, organizing and aggregation of

computational machines to satisfy the user demands. Utilizing the

resources efficiently is the main challenge of cloud service provider.

Task scheduling in cloud computing plays the main role in

decreasing the execution time and cost and hence, increasing the

profit. This paper addresses the problem independent tasks

scheduling over different virtual machines in computational cloud

environment. It introduces two batch mode heuristics algorithms for

scheduling independent task: high mean absolute deviation first

heuristic and QoS Guided Sufferage-HMADF heuristic. Besides,

the paper presented other existing batch mode heuristics such as,

Min-Min, Max-Min and Sufferage. The four heuristic modes are

simulated and the experimental results are discussed using two

performance measures, makespan and machine resource utilization.

Keywords: Cloud Computing, Batch mode Heuristic, Scheduling

Tasks, Makespan, Resource Utilization.

1. Introduction

Cloud computing has grown rapidly and received enormous

interest since it offers flexibility and scalability to the users

and organizations. Cloud computing is a huge distributed

system which offers a pool of computing resources to cloud

users using the internet. There are many organizations that

provide cloud services and run on cloud computing

environment such as IBM, Amazon, Google Engine, etc.

These organizations services and resources to customers on

the basis of pay per use at anytime from anywhere [1]. There

are three main delivery models that offered by cloud

computing. These models are Cloud computing offers three

main delivery models which are Software as a Service

(SaaS), Platform as a Service (PaaS), and Infrastructure as a

Service (IaaS). In Software as a Service (SaaS), Applications

and access management tools are provided to users. Platform

as a Service (PaaS) provides tools such as operating systems,

databases, and network so consumers can install and develop

their own software and applications. Infrastructure as a

Service (IaaS) provides access to physical devices such as

hardware and network so consumers can install and develop

their own operating systems and applications [2]. Clouds in

cloud computing is of several types based on the scalability

and pooling up of the resources. Types are public, private,

community, and hybrid clouds. Public clouds are available to

the general public in a pay-as-yougo manner and they are

owned by the cloud provider. Private clouds are operated

only for a business or an organization and they are controlled

by that organization or a third party. In community clouds,

several organizations share the infrastructure of the cloud to

support certain community that has common concerns.

Hybrid clouds are combination of public, private, or

community clouds [3]. Scheduling and allocation of

resources and tasks are critical problems in cloud computing

which many researches where carried out on it. Cloud

providers must serve many consumers in cloud computing

system. Therefore, scheduling is the major issue in

establishing cloud computing system in order to reduce the

execution time and the cost, thus maximizing resource

utilization.

There are different types of clouds in which they are

classified in terms of functionality. For example,

computational cloud, data cloud, collaborative cloud and

network cloud [4][5][6][7]. This paper addresses a

computational cloud. The rest of the paper is organized as

follows. Section two presents the related work. Section three

proposes two batch mode heuristic: High Mean absolute

Deviation First (HMADF) and QoS Guided Sufferage-

HMADF. Section four discusses the simulation results. The

conclusions and future work are presented in Section five.

2. Related Work

Cloud architecture explains the cloud construction. Besides,

it describes the components of the cloud and how these

components are interacted with each others. The architecture

consists of upper layers and lower layers [11][12][13]. The

former is a user-centric, while the later is a hardware-centric.

Upper and lower layers consist of four sublayers. These

sublayers are described as follows:

 Cloud Fabric Layer: it consists of several distributed

resources. For example, PCs, networks, storage device,

data sources and scientific instruments. The resources are

represented in the form of clusters of PCs or racks of PCs,

supercomputers, servers or workstations and regular PCs

which run on different platforms. Scientific instruments

such as seismographs (for recording earthquake),

seismometer (for determining earthquake intensity),

seismscope (for discovering earthquake), telescope and

sensor networks offer real- time data that can be stored in

a storage device or transmitted directly to computational

sites.

 Core Middleware Layer: it provides several distributed

services. For example, remote process management,

information registration, security and QoS. Furthermore,

it hides the complexity and heterogeneity in the fabric

level.

