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Abstract: In recent years, reputation management schemes have 
been proposed as promising solutions to alleviate the blindness 
during peer selection in distributed P2P environment where 
malicious peers coexist with honest ones. They indeed provide 
incentives for peers to contribute more resources to the system and 
thus promote the whole system performance. But few of them have 
been implemented practically since they still suffer from various 
security threats, such as collusion, Sybil attack and so on. Therefore, 
how to detect malicious peers plays a critical role in the successful 
work of these mechanisms, and it will also be our focus in this paper. 
Firstly, we define malicious peers and show their influence on the 
system performance. Secondly, based on Multiscale Principal 
Component Analysis (MSPCA) and control chart, a Subspace based 
MAlicious peeRs deTecting algorithm (SMART) is brought forward. 
SMART first reconstructs the original reputation matrix based on 
subspace method, and then finds malicious peers out based on 
Shewhart control chart. Finally, simulation results indicate that 
SMART can detect malicious peers efficiently and accurately. 
 

Keywords: P2P, Multiscale Principal Component Analysis, 
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1. Introduction 

In order to stimulate peers to contribute resources and assist 
peers to select the most trustworthy collaborators, several 
reputation management schemes have been proposed [1], [2]. 
These schemes try to evaluate the transactions performed by 
peers and assign reputation values to them to reflect their past 
behavior features. And these reputation values will be the basis 
for identifying trustworthy peers to reduce the blindness of 
peer selection. Although these schemes have been proved to 
be theoretically attractive, they still have a long way to go 
before practical deployment. Because they are still faced with 
various attacks including self-promoting, whitewashing, 
slandering, collusion [3] and Sybil attack [4]. To simplify the 
description, these P2P systems with reputation management 
schemes will be referred to as Reputation based P2P (RP2P) 
systems for short, and those peers who initiate attacks will be 
referred to as malicious peers, other peers beside malicious 
ones will be called honest peers. 

As a burgeoning field, malicious peer detection has 
attracted the attention of many researchers in the recent years. 
A detector algorithm is proposed in [5] to find liar peers that 
send wrong feedback to subvert reputation system. Ji et al. 
suggested a group based metric for protecting P2P network 
against Sybil Attack and Collusion by dividing the whole 
network into some trust groups based on global structure 
information which is hard to obtain [6]. Recently, an upload 
entropy scheme is developed by Liu et al. to prevent collusions 

and further enhance robustness of private trackers sites [1]. 
But the threshold of this scheme needs to be selected by 
experiment. Moreover, Lee et al. put forward a simplified 
clique detection method to detect the colluders [7], but their 
method is restricted to colluders forming a clique. 

Many of these methods either concentrated on malicious 
peers of some particular categories or are based on global 
assumption, in this work, however, we focus on developing a 
general Subspace based MAlicious peeRs deTecting 
algorithm (SMART). The main differences between SMART 
and existing methods are: on the one hand, SMART aims at 
detecting malicious peers of multi-categories rather than some 
particular categories; on the other hand, SMART is based only 
on reputation information rather than global structure 
information. 

The rest of the paper is organized as follows. Related work 
is summarized in Section 2, Section 3 illustrates the influence 
of malicious peers and introduces SMART, and in Section 4 
many experiments are conducted to evaluate the performance 
of SMART. Finally, we conclude our main works and mention 
further research directions in Section 5. 

2. Related Work 

Mekouar et al. proposed a Malicious Detector Algorithm in 
[5] to detect liar peers that send wrong feedback to subvert 
reputation system. That is, after each transaction between a 
pair of peers, both peers are required to generate feedback to 
describe the transaction. If there is an obvious gap between the 
two pieces of feedback, both are regarded being suspicious. Ji 
et al. raised a group based metric for protecting P2P network 
against Sybil attack and collusion by dividing the whole 
network into some trust groups based on global structure 
information which is hard to obtain [6]. In [3], Lian et al. 
recommended various collusion detection approaches 
including pair-wise detector and traffic concentration detector 
with data of Maze file sharing application based on trace 
analysis. In order to guarantee the correctness of the reputation 
calculation, Despotovic et al [8] compared the probabilistic 
estimation and social network methods. Besides, they also 
identified four classes of collusive behavior. Recently, Tehale 
et al used the false message concept for identifying and 
verifying the Sybil nodes in the network [28]. Selvaraj et al 
presented a comprehensive survey of security issues in 
Reputation Management Systems for P2P networks in [29]. 
Jin et al proposed a peer based monitoring method in 
Peer-to-Peer Streaming environment [30]. Koutrouli et al 
provided a thorough view of the various credibility threats 
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against a decentralized reputation system and the respective 
defense mechanisms [31]. 

