
 123 
International Journal of Communication Networks and Information Security (IJCNIS)                                     Vol. 7, No. 3, December 2015 

 

Spectral Efficiency Evaluation for Selection 
Combining Diversity Schemes under Worst Case of 

Fading Scenario 
  

Mohammad Irfanul Hasan1, 2 and Sanjay Kumar1  
 

1Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, India 
2 Department of Electronics and Communication Engineering, Graphic Era University, Dehradun, India 

irfanhasan25@rediffmail.com, skumar@bitmesra.ac.in 
 
 

Abstract: The results of spectral efficiencies for optimum rate 
adaptation with constant transmit power (ORA) and channel 
inversion with fixed rate (CIFR) schemes over uncorrelated 
diversity branch with Selection Combining (SC) available so far in 
literature are not applicable for Nakagami-0.5 fading channels. This 
paper derived closed-form expressions for the spectral efficiency of 
dual-branch SC over uncorrelated Nakagami-0.5 fading channels. 
This spectral efficiency is evaluated under ORA and CIFR schemes. 
Since, the spectral efficiency expression under ORA scheme 
contains an infinite series, hence bounds on the errors resulting 
from truncating the infinite series have been derived The 
corresponding expressions for Nakagami-0.5 fading are called 
expressions under worst fading condition with severe fading. 
Finally, numerical results are presented, which are then compared 
to the spectral efficiency results which have been previously 
published for ORA and CIFR schemes. It has been observed that by 
employing SC, spectral efficiency improves under ORA, but does 
not improve under CIFR. 
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1. Introduction 
 

Wireless communication services, such as wireless personal 
area networks, satellite-terrestrial services, wireless mobile 
communication services, wireless local-area networks, and 
internet access have been growing at a rapid pace in recent 
years. These services require high data rate. Thus, channel 
capacity is of fundamental importance in the design of 
wireless communication systems as it determines the 
maximum achievable data rate of the system. Since wireless 
mobile channels are subjected to fading, which degrades the 
data rate performance. The channel capacity in fading 
environment can be improved by employing diversity 
combining and / or adaptive transmission schemes [1]-[5].  
Diversity combining is known to be a powerful technique 
that can be used to combat fading in wireless mobile 
environment. Maximal ratio combining, equal gain 
combining and SC are most prevalent diversity combing 
techniques [3]-[4]. 
Adaptive transmission is another effective scheme that can 
be used to overcome fading. Adaptive transmission requires 
accurate channel estimation at the receiver and a reliable 
feedback path between the estimator and the transmitter [6]. 
There are four adaptation transmission schemes such as 
ORA, CIFR, optimum power and rate adaptation (OPRA) 
and truncated channel inversion with fixed Rate (TIFR) [6]-

[8]. Numerous researchers have worked on the study of 
channel capacity over different fading channels. We discuss 
here some representative examples. Specifically, [3]-[4] 
discuss the channel capacity over correlated Nakagami-
m ( )1&1 <≥ mm  fading channels under ORA and CIFR 

schemes with different diversity combining techniques. In 
[7], the channel capacity over uncorrelated Nakagami-
m ( )1≥m fading channels with MRC and without diversity 

under different adaptive transmissions schemes was 
analyzed. Expressions for the capacity over uncorrelated 
Rayleigh fading channels with MRC and SC under different 
adaptive transmission schemes were obtained in [8]. An 
analytical performance study of the channel capacity for 
correlated generalized gamma fading channels with dual-
branch SC under the different power and rate adaptation 
schemes was introduced in [9]. The channel capacity of 
Nakagami-m ( )1≥m  fading channel without diversity was 

derived in [10] for different adaptive transmission schemes. 
In [11], channel capacity of dual-branch SC and MRC 
systems over correlated Hoyt fading channels using 
different adaptive transmission schemes was presented. In 
[12], expression for the ergodic capacity of MRC over 
arbitrarily correlated Rician fading channels was derived. In 
[13], an expression for lower and upper bounds in the 
channel capacity expression for uncorrelated Rician and 
Hoyt fading channels with MRC using ORA scheme were 
obtained. The analytical study of the capacity under 

