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Abstract: In recent years, reputation management schemes haa®d further enhance robustness of private trackiess [1].

been proposed as promising solutions to alleviage hlindness
during peer selection in distributed P2P environmerhere
malicious peers coexist with honest ones. They dddprovide
incentives for peers to contribute more resouroethé¢ system and
thus promote the whole system performance. But fethem have
been implemented practically since they still sufi@m various
security threats, such as collusion, Sybil attagk o on. Therefore,
how to detect malicious peers plays a critical iinl¢he successful
work of these mechanisms, and it will also be oaus in this paper.
Firstly, we define malicious peers and show thefluence on the
system performance. Secondly, based on MultiscaiaciBal
Component Analysis (MSPCA) and control chart, a Sabsgased
MAlicious peeRs deTecting algorithm (SMART) is broufgrward.
SMART first reconstructs the original reputation mabased on
subspace method, and then finds malicious peersbaséd on
Shewhart control chart. Finally, simulation resuitslicate that
SMART can detect malicious peers efficiently andusately.

But the threshold of this scheme needs to be szleby
experiment. Moreover, Lee et al. put forward a difiepl
cligue detection method to detect the colluders i their
method is restricted to colluders forming a clique.

Many of these methods either concentrated on rakci
peers of some particular categories or are basedlaial
assumption, in this work, however, we focus on tipiag a
general Subspace based MAlicious peeRs deTecting
algorithm (SMART). The main differences between SRIA
and existing methods are: on the one hand, SMART ait
detecting malicious peers of multi-categories nathan some
particular categories; on the other hand, SMARFaised only
on reputation information rather than global stooet
information.

The rest of the paper is organized as follows. tedlavork
is summarized in Section 2, Section 3 illustrakesihfluence

Keywords: P2P, Multiscale Principal Component Analysis, Of malicious peers and introduces SMART, and intiSect

Shewhart control chart, malicious peer.

1. Introduction

In order to stimulate peers to contribute resousres assist
peers to select the most trustworthy collaborateeseral
reputation management schemes have been propdsé?] [1
These schemes try to evaluate the transactionsrpefl by
peers and assign reputation values to them toctafieir past
behavior features. And these reputation valueshsithe basis
for identifying trustworthy peers to reduce thendliess of
peer selection. Although these schemes have bemegito

be theoretically attractive, they still have a lorngy to go

before practical deployment. Because they arefati#d with

various attacks including self-promoting, whitewiagh

slandering, collusion [3] and Sybil attack [4]. $inplify the

description, these P2P systems with reputation gemant
schemes will be referred to as Reputation based(RERP)

systems for short, and those peers who initiatekdtwill be

referred to as malicious peers, other peers benaliious

ones will be called honest peers.

many experiments are conducted to evaluate thempeshce
of SMART. Finally, we conclude our main works andrtion
further research directions in Section 5.

2. Related Work

Mekouar et al. proposed a Malicious Detector Altjoni in
[5] to detect liar peers that send wrong feedbackubvert
reputation system. That is, after each transadietween a
pair of peers, both peers are required to genéattback to
describe the transaction. If there is an obvioystitween the
two pieces of feedback, both are regarded beingaass. Ji
et al. raised a group based metric for protecti2B Retwork
against Sybil attack and collusion by dividing thole
network into some trust groups based on globalciire
information which is hard to obtain [6]. In [3], & et al.
recommended various collusion detection approaches
including pair-wise detector and traffic concentmatdetector
with data of Maze file sharing application based tcace
analysis. In order to guarantee the correctnetfeatputation
calculation, Despotovic et al [8] compared the pialistic

As a burgeoning field, malicious peer detection ha@stimation and social network methods. Besidesy #iso

attracted the attention of many researchers imgbent years.
A detector algorithm is proposed in [5] to findrligeers that
send wrong feedback to subvert reputation systerat al.
suggested a group based metric for protecting R2Ronk
against Sybil Attack and Collusion by dividing tkéole
network into some trust groups based on globalctira
information which is hard to obtain [6]. Recentian upload
entropy scheme is developed by Liu et al. to pregeltusions

identified four classes of collusive behavior. Rebe Tehale

et al used the false message concept for idergifgnd
verifying the Sybil nodes in the network [28]. Salej et al
presented a comprehensive survey of security issmes
Reputation Management Systems for P2P network29h [
Jin et al proposed a peer based monitoring method i
Peer-to-Peer Streaming environment [30]. Koutraatlial
provided a thorough view of the various credibilityeats
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against a decentralized reputation system anddsgective
defense mechanisms [31].