 User-level Cloud Middleware Layer: it consists of

programming tools such as libraries, compilers, and

application development tools. Additionally, it utilizes the

interfaces provided by lower level middleware (i.e. core

359
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

middleware) to provide higher levels of abstractions.

Resource broker is responsible for managing, picking out

and scheduling the tasks on machines.

 Applications and Portals Layer: it basically consists of

engineering and scientific applications. For example, a

grand-challenge problem such as LCH@home is required

to allow the remotely access the data and computational

power which they are needed to interact with scientific

instruments and Cloud portals. Cloud portals provide

web-enabled applications are used to users to submit tasks

and then collect the results from particular machines.

Most of the task scheduling algorithms could effect on the

users’ tasks proficiency as well as in utilizing the resources

efficiently particularly in IaaS cloud computing environment.

Therefore, realizing the optimal distribution of users’ tasks is

still an unhandled issue for task scheduling in this

environment, as shown in Fig 1. The task scheduling

algorithms could be implemented in cloud computing

environment as follows: Firstly, tasks and resources are

mapped with respect to the current tasks and information of

resources along with basic procedures. At that stage, tasks

are mapped among the QoS conditions of cloud users and the

resources are allocated to the application of the task to

approve the competence of the task. The summary of the

consequences is implemented by submitting the users’

request [8][9][10][14].

Figure 1. Task scheduling in cloud computing.

Cloud scheduling is a process of mapping Cloud jobs to

resources (i.e. machines) [16]. A Cloud job can be divided

into many small tasks. One of the main responsibilities of the

scheduler is to select resources and scheduling jobs in such a

way that the user and application requirements are

accomplished, in terms of throughput and cost.

 Static versus Dynamic Scheduling: static scheduling refers

to the fact that no new tasks, and tasks with high

priorities, will be joined till all computations are ended.

During computations, static scheduling requires that no

job failures, and the resources have to be available all

the time. In contrast, dynamic scheduling refers to that

fact that new tasks cloud be joined during computations.

Additionally, tasks high priorities cloud be processed

within scheduling time. The schedule therefore changes

over time.

 Immediate versus Batch Mode Scheduling: in immediate

mode, tasks are scheduled one after another.

Alternatively, this mode works as first come first served

(i.e. tasks that arrived first will be computed first).

Besides, if more than one task arrived simultaneously,

the first one will be selected and not the best one. In

contrast, the batch mode works as follows. Tasks are

collected in batches and arrived at a time, one of the

tasks is picked out from the batch. This mode does not

consider the task arrival time and hence, a task that

arrives first will have no priority. If the batch includes

only one task, then the batch mode heuristic acts similar

to immediate mode.

 Non-preemptive versus Preemptive Scheduling: in non-

preemptive scheduling, when a task is assigned to a

machine, it cannot be released before it completes the

computation. A task that depends on the deadline has to

wait until the computation is over even if it exceeds that

deadline. In contrast, the preemptive scheduling works

as follows. A task may be released before it completes

the computation. In case of a high priority task has

arrived, the current task checks the priority. If the current

task priority is lower than the one of the arrived task,

then the current task releases the machine. Otherwise, it

continues until the computation is over.

This paper considers a static, batch and non-preemptive

scheduling.

Current and previous research studies have primarily

concentrated on heuristics based on different criteria. The

previous work can be categorized into two types, immediate

and batch mode heuristic. There are two types of heuristics in

batch mode, QoS and non-QoS.

2.1 Non-QoS batch mode heuristic scheduling algorithms

In this section, four non-QoS batch mode heuristics will be

explained.

 Min-Min

This heuristic assigns highest priorities to tasks that have a

minimum completion time (i.e. the task which can be

completed sooner). Min-Min starts with a set of metatask in

which it contains all unassigned tasks. After that, it computes

the completion time of all tasks in metatask overall machines.

Eq. 1 illustrates how the completion time is calculated. Min-

Min has two phases. First, it finds the set of minimum

expected completion time for each task in metatask (i.e.

selects a suitable machine for each task that gives an earliest

possible completion time). Second, a task with minimal

expected completion time from MT will be selected and

assigned to a corresponding machine. This heuristic requires

O(m2n) time to assign the tasks to the machines [15][16].