Recently, an upload entropy scheme is developed by Liu et 
al. to prevent collusions and further enhance robustness of 
private trackers' sites [1]. But the threshold of this scheme 
needs to be settled manually. Moreover, Lee et al. put forward 
a simplified clique detection method to detect the colluders [7], 
but their method is restricted to colluders who form a clique. 
Ciccarelli et al [9] surveyed the literature on P2P systems 
security with specific attention to collusion, to find out how 
they resist to such attacks and what solutions can be used. On 
the one hand, they summarized five collusive categories, and 
then investigated the influence of collusion on various 
applications. On the other hand, they discussed the feasible 
solutions that can be utilized to resist collusions, such as game 
theory and so on. Liu et al [10] brought forward a new strategy 
based on trust value and considers both the quality and the 
number of shared resources to avoid the phenomenon of free 
riding. Moreover, they also sketched collusion, slander and 
other misbehavior during strategy design. A MSPCA and 
Quality of Reconstruction based method PeerMate was 
proposed in our former work [11], it can efficiently detect 
malicious peers for P2P systems. However, PeerMate cannot 
find out malicious peers which initial Sybil attack to the 
system. Moreover, PeerMate needs a reconstruction threshold, 
which can remarkably impact its efficiency. 

Besides, many micropayment systems based methods have 
been proposed to help the P2P systems resist collusive 
behavior, in this paper, however, we mainly focus on how to 
detect malicious peers under P2P systems with reputation 
management schemes. 

3. Subspace based Malicious Peers Detection 

Firstly, we present the detecting context GRep, which is 
derived from current P2P systems. Secondly, malicious peers 
are divided into several categories and then their influence on 
the system performance is illustrated. Finally, SMART is 
introduced. 

 

3.1 Detecting context 

Before designing the detection algorithm, we first describe the 
detection context, which is derived from current RP2P systems, 
such as TVTorrents (www.tvtorrents.com) Error! Reference 
source not found., EigenTrust [2] and Maze 
(http://maze.tianwang.com) [13]. In this context, the content 
exchange process obeys the typical P2P workload models and 
is divided into several time slots (rounds). During each round, 
each peer initiates requests and the request process follows 
some typical P2P workload model, such as the workload 
model in KaZaA [14] and the BitTorrent workload model [1]. 
Moreover, we have found that the effectiveness of SMART is 
independent of the underlying workload model used. For the 
sake of simplicity, we adopt the typical model in literature [14], 
which is detailed in Section 4. Moreover, each peer is assigned 
an initial reputation value, which will increase by Xu when it 
uploads a piece of valid content and decrease by Xd when 
downloading a valid piece, and Xu ≥ Xd. 

 
 
 
 

Reputation matrix. Let N be the total number of peers and 
Xp

T be the reputation value of peer p at the end of the Tth round, 
1≤ p ≤N. Consequently, the reputation value of all the peers 
can form a reputation vector XVT= (X1

T, X2
T, … , XN

T) at the 
end of the Tth round. Besides, from the perspective of one 
single peer p, Xp

t, 1≤ t ≤T, can form a reputation time series 
XSp=(Xp

1, Xp
2,…, Xp

T). Then we can obtain a reputation matrix 
XT×N as in (1) at the end of the Tth round. The i th column of XT×N 
is the reputation time series of peer i. And the tth row of XT×N is 
the reputation vector at the end of round t. 
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Reputation matrix retrieval. In centralized RP2P systems, 
XT×N is usually collected and stored by a centralized facility, 
such as the tracker servers or the central server in Maze. In 
contrast, XT×N can be collected and calculated by each peer 
respectively in RP2P systems with decentralized reputation 
management scheme [2][15]. Hence, at least in some way, we 

can always get XT×N. For simplicity, we will use X
(

 to 
represent XT×N in the following analysis. 