Recently, an upload entropy scheme is developddibgt
al. to prevent collusions and further enhance rirass of
private trackers' sites [1]. But the threshold hif tscheme
needs to be settled manually. Moreover, Lee ghalforward
a simplified clique detection method to detectdbBuders [7],
but their method is restricted to colluders wharfa clique.
Ciccarelli et al [9] surveyed the literature on P2@tems
security with specific attention to collusion, fad out how
they resist to such attacks and what solutionsbeansed. On
the one hand, they summarized five collusive categpand
then investigated the influence of collusion on ivas
applications. On the other hand, they discussedeasible
solutions that can be utilized to resist collusjsueh as game
theory and so on. Liu et al [10] brought forwandeav strategy
based on trust value and considers both the quatitly the
number of shared resources to avoid the phenomeiirae
riding. Moreover, they also sketched collusionndkir and

Reputation matrix. LetN be the total number of peers and
XpT be the reputation value of pgeat the end of th&" round,
1< p <N. Consequently, the reputation value of all therpee
can form a reputation vectdtV'= (X', X,', ... , X\') at the
end of theT" round. Besides, from the perspective of one
single peemp, Xpt, 1< t <T, can form a reputation time series
XS=(X,", o Xp'). Then we can obtain a reputation matrix
X™N as in (1) at the end of tA& round. Theé™ column ofX™"
is the reputation time series of peéeind thet™ row of X"V is
the reputation vector at the end of rodnd

Xll x; X't
X2 X2 X2

S RO (1)
xlT x; X.\T,

Reputation matrix retrieval. In centralized RP2P systems,
X"V is usually collected and stored by a centralizailify,
such as the tracker servers or the central senvifaize. In

other misbehavior during strategy design. A MSPGAl a contrast, X" can be collected and calculated by each peer
Quality of Reconstruction based method PeerMate w&@spectively in RP2P systems with decentralizeditegion

proposed in our former work [11], it can efficignilletect
malicious peers for P2P systems. However, Peerkliaot
find out malicious peers which initial Sybil attat& the
system. Moreover, PeerMate needs a reconstruttiestiold,
which can remarkably impact its efficiency.

management scheme [2][15]. Hence, at least in suayewe

can always getX"™. For simplicity, we will useX to
represenX”™ in the following analysis.

Besides, many micropayment systems based metheds ha 3-2 Malicious peersand their influence on the system

been proposed to help the P2P systems resist iwellus

behavior, in this paper, however, we mainly focunshow to
detect malicious peers under P2P systems with agpnt
management schemes.

3. Subspace based Malicious Peers Detection

Firstly, we present the detecting context GRep,ctvhis
derived from current P2P systems. Secondly, maigcjpeers
are divided into several categories and then thélirence on
the system performance is illustrated. Finally, SRTIAis
introduced.

3.1 Detecting context

Before designing the detection algorithm, we filsscribe the
detection context, which is derived from currenPRBystems,
such as TVTorrents (www.tvtorrents.coBnror! Reference
source not found., EigenTrust [2] and Maze
(http://maze.tianwang.com) [13]. In this contexte tcontent
exchange process obeys the typical P2P workloacinahd
is divided into several time slots (rounds). Durgagh round,
each peer initiates requests and the request rdolsws

3.2.1 Malicious peers

According to their different behavior features, thalicious
peers can be divided into various categories, amtdit is
hard to summarize all the categories comprehernystugt to
the complexity of the behaviors. Here, we mainigu®on the
following categories and evaluate our algorithm eoh®n
these categories.

MP1: peers that utilize P2P's resources without piogid
appropriate amount of resources (i.e., free-ridesath as
BitTyrant and BitThief clients, this is because maeers are
only in pursuit of maximizing their own profit wiillack
enthusiasm for contributing services to the ergyrgtem.

M P2: peers that upload inauthentic objects to persettat
community, such as the peers controlled by the erindustry
which inject fake files to KaZaA, this is mainlyelto the fact
that many contents shared in the P2P community are
copyrighted materials, such as latest movies otwsoé,
which violates the copyright owners’ profit.