Completion time = Execution time + Ready time (1)

Ready time of the machine It is also called machine

availability, which is defined as the time required for a

machine to complete all assigned tasks.

 Max-Min

The Max-Min scheduling is very similar to Min-Min except

in phase #2. The Max-Min scheduling assigns task with

maximum expected completion time to a corresponding

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176321#pone-0176321-g001

360
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

machine. This heuristic requires O(m2n) time to assign the

tasks to the machines [16][17].

 Sufferage

This heuristic considers the sufferage value as a criteria that

used to assign tasks to a machine. The Sufferage value is

defined as the difference between the second earliest

completion time and first earliest completion time. The basic

idea behind this heuristic is that, a task should be assigned to

a certain machine, and if it does not assign to that machine,

the task will suffer [16].

 Segmented Min-Min

This heuristic is considered as an improvement to Min-Min

scheduling. Unlike Min-Min heuristic, this heuristic aims to

perform large tasks before performing short ones which leads

to improve the load balancing. For example, tasks are sorted

into an ordered list by the average, minimum, or the

maximum time that is expected for completion. Thereafter,

the list is divided into segments with the equally sizes (i.e.

the authors found through experiments that the optimum

value of the number of segments is four). Then, apply Min-

Min on each segment. The experiments show that this

heuristic works better than Min-Min when length of tasks is

dramatically different [21].

2.2 QoS batch mode heuristic scheduling algorithms

In this section, three QoS batch mode heuristics will be

explained.

 QoS Guided Min-Min heuristic

The traditional Min-Min heuristic does not consider QoS. In

this context, QoS means bandwidth, speed, deadline, priority

etc. [22]. In this heuristic, there are two levels of QoS: high

QoS and low QoS. Tasks with a high QoS request is only

assigned to high QoS machines. Alternatively, tasks with a

low QoS request can be assigned to both low QoS and high

QoS machines. The basic idea is that, heuristic maps the

tasks that need high network bandwidth before the tasks that

need low network bandwidth [22].

 QoS Sufferage Heuristic

Similar to QoS guided min-min heuristic, QoS sufferage

heuristic also divides the tasks into two groups, high QoS and

low QoS. Then it maps both high QoS and Low QoS tasks by

using sufferage heuristic [23].

 QoS Priority Grouping Heuristic

In this heuristic, the tasks are distributed into two groups

based on the number of available machines. Tasks that can be

executed on all available machines are added to the low QoS

group. Besides, tasks that cannot be executed on at least one

machine are added to the high QoS group. Based on QoS

level, it uses sufferage heuristic to assign the tasks to a

machine [24]. Table 1 shows the significance of the QoS

when some of QoS constrains are added to a particular

heuristic.

Table 1. Summary of Heuristics with Their Objectives

Heuristics Makespan
Resource

Utilization

Load

Balancing

MET Yes No No

MCT Yes No Yes

Min-Min Yes No No

Max-Min Yes Yes No

QoS Guided

Min-Min

heuristic

Yes Yes Yes

QoS priority

grouping

scheduling

heuristic

Yes Yes Yes

Qos Suffrage

heuristic
Yes Yes Yes

3. Proposed Heuristics

This paper presents two batch mode heuristics, High Mean

Absolute Deviation First (HMADF) heuristic and QoS

Guided Sufferage-HMADF heuristic.

3.1 Basic concepts and problem definition

The main items of the scheduling are tasks and machines.

These items can be represented as a matrix in the form of two

dimensional array. In this two-dimensional array, rows

indicate tasks and columns indicate machines. Each entry in

the matrix indicates the execution time of a task on a

machine. A task is considered as a set of data or instructions.

The data is measured in megabytes or in megabits, and the

instructions are measured in million instruction unit (MI).

Tasks can be one of two types, independent or dependent.

The former means that tasks do not require to initiate

connections with other tasks (i.e. no relationships between

tasks). Thus, the task scheduling is done sequentially. It is

with noting that tasks that don’t have any dependency on

each others are considered as Meta tasks. Hence, meta tasks

can run in parallel [20]. On the other hand, the dependent

tasks indicate that there is a dependency between tasks. For

example, the output of one task can be used as input for other

task(s).