µ−k fading and Weibull fading channels with OPRA, 

ORA, CIFR and TIFR adaptation transmission schemes 
using different diversity systems was presented in [14]. In 
[15], an analytical performance study of the channel 
capacity for uncorrelated Nakagami-0.5 with dual-branch 
MRC using OPRA and TIFR was obtained. In [16], the 
channel capacity over correlated Nakagami-0.5 fading 
channels under OPRA and TIFR schemes with MRC was 
discussed. An analytical performance study of the channel 
capacity for uncorrelated Nakagami-0.5 fading channels 
with dual-branch SC under OPRA, and TIFR was 
introduced in [17]. The Nakagami-0.5 model has been 
widely used in general to study wireless mobile 
communication system performance. Results obtained for 
Nakagami-0.5 will have great practical usefulness, they will 
be of theoretical interest as a worst fading case. This paper 
fills this gap by presenting an analytical performance study 
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of the channel capacity of dual-branch SC over uncorrelated 
Nakagami-0.5 fading channels using ORA, and CIFR 
schemes.  
In this paper, SC has been considered which is one of the 
least complex diversity combining techniques [18]. 
The remainder of this paper is organized as follows: In 
Section 2, the channel model is defined. In Section 3, spectral 
efficiency of no diversity and dual-branch SC over 
Nakagami-0.5 fading channels are derived for ORA and 
CIFR schemes. In Section 4, several numerical results are 
presented and analyzed, whereas in Section 5, concluding 
remarks are given. 
 

2. Channel Model 
 

We assume slowly-varying Nakagami-m  flat fading channel. 
The probability distribution function (pdf) of instantaneous 
received SNR )(γ of this fading channel is gamma distributed 
given by [7]  
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where m  is the Nakagami fading parameter, which measures 
the amount of fading, γ is the average received SNR, and 

(.)Γ  is the gamma function. For different values ofm , this 

expression simplifies to several important distributions 
describing fading models. Like 5.0=m corresponds to the 
highest amount of fading, 1=m  corresponds to Rayleigh 
distribution, 1≥m corresponds to Rician distribution, and as 

∞→m , the distribution converges to a nonfading AWGN 
from [19]. 
In case of no diversity the pdf under worst case of fading 
using (1) is 
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Assuming independent branch signals and equal average 
received SNR, the pdf of the received SNR at the output of 
dual-branch SC under Nakagami-m  fading channels is given 
by [19]-[20] is 
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where γ  is the average received SNR, )5.0( ≥mm  is the 

fading parameter, and (.)mQ
 
is the MarcumQ -function, 

which can be represented, when m  is not an integer, as 
given in [19] 
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where .],[.Γ is the complementary incomplete gamma 

function.

 As we consider worst case of fading, then by [21] 
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where (.)erfc  is called complementary error function. So 

that 
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Hence, the pdf of dual-branch SC under worst case of 
fading using above mathematical transformation as given in 
[17] 
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3. Spectral Efficiency 
 

In this section, we present closed-form expressions for the 
spectral efficiency of uncorrelated Nakagami-0.5 fading 
channels with dual-branch SC and no diversity under ORA, 
and CIFR schemes. It is assumed that, for the above 
considered adaptation scheme, there exist perfect channel 
estimation and an error-free delayless feedback path, similar 
to the assumption made in [8]. 

 3.1  ORA 

The average channel capacity of fading channel with 
received SNR distribution )(γγp  under ORA scheme 

( ORAC [bit/sec]) is defined in [6] as 
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where B  [Hz] is the channel bandwidth. 
In fact, (5) represents the capacity of the fading channel 
without transmitter feedback (i.e., with the channel fade 
level known at the receiver only). 

3.1.1 Spectral efficiency in case of no diversity  

Substituting (2) into (5), the average channel capacity 
becomes 
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The integral can be solved using partial integration as follows 
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Now, let γ
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After performing integral using [21], we obtain 
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Evaluating the above integral by using partial integration and 
after some mathematical transformation using [21]-[22], we 
obtain  
 




























+−














×+








−

=

2
log

2

1

2

1
;2,

2

3
;,1,122

443.1

γγγ

γ
πγ

γ
γ

e

ierfF
B

ORAC

 

 

where )(.,.;.,.;.22 F  is the generalized hypergeometric 

function and (.)ierf  is the imaginary error function. 

Using that result, we obtain average channel capacity per unit 

bandwidth i.e. 
B

CORA [bit/sec/Hz] said to be spectral 

efficiency as 
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where e is the Euler-Mascheroni constant having the value 
approximately equal to 0.577215665 given in [19]. 
 

3.1.2 Spectral efficiency in case of dual-branch SC 
 

Substituting (4) into (5), the average channel capacity of 
dual-branch SC over uncorrelated Nakagami-0.5 fading 
channels is 
 

∫
∞






















−+=

0

5.05.0
exp

2
)1(2log γ

γ
γ

γ
γ

γγπ
γ derfBORAC

 
                                                                                         (7) 
As we know that error function can be represented by [21] as 
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Substituting (8) in (7), ORAC   after some mathematical 

transformation 
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Using that result we obtain spectral efficiency i.e. 