MP3: peers that collude with each other, they can be
organized to a collusive group or chain throughatmirating
with each other to promote their reputation valwesto

some typical P2P workload model, such as the warklo decrease other peers’ reputation values, sucheasottuders

model in KaZaA [14] and the BitTorrent workload nebgfl].
Moreover, we have found that the effectivenessMART is
independent of the underlying workload model ugeat. the
sake of simplicity, we adopt the typical modelitardature [14],
which is detailed in Section 4. Moreover, each fpeassigned
an initial reputation value, which will increase By when it
uploads a piece of valid content and decreas&gwhen
downloading a valid piece, angl> Xg.

in Maze or eBay system;

MP4: peers that create Sybil peers [16] to promoté the
own reputation values, and hence they can consuore m
resources in the system, such as the peers in®@B&sm with
fake feedbacks from their Sybil peers.

M P5: peers that exploit P2P's resources for theiraitals
purposes like worm dispatching, denial of servind ao on
[17].
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Figure 1. The influence of FRs on the average download 6fM@BT and EBT

We recognize that this partition is incomplete &ngre also
exist some other malicious peers with more compihaviors.
For example, some peers may belong to multi caitegat the
same time and their behavior is a combination @bishaviors
of multi categories. Besides, a peer is being niogl its
reputation is high, and from then on exploits tlystem.
Moreover, the collusive model targeting at sometipaar

of the system while leave other parameters insat,show the
results in Fig. 1, which are averaged over 20 rkigs.1(a) and

(b) show the result under FCS and EDS respectiagig, we
can make two observations from them: Firstly, tbevdload
times of the peers tend to increase as the FRasesefrom
10% to 50% under both OBT and EBT system; Secondly,
EBT increases the download time of OBT althoughrihg

reputation management systems maybe more compdex ttsome trust into the system.

peers belong to MP3 discussed above, such as thsice

models discussed in literature [9] and [8]. Thesdigious

peers are called strategic malicious peers, whidh be

discussed further in Section 4. Although we mafolyus on
the categories from MP1 to MP5, these categoriedeaised
to evaluate our method and the evaluation resutsonly

provide fundamental insight to the malicious peetedting
problem, but also can serve as a benchmark to aeathe
forthcoming detect algorithms, and inspire new chitg

algorithms in the future. Furthermore, we assunrebbpeers
count for the majority of all the peers.

3.2.2 TheInfluence of Malicious Peerson the System

In order to make a straightforward understandingthaf

influence of the malicious peers, we have condusimte

experiments. Concretely, we investigate the infteeof peers
which belong toMP1 (i.e. free-riders) on both original
BitTorrent (OBT) and BitTorrent system with a tyaic
incentive scheme named EigenTrust [2] (EBT).
experiments are conducted on the simulator devdldpe
Legout et al [18][19], moreover, we implement Eifjeust on
it, replace its homogeneous assumption of peert&adp
capacities with heterogeneous one [15] and addfarmiation

collection module to it. To make the result moraayal, we

investigate the influence of free-riders under sgenarios: in
the first scenario, peers arrive in flash crowcias (i.e. all
peers arrive simultaneously), while the rate atWligieers join
the torrent decreases exponentially with time utidesecond
scenario. For the sake of simplicity, the flashwadascenario
and the exponential decreasing scenario will berred to as
FCS and EDS respectively in the following analysiher
settings can be referred to [15][19]. In this siatign, the
download time of a peer is defined as its downloadpletion
time minus its arrival time, and the Average Dovaldlime
(ADT) is defined as the average value of all pedminload
times. We choose ADT as our metric to investigdte t
influence of malicious peers. We vary the FRs f@tto 0.5

Thﬁ

In summary, under both scenarios, the more theridess
the system has, the higher the ADT will be. In fag the
simplest form of the malicious peers, the freensdmight
have already hurt the system performance, let atbnee
peers with more complex malicious behaviors. Consetly,
we need to find out or even punish the maliciolerp@ order
to promote the system performance.

3.3 Problem statement and fundamental idea of SMART

As illustrated before, all the malicious peers it various
objectives when joining the system. Despite of,thiey
possess an identical feature, which also diffea¢edi them
from honest ones, i.e. they behave differently froomest
peers. Since the reputation value of a peer refiecbehavior
features, different behaviors will lead to differeaputation
values, which will afterward lead to their diffeteeputation

time-series inX . Therefore, we can distinguish malicious
eers from honest ones if we can extract theirechfft
behavior features, which are embedded in the diffier

deterministic features of their reputation timeisein X .