Machines are considered as producers or service providers.

Traditionally, these machines cloud be distributed

geographically. Furthermore, they can be administered by

different organizations or domains, and join or leave the

cloud any time. Besides, the cloud have different

characteristics and specifications. The scheduler assigns

specific tasks these machines depending on the functional

requirements that are provided by the end-user.

Several cloud scheduling heuristics are presented in recent

years. The heuristics try to find a near optimal solution using

matrices. There are three types of Matrices, consistent,

inconsistent and semi-consistent. A matrix is considered to be

consistent if the following condition is satisfied. If and only if

a machine Mi takes a lower execution time to execute a task

Ti than machine Mj, then the machine Mi always takes

earliest execution time to execute any task Ti than machine

Mj. In contrast, a matrix is considered to be inconsistent if

the following condition is satisfied. If and only if a machine

Mi takes a lower execution time to execute a task Ti than

machine Mj, then the machine Mi may possibly take lower

361
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

execution time to execute any task Ti than machine Mj, or

may not. A matrix is considered semi-consistent, if and only

if a subset of an inconsistent matrix is consistent.

One of the cloud scheduling problems that this paper tried to

handle is how to schedule m tasks on n machines with

minimal makespan (i.e. the overall processing time).

Additionally, the paper proposed solutions that are expected

to improve the efficiency of the machines. The problem can

be mathematically described as follows. Consider Ti (where i

= 1,2,3,…….,m) as m independent tasks need to be

scheduled, and Mj (where j=1,2,3,……n) as n are the

available machines. Hence, m tasks and n machines are of m

× n order. The Expected Execution Time (EET) for task Ti

on machine Mj is Ei,j. The EET matrix is generated by the

following methods that are described in [19]. The main goal

is to find an efficient scheduling strategy SS that minimizes

the overall processing time and maximizes machine

utilization.

3.2 System Model

As shown in Fig. 2 the system model consists of four

components: users, CMB, CRS and Machines. The system

works as follows, it starts by allowing each user to submit a

certain tasks. After that, the tasks are collected in a batch and

sent directly to CMB. The responsibility of the CMB is to

map tasks to available machines according to a certain

scheduling method. This paper proposed a new scheduling

method that used to map tasks to machines efficiently (see

later). The last component in the system model is the CRS

module, it provides information that are related to machines

to CMB. Moreover, it is responsible for machine registration,

machine directory management and status of the machine.

Figure 2. The system model

3.3 Notations

The following notations are used in the paper.

Notation Definition

 TQ Task Queue

 Ti Task ID of task i

 Mj Machine ID of machine j

 Ci,j completion time of Ti on Mj

 Rj Ready time of machine j

3.4 High Mean Absolute Deviation First (HMADF)

Heuristic

The current heuristics techniques use different decision

factors in terms of the expected execution time (i.e.

minimum, maximum, median or mean of the expected

execution times). These factors don’t consider the actual

distribution of machines. Moreover, they don’t take into

account all values of the execution time for a certain task on

all machines. As a result, the previous concerns can cause a

wrong assignment of tasks to machines and hence, the

completion time of these tasks will be effected negatively.

Therefore, measuring the distribution and considering all

values of data in EET matrix are needed. In order to alleviate

this problem, the proposed technique allocates machines

based on the highest median absolute deviation (MAD).

In this work, an improved task scheduling heuristic; high

median absolute deviation first (HMADF) is proposed. It

considers a new selection factor for task scheduling (i.e. the

median absolute deviation of the expected execution time of

tasks on all machines). The proposed technique uses MAD to

calculate the average distance between each data value and

the median. The basic idea behind this technique is that, tasks

with greater median absolute deviation of completion time,

will be assigned a higher priority than tasks with less median

absolute deviation. Therefore, delaying the assignment of

tasks with low MAD values will not affect the system

performance (i.e. overall makespan). Alternatively, tasks with

a greater median absolute deviation have more variations in

their execution time when use different machines. Hence, if

the assignment of these tasks is delayed, this will reduce the

opportunity of mapping these tasks to faster machines. The

simulation results show that the overall makespan will be

improved when using this scenario.