 

3.2 Malicious peers and their influence on the system 

3.2.1 Malicious peers 

According to their different behavior features, the malicious 
peers can be divided into various categories, and hence it is 
hard to summarize all the categories comprehensively due to 
the complexity of the behaviors. Here, we mainly focus on the 
following categories and evaluate our algorithm based on 
these categories. 

MP1: peers that utilize P2P's resources without providing 
appropriate amount of resources (i.e., free-riders), such as 
BitTyrant and BitThief clients, this is because many peers are 
only in pursuit of maximizing their own profit while lack 
enthusiasm for contributing services to the entire system. 

MP2: peers that upload inauthentic objects to persecute the 
community, such as the peers controlled by the music industry 
which inject fake files to KaZaA, this is mainly due to the fact 
that many contents shared in the P2P community are 
copyrighted materials, such as latest movies or software, 
which violates the copyright owners’ profit. 

MP3: peers that collude with each other, they can be 
organized to a collusive group or chain through collaborating 
with each other to promote their reputation values or to 
decrease other peers’ reputation values, such as the colluders 
in Maze or eBay system; 

MP4: peers that create Sybil peers [16] to promote their 
own reputation values, and hence they can consume more 
resources in the system, such as the peers in eBay system with 
fake feedbacks from their Sybil peers. 

MP5: peers that exploit P2P's resources for their malicious 
purposes like worm dispatching, denial of service and so on 
[17].  
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(a) The results under FCS                   (b) The results under EDS 

Figure 1. The influence of FRs on the average download time of OBT and EBT 
 
We recognize that this partition is incomplete and there also 
exist some other malicious peers with more complex behaviors. 
For example, some peers may belong to multi categories at the 
same time and their behavior is a combination of the behaviors 
of multi categories. Besides, a peer is being nice until its 
reputation is high, and from then on exploits the system. 
Moreover, the collusive model targeting at some particular 
reputation management systems maybe more complex than 
peers belong to MP3 discussed above, such as the collusive 
models discussed in literature [9] and [8]. These malicious 
peers are called strategic malicious peers, which will be 
discussed further in Section 4. Although we mainly focus on 
the categories from MP1 to MP5, these categories can be used 
to evaluate our method and the evaluation results not only 
provide fundamental insight to the malicious peer detecting 
problem, but also can serve as a benchmark to evaluate the 
forthcoming detect algorithms, and inspire new detecting 
algorithms in the future. Furthermore, we assume honest peers 
count for the majority of all the peers. 

3.2.2 The Influence of Malicious Peers on the System 

In order to make a straightforward understanding of the 
influence of the malicious peers, we have conducted some 
experiments. Concretely, we investigate the influence of peers 
which belong to MP1 (i.e. free-riders) on both original 
BitTorrent (OBT) and BitTorrent system with a typical 
incentive scheme named EigenTrust [2] (EBT). The 
experiments are conducted on the simulator developed by 
Legout et al [18][19], moreover, we implement EigenTrust on 
it, replace its homogeneous assumption of peers’ upload 
capacities with heterogeneous one [15] and add an information 

collection module to it. To make the result more general， we 

investigate the influence of free-riders under two scenarios: in 
the first scenario, peers arrive in flash crowd fashion (i.e. all 
peers arrive simultaneously), while the rate at which peers join 
the torrent decreases exponentially with time under the second 
scenario. For the sake of simplicity, the flash crowd scenario 
and the exponential decreasing scenario will be referred to as 
FCS and EDS respectively in the following analysis. Other 
settings can be referred to [15][19]. In this simulation, the 
download time of a peer is defined as its download completion 
time minus its arrival time, and the Average Download Time 
(ADT) is defined as the average value of all peers’ download 
times. We choose ADT as our metric to investigate the 
influence of malicious peers. We vary the FRs from 0.1 to 0.5 

of the system while leave other parameters intact, and show the 
results in Fig. 1, which are averaged over 20 runs. Fig. 1(a) and 
(b) show the result under FCS and EDS respectively, and we 
can make two observations from them: Firstly, the download 
times of the peers tend to increase as the FR increases from 
10% to 50% under both OBT and EBT system; Secondly, 
EBT increases the download time of OBT although it bring 
some trust into the system. 