Based on this observation and inspired by the dhgos on
anomalies detecting [20][21][22], we bring forweBMART
based on subspace separation and control charte Mor
concretely, SMART first separates the origimalimensional
space into honest subspace and malicious subspaed bn
Multiscale Principal Component Analysis (MSPCA)ddhen
reconstructs the reputation matrix based on theeston
subspace, finally applies Shewhart control chasf @ the
reconstruction error matrix to find out the malicsopeers.

34 SMART

3.4.1 M SPCA based Reputation M atrix Reconstruction

M SPCA. MSPCA combines the ability of PCA to de-correlate
the variables by extracting a linear relationshifth that of
wavelet analysis to extract deterministic features
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Figure 2. Four steps of MSPCA

and approximately de-correlate auto-correlated oreasents gptained through projecting onto the malicious subspace.
[24]. Consequently, MSPCA is used to reconstruct t oreover, X and X satisfy the equatiorX = X + % To
reputation matrixAfter adding wavelet coefficients denoising

process to the MSPCA proposed in [24], the MSPCeédus make it S|mple, each column of X is called the

contains four steps. For the sake of clarity, fhiscess is reconstruction error t|me.ser|es of peer .
illustrated in Fig. 2. In general, the reputation values of honest peersnainly

. - enclosed in the honest subspace since their timénga
Step 1: Wavelet decomposition of : apply wavelet paiems are closer to the finstprincipal components than
decompositionW to each column ofX to get wavelet those of malicious peers, while the reputation eslwof
coefficient matrixz,, Yn, (=1, ...,L) at each scale; then filter malicious peers are expressed more by the malisigspace.
the wavelet coefficients according to MAD metho®][2nd Consequently, after reconstruction, the changes thef
arrive atz,,v, (m=1,...L); reputation time-series of malicious peers are faitygn those
Step 2: Principal component analysis of waveleffmment  of honest peers, in other words, the reputatiorueslof
matrix: firstly, apply PCA to wavelet coefficientatnix Z, ,Y, malicious peers inX are larger than that of honest ones. And

L1 'm

(m=1,..., L) at each scale; secondly, select the number His can help us distinguish malicious peers framdst ones.

principal components reserved according to screenpéthod 342 ghewhart Control Chart based M alicious Peers
[26]; finally, reconstruct the wavelet coefficientaatrix Detection

ZI_ yY 1
Step 3: Wavelet reconstruction of the reputatiortrixa
reconstruct the matrix based dn,Y, (m=1,...L) through

Here we treatX as a sample of a production process, and

each column (i.e. a reconstruction error time-seoiea peer)

N of X as a sample subgroup, there will be a substaritaige

inverse wavelet transformatiah” and obtainX ; between two subgroups if one of them is a recoattmierror
Step 4: Principal component analysis of reconsdict time-series of an honest peer and the other omdinise-series

matrix: apply PCA toX to reduce the dimensionality andof a malicious peer, since the reconstruction esfonalicious

then obtain reconstructed matri . peers inX are larger than that of honest ones. Consequently,
Wavelet denoising. In MSPCA, wavelet denosing is We adopt Shewhart R control chart [23] to find matlicious

applied to X in Step 1 to eliminate the influence of lnaccurat‘gssgsrozvglsl(:h 's good at detecting the change betsaeple

or noise data inX . Moreover, during the second step, the soft | et the mean of the production process /bend the
threshold function is used as defined by Donoh@éj. standard deviation be Then the central lin€CL), theupper

PCA based matrix reconstruction. As a typical control limit (UCL) and the lower control limifLCL) are
multivariate statistical analysis technique, PCAir€ipal fixed at:

Components Analysis) is a general method to fintdepa in UCL =u + ko 2)
high-dimensional data and has been widely used anym

fields, such as pattern recognition and data cossjoa. CL=u ®3)
Moreover, PCA has also been used to detect trafimalies LCL = - ko (4)

by separating the principal components to normadl an
anomalies subspace, and then the anomalies paseisto Wherek is the distance of the control limits from the twah

detect traffic anomalies [20]. Inspired by this etsion [in€, expressed in standard deviation units. Accgrdo
central limit theoremk is usually chosen as 3. Generally

speakingu ande are unknown and are needed to be estimated
through sample .