3.4.1 Pseudo code: HMADF-heuristic

1. while TQ !=Null

2. for all meta-tasks Ti in TQ

3. for all machines Mj

4. compute C i,j = Ei,j + Rj

5. end for

6. end for

7. Compute the mean absolute deviation

of each task

8. Find a task ti having the highest

mean absolute deviation

9. Assign task ti to machine mj which

gives the earliest completion time

10. Delete task ti from TQ

11. Update machine mj availability time

(Rj)

12. Update completion time of all

unmapped task(s)

13. end while

14. Compute “Makespan” and other

performance measures

3.4.2 Description

The previous pseudo code first finds the absolute deviation

of each task. Then, a task with the highest mean absolute

deviation will be selected. Thereafter, a task with the highest

mean absolute deviation will be assigned to a machine that

gives the earliest completion time. This scenario will be

repeated until no meta-tasks are present in TQ.

3.5 QoS Guided Sufferage-HMADF heuristic

The main goal of the currently scheduling algorithms, such as

Min-Min, Max-Min and sufferage is to reduce the makespan.

Such scheduling algorithms did not take into account the

need for QoS, and hence, the overall scheduling performance

362
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

will be negatively affected [12]. The authors believe that the

addition of QoS constraints to the current scheduling

algorithms will improve their scheduling performance. There

are some of QoS guided algorithms have considered only

one-dimension of QoS parameters. For example, QoS guided

min-min and QoS guided Sufferage. These algorithms

consider the bandwidth as QoS parameter. However, they did

not take into account other important parameters, such as, the

availability of application tasks requirements. This can be

calculated as the ratio of the total time that the computing

resource is functioning during a given interval. Since the

communication between machines in the cloud are unreliable

and changed dynamically, add the availability constraint to

QoS will be needed in cloud scheduling. This proposed

heuristic implements both the bandwidth and the availability

as QoS constraints in the scheduling algorithm to achieve a

better performance.

The proposed heuristic considers binding between tasks with

high QoS request and machines based on the traditional

sufferage heuristic as this heuristic shows a better makespan

among other batch mode heuristics [12]. Basically, not all

machines can have the ability to run tasks with high QoS.

Thus, neglecting this consideration when binding between

high QoS tasks and machines decreases the number of

machines that provide high QoS as these machines might be

assigned to low QoS tasks. As a result, the overall makespan

will be increased if high QoS tasks are assigned to low QoS

machines. The sufferage heuristic overcomes this problem

because it binds each high QoS task with high QoS machine.

For tasks with low QoS request, we considered the matching

of these tasks and machine based on the proposed heuristic

HMADF.

3.5.1 Pseudo code:QoS Guided Sufferage HMADF heuristic

1. while TQ !=Null

2. for all meta-tasks Ti in TQ

3. for all machines Mj

4. compute C i,j = Ei,j + Rj

5. end for

6. end for

7. do until all tasks with high QoS

request in TQ are mapped

8. // Applying Sufferage

9. for each tasks with high QoS in TQ ,

find a machine mj in the QoS

qualified machine set that provides

the earliest completion time

10. find the task Ti with the maximum

sufferage value

11. assign task Ti to the machine mj

that gives earliest completion time

12. delete task Ti from TQ

13. update machine mj availability time

14. update completion time of all

unmapped task(s)

15. end do

16. do until all tasks with low QoS

request in TQ are mapped

17. // Applying HMADF

18. for each tasks with low QoS in TQ ,

find a machine mj that provides the

earliest completion time

19. find the task Ti with the high mean

absolute deviation

20. assign task Ti to the machine mj

that gives earliest completion time

21. delete task Ti from TQ

22. update machine mj availability time

23. update completion time of all

unmapped task(s)

24. end do

25. end while

26. Compute “Makespan” and other

performance measures

3.5.2 Description

The previous pseudo code handles the scenario of matching

between high QoS tasks’ requests and machines based on the

traditional Sufferage heuristic approach. Furthermore, the

pseudo code handles the scenario of matching between low

or non-QoS tasks’ request and machines based on traditional

Min-Min heuristic. The code starts by calculating and

finding out the completion time of all tasks in Meta-task

(MT) on all machines (from step# 1 to step# 6). After that, it

divides the tasks in MT into two categories: high QoS and

low QoS. It applies the Sufferage heuristic to tasks that have

high QoS (from step# 7 to step# 14), these steps are repeated

untill the mapping of all the high QoS tasks is done.