B
CORA [bit/sec/Hz] as 
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The integral can be solved using partial integration as follows 
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Evaluating integral by using partial integral and some 
mathematical transformation using [21]-[22], we obtain 
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The computation of the spectral efficiency according to (10) 
requires the computation of an infinite series. To efficiently 
compute the series, we truncate the series, and present 
bounds for the spectral efficiency. 
The spectral efficiency in (10) can be written 
as EORANORAORA ,, ηηη += , where NORA ,η is the 

expression in (10) with the infinite series truncated at the 
N th term as 
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and EORA ,η  is the truncation error resulting from truncating 

the infinite series in (10) at Nn = . 
The lower bound for ORAη is derived as 
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where lowEORA −,η , which is the lower bound of EORA ,η
 

The lower bound for the spectral efficiency can be derived by 
using the relationship between the area of the pdf and the 
expression of the spectral efficiency as discuss in [13]. 
As we know that area of pdf )(γγp is equal to unity. 
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Substituting (4) into (11), we get 
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After integrating and using manipulation we get 
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Dividing (15) by (13), yields 
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Hence, the spectral efficiency in (10) can be lower bounded 

lowEORA −,η by using (16) and (17) as 
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The upper bound for ORAη  is derived as 
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i.e. na  monotonically decreases with increase of n , 

therefore, EORA ,η  can be upper bounded as 
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After evaluating the integral (20) and some mathematical 
manipulations using [20]-[21], we obtain the upper bound 

upEORA −,η for, EORA ,η as  
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Therefore, the spectral efficiency in (10) can be upper 
bounded as 
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where (.)1E  is the exponential integral of first order. 

Hence, the spectral efficiency is bounded using (18) and (22) 
as 
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    3.2  CIFR 

The average channel capacity of fading channel with 
received SNR distribution )(γγp  under CIFR scheme 

( CIFRC [bit/sec]) is defined in [6] as 
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Channel inversion with fixed rate is the least complex 
technique to implement, assuming good channel estimates are 
available at the transmitter and receiver.  

3.2.1 Spectral Efficiency in case of no Diversity 

The pdf for Nakagami-0.5 fading channel is given in (2) as 
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Integrating (25) over an interval as shown below 
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Evaluating integral by some manipulation using [21], we 
obtain 
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As we know that  
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Putting this value of integral in (24), we get 
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So, the spectral efficiency with no diversity under Nakagami-
0.5 fading channel is zero. 
 

3.2.2  Spectral Efficiency in case of dual-branch SC 
 

The pdf of dual-branch SC over uncorrelated Nakagami-0.5 
fading channel is given in (4) is 
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Integrating the (27) over an interval as shown below 
 

∫ ∫
∞ ∞

×





















−=

0 0

15.05.0
exp

2)(
γ

γγ
γ

γ
γ

γγπ
γ

γ
γγ derfd

p

 

 

After evaluating the integral using [21]-[22], we obtain 
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Putting this value of integral in (24), we get 
 

0)1(log2 == BCCIFR                                                     (28) 
 

4. Numerical Results and Analysis 
 

In this section, various performance evaluation results for the 
spectral efficiency have been obtained using dual-branch SC 
and no diversity under worst fading condition. These results 
also focus on spectral efficiency comparisons between the 
different adaptive transmission schemes. 
In Fig. 1, the spectral efficiency under ORA scheme is 
plotted as a function of the average received SNR per 
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branchγ .  As expected, by increasing γ and/or employing 

diversity, spectral efficiency improves. 
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It is seen in Table. 1 that as the truncation error bounds 
becomes tighter as the truncation level,N , increases. It 
means that as the truncation level increases the difference 
between upper and lower bounds for each average received 
SNR per branchγ  decreases and hence calculated spectral 

efficiency becomes more appropriate. That’s why the infinite 
series in ORAη  has been truncated at the 15th term to 

calculate the spectral efficiency for the Fig. 1. 
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In Fig. 2, the spectral efficiency under ORA scheme is 
plotted as a function of the average received SNR per 
branchγ . For comparison, the spectral efficiency of 

uncorrelated Rayleigh fading channels with dual-branch SC 
and without diversity, which was obtained in [8, Eq. (44)] 
and [8, Eq. (34)] respectively, is also presented in Fig. 2. As 
expected, as the channel fading conditions improves, i.e, m  

and / or  γ  increases, spectral efficiency improves. It is very 

interesting to observe that the spectral efficiency without 
diversity for dB5.7−≤γ  remains same as we move from 

worst fading condition to Rayleigh. Similarly, dual-branch 
SC for dB5.2−≤γ , gives almost identical performance even  

we move from worst fading condition to Rayleigh. 
Fig. 3 states that spectral efficiency versus average received 
SNR per branchγ  over Nakagami-0.5 fading channel 

remains zero as we go from no diversity to dual-branch SC 
under CIFR scheme. 
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Figure 1. Spectral Efficiency for a worst case of fading 
versus average received SNRγ under ORA. 