In summary, under both scenarios, the more the free-riders 
the system has, the higher the ADT will be. In fact, as the 
simplest form of the malicious peers, the free-riders might 
have already hurt the system performance, let alone those 
peers with more complex malicious behaviors. Consequently, 
we need to find out or even punish the malicious peers in order 
to promote the system performance. 

 

3.3 Problem statement and fundamental idea of SMART 

As illustrated before, all the malicious peers are with various 
objectives when joining the system. Despite of this, they 
possess an identical feature, which also differentiates them 
from honest ones, i.e. they behave differently from honest 
peers. Since the reputation value of a peer reflects its behavior 
features, different behaviors will lead to different reputation 
values, which will afterward lead to their different reputation 

time-series in X
(

. Therefore, we can distinguish malicious 
peers from honest ones if we can extract their different 
behavior features, which are embedded in the different 

deterministic features of their reputation time-series in X
(

. 
Based on this observation and inspired by the algorithms on 

anomalies detecting [20][21][22], we bring forward SMART 
based on subspace separation and control chart. More 
concretely, SMART first separates the original T-dimensional 
space into honest subspace and malicious subspace based on 
Multiscale Principal Component Analysis (MSPCA), and then 
reconstructs the reputation matrix based on the honest 
subspace, finally applies Shewhart control chart [23] on the 
reconstruction error matrix to find out the malicious peers. 

3.4 SMART 

3.4.1 MSPCA based Reputation Matrix Reconstruction 

MSPCA. MSPCA combines the ability of PCA to de-correlate 
the variables by extracting a linear relationship, with that of 
wavelet analysis to extract deterministic features  
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Figure 2. Four steps of MSPCA

and approximately de-correlate auto-correlated measurements 
[24]. Consequently, MSPCA is used to reconstruct the 
reputation matrix. After adding wavelet coefficients denoising 
process to the MSPCA proposed in [24], the MSPCA used 
contains four steps. For the sake of clarity, this process is 
illustrated in Fig. 2. 

Step 1: Wavelet decomposition of X
(

: apply wavelet 

decomposition W to each column of X
(

 to get wavelet 
coefficient matrix ZL, Ym (m=1, …, L) at each scale; then filter 
the wavelet coefficients according to MAD method [25] and 
arrive at LZ , mY  (m=1,…,L); 

Step 2: Principal component analysis of wavelet coefficient 
matrix: firstly, apply PCA to wavelet coefficient matrix LZ , mY  

(m=1,…, L) at each scale; secondly, select the number of 
principal components reserved according to scree plot method 
[26]; finally, reconstruct the wavelet coefficients matrix 
ˆ

LZ , m̂Y ; 

Step 3: Wavelet reconstruction of the reputation matrix: 
reconstruct the matrix based on ˆ

LZ , m̂Y  (m=1,…,L) through 

inverse wavelet transformation WT and obtain X
)

; 
Step 4: Principal component analysis of reconstructed 

matrix: apply PCA to X
)

 to reduce the dimensionality and 

then obtain reconstructed matrix X̂ . 
Wavelet denoising. In MSPCA, wavelet denosing is 

applied to X
(

 in Step 1 to eliminate the influence of inaccurate 

or noise data in X
(

. Moreover, during the second step, the soft 
threshold function is used as defined by Donoho in [26]. 

PCA based matrix reconstruction. As a typical 
multivariate statistical analysis technique, PCA (Principal 
Components Analysis) is a general method to find pattern in 
high-dimensional data and has been widely used in many 
fields, such as pattern recognition and data compression. 
Moreover, PCA has also been used to detect traffic anomalies 
by separating the principal components to normal and 
anomalies subspace, and then the anomalies part is used to 
detect traffic anomalies [20]. Inspired by this detection 

method, PCA is used to transform the matrix X
)

 into two 
subspaces: the honest subspace and the malicious subspace. 