In this work, we havél sample subgroupsX, ,i=1, 2, ...,
N. And there ar& samples in each subgroup.et the range of

ach sample subgroupeR, and the estimated control limit
an be rewritten as:

UCL= (1+kg)R (5)

method, PCA is used to transform the matkxinto two
subspaces: the honest subspace and the malicibepase.

More concretely, after applying PCA tX , the firstr
principal components are selected to construct hieest

subspace since they captures most of the varianicéé,
while the lastN-r principal components are used to construcg

the anomalies subspace. And thef is obtained after
projecting X onto the honest subspace. Similarly, is
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CL=R

=4YR

i=1

(6)

LCL=(1-k&)R )

where d,R/ d, is the estimator of, and R is the estimator of

u. After obtaining UCL and LCL, a sample subgrdug.e.
peeri) is identified as malicious if itR is larger than UCL or
lower than LCL. Moreover, the values df and d; only
depend o [23].

3.4.3 SMART Algorithm
The pseudo code of SMART is illustrated Ahgorithm 1.
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choosing which piece of content to fetch from Zgpf
probability distribution with parameter 1.0. To gilify our
model, we assume that all of the content in théesyss of
equal size. Table 1 describes the parameters settipe
simulation experiment. And the malicious peers selected
randomly from all the peers.

Note that our simulation is from the measurementilte
from KaZaA rather than BitTorrent workload modé€], [dince
after investigating the simulation results of thi®rkload
model, we get similar upload entropy of the sysésnthose in
BitTorrent workload model [1]. Consequently, thisrkload
model is sufficient to illustrate the performancé aur
detecting algorithm.

Table 1. Simulation parameters

Firstly, in line 1, SMART applies MSPCA tX and obtain

X and X . Secondly, in line 2, SMART calculates UCL ardy

LCL according to (5) to (7). Finally, from line 8 7, SMART
identifies malicious peers according to the corltroit.

Algorithm 1 SMART

Input: X A the reputation matrix
Output: SMPS

1: obtain X and X after applying MSPCA toX

A Suspicious Malicious Peers Set

Symbol Meaning Base value
# of peers 200

O # of contents 4000

AR per-user request rate 2 contents

/round

Ao content arrival rate varies

Pu the ratio of # of malicious peers tovaries
# of peers

Py the honest possibility that strategiwaries

malicious peer act as honest ones

2: calculating UCL and LCL according to (5) and (7)

3:fori=1toN

4: ifR>UCLor R <LCL 2 R is the range of columinof
i is considered as a malicious peer, attdSM PS

end if

7:end for

X
5:
6:

Time complexity. The time complexity of SMART mainly
lies on MSPCA, whose time complexity i©(TNL).
Therefore, the complexity of SMART &(TNL). Moreover,
the storage cost of SMART @(TN).

4. Simulations and Results

To explore aspects of SMART and compare it withsgxg
algorithms are difficult to study using traces edlrsystems or
analysis, consequently, we use a simulation-bapgdoach

4.2 Comparison Benchmarks and Evaluation Metrics

Comparison benchmarks. We choose three existing schemes
as comparison benchmarks: EigenTrust, Upload Ewtrop
(UEntropy) schemes [1] and our former algorithm riRtde
[11]. In EigenTrust, iterative calculation is impiented to
obtain each peer’s global reputation value andspedh the
lowest reputation values are treated as the |eastworthy
peers, which therefore will be treated as malicipesrs
distinguished by EigenTrust scheme in our simutatibhe
second scheme aims at stimulating peers to shatertoin
Private BT society. And those peers with lowestoagl
entropy will be considered as the least trustworthy
collaborators, in other words, they are the suepki
malicious peers. Therefore, in order to guararftegfairness
of comparison, in UEntropy scheme, those peers thith
lowest entropy will be treated as suspicious malisi peers
found by UEntropy. PeerMate detects malicious pbased

for understanding and evaluating SMART and existingn MSPCA and Quality of Reconstruction (QR).

algorithms. Such an approach provides the flexjbibf Evaluation metrics. LetM PS (Malicious Peers Set) be the

carefully controlling the configuration parameteo$ the  malicious peers setiPS (Honest Peers Set) be the set of
various detecting algorithms. This would be difftar even  ponest peers, argM P (Suspected Malicious Peers set) be the
impossible to achieve using live Internet measurémemaiicious peers set found by particular scheme.nTive

techniques. Thus, while certain interactions sjetif a real
deployment will be missed, we believe the abstoacts rich
enough to expose most details that are relevanbuo
experiments. Concretely speaking, after introducimgy
experimental context; we present the simulatiomltgsand
then give a discussion on the results as well asiple
usability of SMART.