Alternatively, it applies the HMAD heuristic to the remains

tasks that have low QoS (from step #15 to step# 22).

4. Simulation and Results

This section analyzes the performance metrics (i.e. makespan

and machine utilization) of proposed heuristics and compare

them with the existing heuristics (see later). The simulator

considers the data sets (or instance) that is presented by

Braun et al. [14]. The main parameters of the data set are in

the following general form: t_mmnn, where t indicates the

types of matrices: consistent, inconsistent and semi-

consistent. We adopted consistent, inconsistent and semi-

consistent in our experimental studies. “mm” indicates the

task heterogeneity which is defined as the average variation

along the columns. Similarly, “nn” indicates the machine

heterogeneity which is defined as the average variation along

the rows [14]. Each type of heterogeneity (task and machine)

is divided into categories: high (hi) and low (lo)

heterogeneity. Therefore, each type of matrix includes four

test sets. For example, hihi, hilo, lohi and lolo. As a result,

we have twelve data sets. These are: c_hihi, c_hilo, c_lohi,

c_lolo i_hihi, i_hilo, i_lohi, i_lolo, s_hihi, s_hilo, s_lohi,

s_lolo. The size of data set is 512×16 that was used to

evaluate HMADF heuristic performance. In order evaluate

QoS Sufferage-HMADF heuristic, we have used 1024×32

dataset. Where the first value indicates the number of tasks

and the second value indicates the number of machines. We

have simulated the proposed heuristics algorithms using

MATLAB R2013a version 8.1.0.604. Table 2 shows the

simulation parameters of the data set.
Table 2. Simulation Parameters

Parameters Value

No. of Tasks 512,1024

No. of Resources 16,32

Task Heterogeneity

Upper Bound- Φb 3000

Lower Bound-

Φb

100

Resource Heterogeneity Upper Bound- Φr 1000

Lower Bound- Φr 10

363
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

Two performance measures are used to evaluate the

heuristics, the makespan and resource utilization.

4.1 Makespan

The Makespan is defined as the maximum completion time

that is required to assign all tasks to machines. This metric is

important during the scheduling phase as it should be

minimal as much as possible in order to achieve a better

performance.

The makespan is computed as follows:

makespan = max (CT(ti, mj)) , where i=1,2,…,M ,

j=1,2,….,N (2)
Correspondingly, it can be computed as the following:

makespan = max (RTj), j=1,2,….,N (3)

Here, RTj is the maximum computed machine ready time

(i.e. the time when machine mj complete execution of

all the assigned tasks).

4.2 Resource Utilization

Resource utilization is defined as the time that the machine is

busy during the scheduling time.

The resource utilization of the jth resource is computed as

follows:

 ru j = , for j= 1,2,………., N (4)

The average resource utilization is:

 Avg-RU= (5)

The average resource utilization (in percentage) is:

 %RU= ×100 (6)

Fig. 3 and Fig. 4 show the makespan and machine utilization

for the following heuristics: min-min, max-min, sufferage and

the proposed HMADF heuristic. Fig. 3 shows that the

proposed HMADF heuristic scheduling algorithm produces

the smallest makespan values in the twelve types of ETC

matrices. Thus, the HMADF produces the best makespan

values among the existing batch mode heuristic scheduling

algorithms. Fig. 4 illustrates the comparisons between

HMADF heuristic and the existing heuristic scheduling

algorithms in terms of resource utilization. We notice that the

max-min heuristic gives better resource utilization values

among the other heuristic scheduling algorithms.