More concretely, after applying PCA to X
)

, the first r 
principal components are selected to construct the honest 

subspace since they captures most of the variances of X
)

, 
while the last N-r principal components are used to construct 

the anomalies subspace. And then X̂  is obtained after 

projecting X
)

 onto the honest subspace. Similarly, X%  is 

obtained through projecting X
)

 onto the malicious subspace. 

Moreover, X̂  and X%  satisfy the equation ˆX X X= +
)

% . To 
make it simple, each column i of X%  is called the 
reconstruction error time series of peer i. 

In general, the reputation values of honest peers are mainly 
enclosed in the honest subspace since their time-varying 
patterns are closer to the first r principal components than 
those of malicious peers, while the reputation values of 
malicious peers are expressed more by the malicious subspace. 
Consequently, after reconstruction, the changes of the 
reputation time-series of malicious peers are larger than those 
of honest peers, in other words, the reputation values of 
malicious peers in X%  are larger than that of honest ones. And 
this can help us distinguish malicious peers from honest ones. 

3.4.2 Shewhart Control Chart based Malicious Peers 
Detection 

Here we treat X%  as a sample of a production process, and 
each column (i.e. a reconstruction error time-series of a peer) 
of X%  as a sample subgroup, there will be a substantial change 
between two subgroups if one of them is a reconstruction error 
time-series of an honest peer and the other one is a time-series 
of a malicious peer, since the reconstruction error of malicious 
peers in X%  are larger than that of honest ones. Consequently, 
we adopt Shewhart R control chart [23] to find out malicious 
peers, which is good at detecting the change between sample 
subgroups. 

Let the mean of the production process be µ and the 
standard deviation be σ. Then the central line (CL), the upper 
control limit (UCL) and the lower control limit (LCL) are 
fixed at: 

UCL =µ + kσ              (2) 

CL = µ                (3) 

LCL =µ - kσ                 (4) 

where k is the distance of the control limits from the central 
line, expressed in standard deviation units. According to 
central limit theorem, k is usually chosen as 3. Generally 
speaking, µ and σ are unknown and are needed to be estimated 
through samples X% . 

In this work, we have N sample subgroups, iX% , i=1, 2, … , 

N. And there are T samples in each subgroup i. Let the range of 
each sample subgroup i be Ri, and the estimated control limit 
can be rewritten as: 

UCL= 3

2
(1 )d

dk R+                  (5) 
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CL= 1

1

N

iN
i

R R
=

= ∑                  (6) 

LCL= 3

2
(1 )d

dk R−                     (7) 

where 3 2/d R d  is the estimator of σ, and R  is the estimator of 

µ. After obtaining UCL and LCL, a sample subgroup i (i.e. 
peer i) is identified as malicious if its Ri is larger than UCL or 
lower than LCL. Moreover, the values of d2 and d3 only 
depend on T [23]. 

3.4.3 SMART Algorithm 

The pseudo code of SMART is illustrated in Algorithm 1. 

Firstly, in line 1, SMART applies MSPCA to X
(

 and obtain 

X̂  and X% . Secondly, in line 2, SMART calculates UCL and 
LCL according to (5) to (7). Finally, from line 3 to 7, SMART 
identifies malicious peers according to the control limit. 
 
Algorithm 1 SMART 

Input: X
(

        △△△△  the reputation matrix 

Output: SMPS    △ Suspicious Malicious Peers Set 

1: obtain X̂  and X%  after applying MSPCA to X
(

 
2: calculating UCL and LCL according to (5) and (7) 
3: for i =1 to N 

4:     if Ri>UCL or Ri <LCL    △ Ri is the range of column i of 

X%  
5:            i is considered as a malicious peer, add i to SMPS 
6:     end if 
7: end for 

Time complexity. The time complexity of SMART mainly 
lies on MSPCA, whose time complexity is O(TN2L). 
Therefore, the complexity of SMART is O(TN2L). Moreover, 
the storage cost of SMART is O(TN). 