Figure 2. Spectral Efficiency versus average received 
SNRγ  under ORA. 

Figure 3. Spectral Efficiency for a worst-case of 
fading versus average received SNRγ . 

Table 1. Comparison of NORA,η , upEORA −,η ,and 

lowEORA −,η  at two different values of N  for worst 

case of fading. 

 5=N  

 

[ ]dBγ  

 

NORA,η  

 

upEORA −,η  

 

lowEORA −,η  

-10 0.143708 0.061883 0.0581541295 

-5 0.411463 0.120879 0.1153123659 

0 0.977032 0.196274 0.1896116138 

5 1.89534 0.27954 0.2723395591 

10 3.10794 0.36565 0.3582797952 

 15=N  

 

[ ]dBγ  

 

NORA,η  

 

upEORA −,η  

 

lowEORA −,η  

-10 0.164232 0.041359 0.04064235544 

-5 0.463140 0.069202 0.06833679633 

0 1.07295 0.10041 0.09942977640 

5 2.04205 0.13283 0.13180969046 

10 3.30793 0.16564 0.164623141056 
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In Fig. 4, the spectral efficiency under CIFR is plotted as a 
function of the average received SNR per branchγ . For 

comparison, the spectral efficiency of uncorrelated Rayleigh 
fading channels with dual-branch SC, which was obtained in 
[8, Eq. (52)], is also presented in Fig. 4. It is observed that, 
as the channel fading conditions improve, i.e, m  and / or γ  

increases, spectral efficiency with no diversity remains zero. 
However, employing a dual-branch SC system improves the 
channel capacity as we go from worst case of fading 
conditions to Rayleigh fading conditions.  
In Fig. 5, the spectral efficiency of uncorrelated Nakagami-
0.5 fading channels with and without diversity is plotted as a 
function of γ , considering ORA, OPRA, and TIFR 

adaptation schemes with the aid of (6), (23), [17, Eq. (27)], 
[17, Eq. (35)], [15, Eq. (8)], and [15, Eq. (22)]. It shows that, 
the spectral efficiency with no diversity under ORA scheme 
improves over TIFR for dB5≥γ . It is also observed that the 

spectral efficiency with dual-branch SC under ORA scheme 
improves over TIFR for dB0≥γ  and OPRA scheme provides 

better efficiency under worst case of fading. It is also 
interesting to observe that for  dB5.7−≤γ  ORA scheme with 

dual-branch SC gives inferior performance with respect to 
TIFR scheme without diversity. 
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5. Conclusions 
 

In this paper, closed-form expressions for the spectral 
efficiency of dual-branch SC and no diversity under ORA 
and CIFR schemes have been obtained and analyzed. Error 
bounds have been derived for truncated infinite series under 
ORA. Numerical results illustrate that the bounds can be used 
effectively to determine the number of terms needed to 
achieve desirable level of accuracy. Results have been 
plotted, which show that by increasing γ and/or employing 

diversity, spectral efficiency improves under ORA scheme. It 
is also observed that the spectral efficiency under CIFR is 
zero under worst case of fading even when a dual-branch SC 
is utilized. It is important to note that the spectral efficiency 
using ORA scheme remains almost same even when fading 
conditions improve from Nakagami-0.5 to Rayleigh either 
under dual-branch SC for dB5.2−≤γ  or under no diversity 

for dB5.7−≤γ . This paper finally concludes that under 

worst case of fading TIFR scheme is a better choice for low 
average received SNR and ORA scheme is for high average 
received SNR even employing diversity. Therefore it is 
recommended that under worst fading condition, ORA 
scheme is not always a better choice over TIFR.  

 

 

 

 

 

 

 

 

 

Figure 4. Spectral Efficiency versus average received 
SNRγ under CIFR. 

Figure 5. Spectral Efficiency versus average received 
SNRγ  under different adaptive transmission schemes. 
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