Figure 3. Comparison of makespan values obtained by Heuristics

 Figure 4. Comparison Results on Resource Utilization

The following scenario evaluates and compares the

performance of both heuristics: sufferage-HMADF heuristic

and guided min-min heuristic. All experiments are made

using three distinct groups. These groups are classified based

on the percentage of the number of high QoS tasks with

respect to the number of low QoS machines. In each group,

there are 1024 tasks and 32 machines. Group #1 consists of

30% high QoS tasks and need to be assigned to 70% low

QoS machines. Group #2 consists of 50% high QoS tasks and

need to be assigned to 50% low QoS machines. Group #3

consists of 70% high QoS tasks and need to be assigned to

30% low QoS machines.

Fig. 5, Fig. 6 and Fig. 7 illustrate the makespan comparison

of the three groups using QoS guided Min-Min heuristic and

the proposed heuristic QoS Guided Sufferage-HMADF.

Additionally, Fig. 8, Fig. 9 and Fig. 10 illustrate the resource

utilization comparison of the three groups using QoS guided

Min-Min heuristic and the proposed heuristic QoS Guided

Sufferage-HMADF.

Figure 5. Comparison of makespan values obtained by Heuristics

over 1024x32 for Group1

Figure 6. Comparison of makespan values obtained by Heuristics

over 1024x32 for Group2

364
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

Figure 7. Comparison of makespan values obtained by Heuristics

over 1024x32 for Group3

Figure 8. Comparison of Resource Utilization obtained by

Heuristics over 1024x32 for Group1

Figure 9. Comparison of Resource Utilization obtained by

Heuristics over 1024x32 for Group2

Figure 10. Comparison of Resource Utilization obtained by

Heuristics over 1024x32 for Group3

In all experiments, the proposed QoS Guided Sufferage-

HMADF heuristic achieves better results in makespan metric

particularly in consistency and semi consistency instances for

all groups. Moreover, the proposed heuristic achieves better

results in the resource utilization metric in all groups over

twelve instances. On the other hand, the QoS guided Min-

Min heuristic shows better results particularly in

inconsistency instances. The proposed heuristic gets the

lowest averaged makespan values over twelve instances in

each group.

5. Conclusion and Future work
This paper proposed two batch mode heuristics, HMADF

heuristic and QoS Guided Sufferage-HMADF. The

experimental results show that the HMADF heuristic

achieves the best performance with respect to the makespan

metric. Whereas, the Max-min heuristic performs well in the

resource utilization metric. Alternately, the next proposed

heuristic QoS Sufferage-HMADF exceeds the existing QoS

guided Min-Min heuristic with respect to overall makespan

and resource utilization metrics.

The future will go towards applying a deadline for task

assignment. Furthermore, it will go towards improving the

proposed scheduling approach by using a set of mechanisms

such as, fault-tolerance, dynamic priority, predicative

scheduling and security

Acknowledgment

This research is funded by the deanship of Research and

Graduate Studies in Zarqa University /Jordan"

References

[1] V. Manglani, A. Jain, and V. Prasad, “Task Scheduling in

Cloud Computing.,” Int. J. Adv. Res. Comput. Sci., vol. 8,

no. 3, 2017.

[2] L. Liu and Z. Qiu, “A survey on virtual machine scheduling in

cloud computing,” in 2016 2nd IEEE International

Conference on Computer and Communications (ICCC), 2016,

pp. 2717–2721.

[3] D. P. Chandrashekar, “Robust and fault-tolerant scheduling for

scientific workflows in cloud computing environments.”

University of Melbourne, Australia, 2015.

[4] Naga Raju Dasari, Saritha V, “Architecture for Fault Tolerance

in Mobile Cloud Computing using Disease Resistance

Approach”, International Journal of Communication

Networks and Information Security (IJCNIS), Vol. 8, No. 2,

2016.

[5] Pradeep Singh Rawat, Anuj Kumar Yadav, Varun Barthwal,

“Grid resource computing environment simulation using

GridSim toolkit”, 2015 2nd International Conference on

Computing for Sustainable Global Development

(INDIACom), 2015.

[6] I. Foster and C. Kesselman, “The Grid: Blueprint for a New

Computing Infrastructure”, Morgan Kaufmann, 1999.