4. Simulations and Results 

To explore aspects of SMART and compare it with existing 
algorithms are difficult to study using traces of real systems or 
analysis, consequently, we use a simulation-based approach 
for understanding and evaluating SMART and existing 
algorithms. Such an approach provides the flexibility of 
carefully controlling the configuration parameters of the 
various detecting algorithms. This would be difficult or even 
impossible to achieve using live Internet measurement 
techniques. Thus, while certain interactions specific to a real 
deployment will be missed, we believe the abstraction is rich 
enough to expose most details that are relevant to our 
experiments. Concretely speaking, after introducing our 
experimental context; we present the simulation results, and 
then give a discussion on the results as well as possible 
usability of SMART. 

4.1 Simulation Context and Comparison Method 

Here, we adopt the workload model in [14] as the underlying 
workload model of our simulations. Concretely, the workload 
is as follows. The contents arrive at constant rate λO > 0 and the 
popularity of them follows Zipf distribution. When a piece of 
content arrives, its popularity rank is determined by selecting 
randomly from the Zipf(1) distribution. On average, a client 
requests a constant number of pieces of content per round, 

choosing which piece of content to fetch from a Zipf 
probability distribution with parameter 1.0. To simplify our 
model, we assume that all of the content in the system is of 
equal size. Table 1 describes the parameters setup in the 
simulation experiment. And the malicious peers are selected 
randomly from all the peers.  

Note that our simulation is from the measurement results 
from KaZaA rather than BitTorrent workload model [1], since 
after investigating the simulation results of this workload 
model, we get similar upload entropy of the system as those in 
BitTorrent workload model [1]. Consequently, this workload 
model is sufficient to illustrate the performance of our 
detecting algorithm. 

Table 1. Simulation parameters 
Symbol Meaning Base value 
N # of peers 200 
O # of contents 4000 
λR per-user request rate 2 contents 

/round 
λO content arrival rate varies 
PM the ratio of # of malicious peers to 

# of peers 
varies 

Ph the honest possibility that strategic 
malicious peer act as honest ones 

varies 

4.2 Comparison Benchmarks and Evaluation Metrics 

Comparison benchmarks. We choose three existing schemes 
as comparison benchmarks: EigenTrust, Upload Entropy 
(UEntropy) schemes [1] and our former algorithm PeerMate 
[11]. In EigenTrust, iterative calculation is implemented to 
obtain each peer’s global reputation value and peers with the 
lowest reputation values are treated as the least trustworthy 
peers, which therefore will be treated as malicious peers 
distinguished by EigenTrust scheme in our simulation. The 
second scheme aims at stimulating peers to share content in 
Private BT society. And those peers with lowest upload 
entropy will be considered as the least trustworthy 
collaborators, in other words, they are the suspicious 
malicious peers. Therefore, in order to guarantee the fairness 
of comparison, in UEntropy scheme, those peers with the 
lowest entropy will be treated as suspicious malicious peers 
found by UEntropy. PeerMate detects malicious peers based 
on MSPCA and Quality of Reconstruction (QR). 

Evaluation metrics. Let MPS (Malicious Peers Set) be the 
malicious peers set, HPS (Honest Peers Set) be the set of 
honest peers, and SMP (Suspected Malicious Peers set) be the 
malicious peers set found by particular scheme. Then we 
define two metrics TPR (True Positive Ratio) and FNR (False 
Negative Ratio) as follows: 

TPR=|SMP∩ MPS|/|MPS|; 

FNR=|SMP∩ HPS|/| HPS|. 

where | | represents the rank of a set, and ∩ stands for the 
intersection of two sets. Consequently, both TPR and FNR 
range from 0 to 1. 