4.1 Simulation Context and Comparison M ethod

Here, we adopt the workload model in [14] as theeulying
workload model of our simulations. Concretely, #arkload
is as follows. The contents arrive at constantigte0 and the

popularity of them follow<ipf distribution. When a piece of

content arrives, its popularity rank is determifgdselecting

randomly from thezipf(1) distribution. On average, a client

requests a constant number of pieces of contentquerd,

define two metrics TPR (True Positive Ratio) and¥H{False
Negative Ratio) as follows:

TPR=PMPn MPS|/MPS|;

FNR=SMPn HPS|/|HPS].
where | | represents the rank of a set, @nstands for the
intersection of two sets. Consequently, both TPR BNR
range from O to 1.

Simulation scenarios. We consider two typical simulation
scenarios here. One is simple and the other is cwT®lex.
Under the simple scenario, there are no strategilicious
peers in the system. In contrast, there exist sstraegic
malicious peers in the system under complex sognari
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malicious peers belong to MP4, and this means we=gtend
SMART in the future to find out Sybil peers in othe2P

4.3.1 Comparison Results of different schemes syste¢s.bl > The d _ s of the f H
Firstly, we compare malicious peers detection tesof aye € detecting results of the four schemes

4.3 Simulation Results

SMART, EigenTrust, UEntropy and PeerMate with=2, :gherzllest JOPO/R ;2‘5
P,=0 andPy=0.2. Other parameters, such\jO and/g are Ullgetn rus s 500/ 7 6;0/
listed in Table 1. After 200 rounds, we can obtaieputation tPeerUl)gt)é . 50; -y 0
H 200x200 . 0 0
matrix X , and then we apply the three schemes gMART 100% 5 63%

200x200
X

respectively, the detecting results of SMART isvgho
in Fig. 3, in which the peers with red circles analicious
peers detected by SMART. Moreover, the detectisglte of , ) ,
all the four schemes are shown in Table 2. As ndtexh 432 Detecting Results of SMART with Different
Table 2, the TPR of SMART is 100% which is the leigh & ameters

among the four, while the TPRs of EigenTrust, UBpgrand Detection results with different Py. We also investigate the
PeerMate are 90%, 57.5% and 97.5% respectivelyidgs influence ofPy whenlo =2 andPy=0. And the results are
the FNR of SMART is 5.63% which ranks the seconamgn shown in Fig. 4. From Fig. 4, we can see that tR& Tof
the three, while the FNRs of UEntropy, EigenTrustd a SMART decreases from 100% to 90%Rysincreases from
PeerMate are 10.63%, 2.5% and 7% respectivelg0% to 60%, in contrast, the FNR of SMART increasem
Consequently, SMART detects all of the maliciousrpavith  5.63% to 22.5%. We also notice that the FNR of SMAR
acceptable FNR. The FNR of EigenTrust is 2.5% which about 10% when half of the peers are maliciouss Tineans
lower than SMART since we only choose the M=P,, peers the accuracy of SMART's detecting results is acakeletwhen
as the malicious peers and this choice helps deetba FNR Up to 50% of the peers are malicious.

of EigenTrust. Moreover, we notice that SMART fintthe
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Figure 6. Detecting result of SMART with differef;,

Detecnon_reSLIItswnh_mwng data_. As mentioned b.ef‘?re’ 4.4 Thelnfluence of SMART on the System Performance
the reputation values iX may be inaccurate or missing. ] o /
Consequently, we investigate how SMART coaldapt to If we can find out malicious peers with SMART, peean
missing data context with different ratios of migstlata from Cchoose more reliable service providers during jsection
0 to 60%, while the missing data are selected nagérom ~ Process. Therefore, we compare the request suatessf the
X. Other parameters args; =2, P,=0 and:)M =0.2. For the sake System with three different peer selection polici&th the
of S|mpI|C|ty we fixX as follows: ifX is missing, then we set first policy, peers select service providers ranyomhile the