[7] Santhosh B; Manjaiah D H, “A hybrid AvgTask-Min and

Max-Min algorithm for scheduling tasks in cloud computing”,

2015 International Conference on Control, Instrumentation,

Communication and Computational Technologies

(ICCICCT), 2015.

[8] M. Murshed, R. Buyya and David Abramson, “GridSim: A

Toolkit for the Modeling and Simulation of Global Grids”,

Technical Report, Monash University, Australia, 2001.

[9] Fatos Xhafa, Ajith Abraham, “Natures Heuristics for

Scheduling Jobs on Computational Grids”, Future Generation

365
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

Computer Systems, Volume 26, Issue 4, April 2010, Pages

608–621.

[10] Marek R. Ogiela, Leonard Barolli, “New paradigms for

information and services management in grid and pervasive

computing”, Future Generation Computer Systems, Volume

67, February 2017, Pages 227-229.

[11] Mieso K. Denko, Tao Sun, Isaac Woungang, “Trust

management in ubiquitous computing: A Bayesian approach”,

Computer Communications, Volume 34, Issue 3, 15 March

2011, Pages 398-406.

[12] R. Buyya, High Performance Cluster Computing, Pearson

Education, 2008.

[13] D. Zhu and J. Fan, An Introduction to Aggregation Grid,

“Proceedings of the Second International Conference on

Semantics”, Knowledge, and Grid (SKG), IEEE, pp. 86 87,

2006.

[14] D. Zhu and J. Fan, “Aggregation Grid”, Proceedings of the

IEEE International Conference on Information Technology

(ICIT), pp. 357 364, 2007.

[15] R. Buyya and S. Venugopal, “A Gentle Introduction to Grid

Computing and Technologies”, Computer Society of India

Communications, Vol. 29, No. 1, pp. 9 19, 2005.

[16] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen and R. F.

Freund, “Dynamic Mapping of a Class of Independent Tasks

onto Heterogeneous Computing Systems”, Journal of Parallel

and Distributed Computing, Vol. 59, No. 2, pp. 107 131,

1999.

[17] Tracy D. Braun, Howard Jay Siegel, and Noah Beck,

“Performance of Various Mapping Algorithms is Independent

of Sizable Variances in Run-time Predictions, Stochastic-

based robust dynamic resource allocation for independent

tasks in a heterogeneous computing system”, Journal of

Parallel and Distributed Computing, Volume 97, Pages 96-

111, 2016.

[18] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M.

Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys and

B. Yao, “A Comparison of Eleven Static Heuristics for

Mapping a Class of Independent Tasks onto Heterogeneous

Distributed Computing Systems”, Journal of Parallel and

Distributed Computing, Vol. 61, No. 6, pp. 810 - 837, 2001.

[19] F. Dong, J. Luo, L. Gao and L. Ge, “A Grid Task Scheduling

Algorithm Based on QoS Priority Grouping”, Proceedings of

the Fifth International Conference on Grid and Cooperative

Computing (GCC), IEEE, pp. 58 61, 2006.

[20] S. Abuelenin, ”Trust Based Grid Batch Mode Scheduling

Algorithms”, The 8th International Conference on

INFOrmatics and Systems (INFO), pp. 46 - 54, 2012.

[21] Qinma Kang, Hong He, “A novel discrete particle swarm

optimization algorithm for meta-task assignment in

heterogeneous computing systems”, Microprocessors and

Microsystems, Volume 35, Issue 1, Pages 10-17, February

2011.

[22] H. Xiaoshan, S. Xianhe and G. V. Laszewski, “QoS Guided

Min-Min Heuristic for Grid Task Scheduling”, Journal of

Computer Science and Technology, Vol. 18, No. 4, pp. 442

- 451, 2003.

[23] E. U. Munir, J. Li and S. Shi, “QoS Sufferage Heuristic for

Independent Task Scheduling in Grid”, Information

Technology Journal, Vol. 6, No. 8, pp. 1166 1170, 2007.

[24] F. Dong, J. Luo, L. Gao and L. Ge, “A Grid Task Scheduling

Algorithm Based on QoS Priority Grouping”, Proceedings of

the Fifth International Conference on Grid and Cooperative

Computing (GCC), IEEE, pp. 58 61, 2006.