Simulation scenarios. We consider two typical simulation 
scenarios here. One is simple and the other is more complex. 
Under the simple scenario, there are no strategic malicious 
peers in the system. In contrast, there exist some strategic 
malicious peers in the system under complex scenario. 
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Figure 3. Detecting result of SMART 

 
Figure 4. Detecting result of SMART with different PM 

 
Figure 5. Detecting result of SMART with different data missing ratio 

 
 

4.3 Simulation Results 

4.3.1 Comparison Results of different schemes 

Firstly, we compare malicious peers detection results of 
SMART, EigenTrust, UEntropy and PeerMate with λO=2, 
Ph=0 and PM=0.2. Other parameters, such as N, O and λR are 
listed in Table 1. After 200 rounds, we can obtain a reputation 
matrix X200×200, and then we apply the three schemes to 
X200×200 respectively, the detecting results of SMART is shown 
in Fig. 3, in which the peers with red circles are malicious 
peers detected by SMART. Moreover, the detecting results of 
all the four schemes are shown in Table 2. As noted from 
Table 2, the TPR of SMART is 100% which is the highest 
among the four, while the TPRs of EigenTrust, UEntropy and 
PeerMate are 90%, 57.5% and 97.5% respectively. Besides, 
the FNR of SMART is 5.63% which ranks the second among 
the three, while the FNRs of UEntropy, EigenTrust and 
PeerMate are 10.63%, 2.5% and 7% respectively. 
Consequently, SMART detects all of the malicious peers with 
acceptable FNR. The FNR of EigenTrust is 2.5% which is 
lower than SMART since we only choose the last N×PM peers 
as the malicious peers and this choice helps decrease the FNR 
of EigenTrust. Moreover, we notice that SMART finds the 

malicious peers belong to MP4, and this means we can extend 
SMART in the future to find out Sybil peers in other P2P 
systems. 

Table 2 The detecting results of the four schemes 
Schemes TPR FNR 
EigenTrust 90% 2.5% 
UEntropy 57.5% 10.63% 
PeerMate 97.5% 7% 
SMART 100% 5.63% 

 

4.3.2 Detecting Results of SMART with Different 
Parameters 

Detection results with different PM. We also investigate the 
influence of PM when λO =2 and Ph=0. And the results are 
shown in Fig. 4. From Fig. 4, we can see that the TPR of 
SMART decreases from 100% to 90% as PM increases from 
20% to 60%, in contrast, the FNR of SMART increases from 
5.63% to 22.5%. We also notice that the FNR of SMART is 
about 10% when half of the peers are malicious. This means 
the accuracy of SMART’s detecting results is acceptable when 
up to 50% of the peers are malicious. 
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Figure 6. Detecting result of SMART with different Ph 

 
Detection results with missing data. As mentioned before, 

the reputation values in X may be inaccurate or missing. 
Consequently, we investigate how SMART could adapt to 
missing data context with different ratios of missing data from 
0 to 60%, while the missing data are selected randomly from 
X. Other parameters are: λO =2, Ph=0 and PM =0.2. For the sake 
of simplicity, we fix X as follows: if Xi

t is missing, then we set 
Xi

t = (Xi
t-1 + Xi

t+1)/2, if 1<t<T; Xi
t = Xi

t+1, if t=1; Xi
t =Xi

t-1, if 
t=T. After the 200th round, the results are shown in Fig. 5. 

From Fig. 5, we can see that the TPR of SMART keeps at 
100% even up to 60% of the elements are missing since data 
missing cannot change the deterministic features of honest and 
malicious peers. In contrast, the FNR of SMART increases 
slowly from 5.63% to 8% as the data missing ratio increases 
from 0 to 40%, and then increases sharply from 8% to about 
21% as the data missing ratio increases from 40% to 55%, at 
last, the FNR decreases to 11% when the data missing ratio is 
60%. This means the performance of SMART is acceptable 
when the data miss ratio is lower than 40%. 

4.3.3 Detection Results of SMART under Complex 
Scenario 

Possibility model. In order to avoid being detected, during 
each round, many strategic malicious peers will act as honest 
ones with certain possibility of Ph. Therefore, we investigate 
SMART with λO =2, PM =0.2 and Ph =0.1, 0.2, 0.3, 0.4, 0.5, 0.6 
and 0.7 respectively. The results are shown in Fig. 6. 

Fig. 6 demonstrates that the TPR decreases from 100% to 
80% as Ph increases from 0 to 70%, while the FNR of SMART 
fluctuates between 4.5% and 12%. In order to obtain high 
accuracy and low false alert, the performance of SMART is 
acceptable when Ph is lower than 40%. 