= (M + XY/2, if 1<t<T: X = Xt+1 if t=1; X' =x%, if Ppeers select the provider with the highest repnatialue

t -|- After the 208 round, the results are shown in Fig. 5. calculated by EigenTrust in the second policy, tredhonest

From Fig. 5, we can see that the TPR of SMART kestps P€€rs found out by SMART are selected as the servic
100% even up to 60% of the elements are missirgesiata providers in the third policy. Without loss of geality, the
missing cannot change the deterministic featuré®pést and '€duest success rate of each round is defineceauithber of
malicious peers. In contrast, the FNR of SMART @ages successful object transactions divided by the totahber of

slowly from 5.63% to 8% as the data missing raticréases object transactions dur?ng fchis round. And the lteswith 1o
from 0 to 40%, and then increases sharply from 8%biout =2, Pm =0.2 are shown in Fig. 7.
21% as the data missing ratio increases from 4096%6, at T T T
last, the FNR decreases to 11% when the data missiio is | ‘ Lo H"‘f
60%. This means the performance of SMART is actdpta ogsl _ ALl ‘? P %‘g‘;‘!‘l’?;‘“ i m T e ,
when the data miss ratio is lower than 40%. o j@ﬁ ,wr% %?H‘; gj‘&’ kjﬁfu‘w}?ﬂ”ﬁ “N‘L&Jlﬁ\ b g hé ) Bﬂ\"l“‘zﬂﬂ % mgmj&
1915 4] i ”\HM ke u‘\ e \H ! \‘J el ‘ ©
4.3.3 Detection Results of SMART under Complex ‘@m‘ﬁﬂ}f ‘u( ‘Hj;w b ?ﬁ‘:v W ! m'a& ﬂ% " ;’é 'y ég j:é‘ wﬁ‘ %&
Scenario erJE ‘\ w“ ‘T Ty T Z\j‘j‘v‘;rw& \{YJD i \ 77\7‘77\7% L i TFTH,
Possibility model. In order to avoid being detected, during L i \‘” A il ‘Vl‘ Vi x I \HH\Y |
each round, many strategic malicious peers willagchonest Ll il ‘” M ‘ b ‘ ‘ V \ H il
f 0.751 7 ‘ il i u“\‘\ﬂ\’ ‘ ‘
ones with certain possibility d?,. Therefore, we investigate Yﬂ iy “L | ‘i‘ il ‘ il _ y “ I /T
SMART with Ao =2,Py, =0.2 and®, =0.1, 0.2, 0.3, 0.4, 0.5, 0.6 ORI A Y ‘
and 0.7 respectively. The results are shown in6ig. | R S T S e dd b )
Fig. 6 demonstrates that the TPR decreases frof 160 [
80% adP;, increases from 0 to 70%, while the FNR of SMART
fluctuates between 4.5% and 12%. In order to obiég 0.65;
accuracy and low false alert, the performance oABM is Rounds
acceptable wheR, is lower than 40%. Figure7. The request success rate of the system with iffer
Mixture model. We also evaluate SMART with strategic peer selection policies
malicious peers which belong to multi categoriethatsame
time and whose behaviors are a combination of étetors From Fig. 7, we can see that SMART achieves thhdsig
of multi categories discussed above. Generallyldpgathe request success rate among the three, and itsgaverquest
mixture of malicious behavior cannot change theemtsal success rate of all the rounds is 83.64%. EigeriTamks the
difference between the behaviors of malicious pemrd second, and its average request success rate3E%6while
honest ones. Concretely, we add a few maliciousspgose the average request success rate with random pksatien
behaviors are as follows. They act as the behaaibMP1, policy is 75.50% and is the worst among the threerp
MP2, MP3, MP4 and MP5 with certain possibility. &f200 selection policies. And this result shows the ptarthat
rounds, we find that the TPR of SMART is 95% witNFF  SMART can be integrated with existing peer selectio
equals to 8.3%. This means SMART is also goodhaltirig out  algorithms to promote the quality of service orfpenance of
malicious peers with mixture behaviors since miturthe system. For example, during the choking prodass
behaviors cannot change the deterministic featofd®nest BitTorrent, the malicious peers discriminated by ART
and malicious peers. Here, we leave malicious peiéinsmore  should not be unchoked.
complex behaviors for future work since it is haifdnot
impossible, to enumerate all of them.
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