Mixture model. We also evaluate SMART with strategic 
malicious peers which belong to multi categories at the same 
time and whose behaviors are a combination of the behaviors 
of multi categories discussed above. Generally speaking, the 
mixture of malicious behavior cannot change the essential 
difference between the behaviors of malicious peers and 
honest ones. Concretely, we add a few malicious peers whose 
behaviors are as follows. They act as the behaviors of MP1, 
MP2, MP3, MP4 and MP5 with certain possibility. After 200 
rounds, we find that the TPR of SMART is 95% with FNR 
equals to 8.3%. This means SMART is also good at finding out 
malicious peers with mixture behaviors since mixture 
behaviors cannot change the deterministic features of honest 
and malicious peers. Here, we leave malicious peers with more 
complex behaviors for future work since it is hard, if not 
impossible, to enumerate all of them. 

4.4 The Influence of SMART on the System Performance 

If we can find out malicious peers with SMART, peers can 
choose more reliable service providers during peer selection 
process. Therefore, we compare the request success rate of the 
system with three different peer selection policies. With the 
first policy, peers select service providers randomly, while the 
peers select the provider with the highest reputation value 
calculated by EigenTrust in the second policy, and the honest 
peers found out by SMART are selected as the service 
providers in the third policy. Without loss of generality, the 
request success rate of each round is defined as the number of 
successful object transactions divided by the total number of 
object transactions during this round. And the results with λO 
=2, PM =0.2 are shown in Fig. 7. 
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Figure 7. The request success rate of the system with different 

peer selection policies 
 
From Fig. 7, we can see that SMART achieves the highest 

request success rate among the three, and its average request 
success rate of all the rounds is 83.64%. EigenTrust ranks the 
second, and its average request success rate is 76.31%, while 
the average request success rate with random peer selection 
policy is 75.50% and is the worst among the three peer 
selection policies. And this result shows the potential that 
SMART can be integrated with existing peer selection 
algorithms to promote the quality of service or performance of 
the system. For example, during the choking process in 
BitTorrent, the malicious peers discriminated by SMART 
should not be unchoked. 
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4.5 Discussion 

Summary. From these simulations, we can draw the following 
conclusions: first, aiming at these malicious peers defined in 
Section 3, SMART can achieve high detecting accuracy even 
under strategic and data missing context; second, SMART can 
distinguish malicious peers of MP4 from honest ones, this 
may provide an useful inspiration of new algorithms to defend 
Sybil attack; third, each reputation management scheme needs 
to implement some algorithms to detect malicious peers to 
ensure its success. Finally, the detection performance of 
SMART is not restricted to malicious peers of some particular 
categories or some particular workload models, as long as the 
malicious peers have different behaviors from honest peers.  

Possible worst case. As the basic idea of SMART is that 
malicious peers have different behaviors from honest peers. 
Consequently, some of the malicious peers can guess the 
reputation change mode of honest peers and make their 
reputation time series has similar change mode through 
choosing their behavior of each round carefully. This will 
decrease the effectiveness of SMART, but if every object 
transaction is tractable, the malicious peers should contribute 
enough resources to the system to get the desirable reputation 
time series, and this will increase the attack cost of these 
malicious peers. 

SMART applications. SMART can be applied to 
Maze-like and EigenTrust-like systems directly since they 
have common context. Besides, SMART can also be applied 
to other RP2P systems if they implement some schemes to 
collect or compute the reputation values of all the peers, such 
as iRep [15]. 

5. Conclusions and Future Work 

In this paper, we present SMART, a novel malicious peer 
detection algorithm for RP2P systems, which distinguishes 
malicious peers from honest ones by combining MSPCA with 
Shewhart control chart. Simulation results indicate that 
SMART achieves high detection accuracy and flexibility on 
the malicious peers defined in this paper. As a future task, we 
are planning to extend SMART to make it adaptable to 
real-time online detection in RP2P systems. Besides, to this 
end, we omit some malicious peers with more complex 
behaviors, such as RepTrap attack [27], which are resource 
consuming for the attackers. We will take them into 
consideration in our future works. 
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